%PDF- %PDF-
| Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/wasm/ |
| Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/wasm/jump-table-assembler.cc |
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/wasm/jump-table-assembler.h"
#include "src/codegen/macro-assembler-inl.h"
namespace v8 {
namespace internal {
namespace wasm {
// static
void JumpTableAssembler::GenerateLazyCompileTable(
Address base, uint32_t num_slots, uint32_t num_imported_functions,
Address wasm_compile_lazy_target) {
uint32_t lazy_compile_table_size = num_slots * kLazyCompileTableSlotSize;
WritableJitAllocation jit_allocation = ThreadIsolation::LookupJitAllocation(
base, RoundUp<kCodeAlignment>(lazy_compile_table_size),
ThreadIsolation::JitAllocationType::kWasmLazyCompileTable);
// Assume enough space, so the Assembler does not try to grow the buffer.
JumpTableAssembler jtasm(base, lazy_compile_table_size + 256);
for (uint32_t slot_index = 0; slot_index < num_slots; ++slot_index) {
DCHECK_EQ(slot_index * kLazyCompileTableSlotSize, jtasm.pc_offset());
jtasm.EmitLazyCompileJumpSlot(slot_index + num_imported_functions,
wasm_compile_lazy_target);
}
DCHECK_EQ(lazy_compile_table_size, jtasm.pc_offset());
FlushInstructionCache(base, lazy_compile_table_size);
}
void JumpTableAssembler::InitializeJumpsToLazyCompileTable(
Address base, uint32_t num_slots, Address lazy_compile_table_start) {
uint32_t jump_table_size = SizeForNumberOfSlots(num_slots);
WritableJitAllocation jit_allocation = ThreadIsolation::LookupJitAllocation(
base, RoundUp<kCodeAlignment>(jump_table_size),
ThreadIsolation::JitAllocationType::kWasmJumpTable);
JumpTableAssembler jtasm(base, jump_table_size + 256);
for (uint32_t slot_index = 0; slot_index < num_slots; ++slot_index) {
// Make sure we write at the correct offset.
int slot_offset =
static_cast<int>(JumpTableAssembler::JumpSlotIndexToOffset(slot_index));
jtasm.SkipUntil(slot_offset);
Address target =
lazy_compile_table_start +
JumpTableAssembler::LazyCompileSlotIndexToOffset(slot_index);
int offset_before_emit = jtasm.pc_offset();
// This function initializes the first jump table with jumps to the lazy
// compile table. Both get allocated in the constructor of the
// {NativeModule}, so they both should end up in the initial code space.
// Jumps within one code space can always be near jumps, so the following
// call to {EmitJumpSlot} should always succeed. If the call fails, then
// either the jump table allocation was changed incorrectly so that the lazy
// compile table was not within near-jump distance of the jump table
// anymore (e.g. the initial code space was too small to fit both tables),
// or the code space was allocated larger than the maximum near-jump
// distance.
CHECK(jtasm.EmitJumpSlot(target));
int written_bytes = jtasm.pc_offset() - offset_before_emit;
// We write nops here instead of skipping to avoid partial instructions in
// the jump table. Partial instructions can cause problems for the
// disassembler.
jtasm.NopBytes(kJumpTableSlotSize - written_bytes);
}
FlushInstructionCache(base, jump_table_size);
}
// The implementation is compact enough to implement it inline here. If it gets
// much bigger, we might want to split it in a separate file per architecture.
#if V8_TARGET_ARCH_X64
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
Address lazy_compile_target) {
// Use a push, because mov to an extended register takes 6 bytes.
pushq_imm32(func_index); // 5 bytes
EmitJumpSlot(lazy_compile_target); // 5 bytes
}
bool JumpTableAssembler::EmitJumpSlot(Address target) {
intptr_t displacement = static_cast<intptr_t>(
reinterpret_cast<uint8_t*>(target) - pc_ - kNearJmpInstrSize);
if (!is_int32(displacement)) return false;
near_jmp(displacement, RelocInfo::NO_INFO); // 5 bytes
return true;
}
void JumpTableAssembler::EmitFarJumpSlot(Address target) {
Label data;
int start_offset = pc_offset();
jmp(Operand(&data)); // 6 bytes
Nop(2); // 2 bytes
// The data must be properly aligned, so it can be patched atomically (see
// {PatchFarJumpSlot}).
DCHECK_EQ(start_offset + kSystemPointerSize, pc_offset());
USE(start_offset);
bind(&data);
dq(target); // 8 bytes
}
// static
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
// The slot needs to be pointer-size aligned so we can atomically update it.
DCHECK(IsAligned(slot, kSystemPointerSize));
// Offset of the target is at 8 bytes, see {EmitFarJumpSlot}.
reinterpret_cast<std::atomic<Address>*>(slot + kSystemPointerSize)
->store(target, std::memory_order_relaxed);
// The update is atomic because the address is properly aligned.
// Because of cache coherence, the data update will eventually be seen by all
// cores. It's ok if they temporarily jump to the old target.
}
void JumpTableAssembler::NopBytes(int bytes) {
if (bytes) Nop(bytes);
}
void JumpTableAssembler::SkipUntil(int offset) {
DCHECK_GE(offset, pc_offset());
pc_ += offset - pc_offset();
}
#elif V8_TARGET_ARCH_IA32
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
Address lazy_compile_target) {
mov(kWasmCompileLazyFuncIndexRegister, func_index); // 5 bytes
jmp(lazy_compile_target, RelocInfo::NO_INFO); // 5 bytes
}
bool JumpTableAssembler::EmitJumpSlot(Address target) {
jmp(target, RelocInfo::NO_INFO);
return true;
}
void JumpTableAssembler::EmitFarJumpSlot(Address target) {
jmp(target, RelocInfo::NO_INFO);
}
// static
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
UNREACHABLE();
}
void JumpTableAssembler::NopBytes(int bytes) {
if (bytes) Nop(bytes);
}
void JumpTableAssembler::SkipUntil(int offset) {
DCHECK_GE(offset, pc_offset());
pc_ += offset - pc_offset();
}
#elif V8_TARGET_ARCH_ARM
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
Address lazy_compile_target) {
// Load function index to a register.
// This generates [movw, movt] on ARMv7 and later, [ldr, constant pool marker,
// constant] on ARMv6.
Move32BitImmediate(kWasmCompileLazyFuncIndexRegister, Operand(func_index));
// EmitJumpSlot emits either [b], [movw, movt, mov] (ARMv7+), or [ldr,
// constant].
// In total, this is <=5 instructions on all architectures.
// TODO(arm): Optimize this for code size; lazy compile is not performance
// critical, as it's only executed once per function.
EmitJumpSlot(lazy_compile_target);
}
bool JumpTableAssembler::EmitJumpSlot(Address target) {
// Note that {Move32BitImmediate} emits [ldr, constant] for the relocation
// mode used below, we need this to allow concurrent patching of this slot.
Move32BitImmediate(pc, Operand(target, RelocInfo::WASM_CALL));
CheckConstPool(true, false); // force emit of const pool
return true;
}
void JumpTableAssembler::EmitFarJumpSlot(Address target) {
// Load from [pc + kInstrSize] to pc. Note that {pc} points two instructions
// after the currently executing one.
ldr_pcrel(pc, -kInstrSize); // 1 instruction
dd(target); // 4 bytes (== 1 instruction)
static_assert(kInstrSize == kInt32Size);
static_assert(kFarJumpTableSlotSize == 2 * kInstrSize);
}
// static
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
UNREACHABLE();
}
void JumpTableAssembler::NopBytes(int bytes) {
DCHECK_LE(0, bytes);
DCHECK_EQ(0, bytes % kInstrSize);
for (; bytes > 0; bytes -= kInstrSize) {
nop();
}
}
void JumpTableAssembler::SkipUntil(int offset) {
// On this platform the jump table is not zapped with valid instructions, so
// skipping over bytes is not allowed.
DCHECK_EQ(offset, pc_offset());
}
#elif V8_TARGET_ARCH_ARM64
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
Address lazy_compile_target) {
int start = pc_offset();
CodeEntry(); // 0-1 instr
Mov(kWasmCompileLazyFuncIndexRegister.W(), func_index); // 1-2 instr
Jump(lazy_compile_target, RelocInfo::NO_INFO); // 1 instr
int nop_bytes = start + kLazyCompileTableSlotSize - pc_offset();
DCHECK(nop_bytes == 0 || nop_bytes == kInstrSize);
if (nop_bytes) nop();
}
bool JumpTableAssembler::EmitJumpSlot(Address target) {
#ifdef V8_ENABLE_CONTROL_FLOW_INTEGRITY
static constexpr ptrdiff_t kCodeEntryMarkerSize = kInstrSize;
#else
static constexpr ptrdiff_t kCodeEntryMarkerSize = 0;
#endif
uint8_t* jump_pc = pc_ + kCodeEntryMarkerSize;
ptrdiff_t jump_distance = reinterpret_cast<uint8_t*>(target) - jump_pc;
DCHECK_EQ(0, jump_distance % kInstrSize);
int64_t instr_offset = jump_distance / kInstrSize;
if (!MacroAssembler::IsNearCallOffset(instr_offset)) {
return false;
}
CodeEntry();
DCHECK_EQ(jump_pc, pc_);
DCHECK_EQ(instr_offset,
reinterpret_cast<Instr*>(target) - reinterpret_cast<Instr*>(pc_));
DCHECK(is_int26(instr_offset));
b(static_cast<int>(instr_offset));
return true;
}
void JumpTableAssembler::EmitFarJumpSlot(Address target) {
// This code uses hard-coded registers and instructions (and avoids
// {UseScratchRegisterScope} or {InstructionAccurateScope}) because this code
// will only be called for the very specific runtime slot table, and we want
// to have maximum control over the generated code.
// Do not reuse this code without validating that the same assumptions hold.
CodeEntry(); // 0-1 instructions
constexpr Register kTmpReg = x16;
DCHECK(TmpList()->IncludesAliasOf(kTmpReg));
int kOffset = ENABLE_CONTROL_FLOW_INTEGRITY_BOOL ? 3 : 2;
// Load from [pc + kOffset * kInstrSize] to {kTmpReg}, then branch there.
ldr_pcrel(kTmpReg, kOffset); // 1 instruction
br(kTmpReg); // 1 instruction
#ifdef V8_ENABLE_CONTROL_FLOW_INTEGRITY
nop(); // To keep the target below aligned to kSystemPointerSize.
#endif
dq(target); // 8 bytes (== 2 instructions)
static_assert(2 * kInstrSize == kSystemPointerSize);
const int kSlotCount = ENABLE_CONTROL_FLOW_INTEGRITY_BOOL ? 6 : 4;
static_assert(kFarJumpTableSlotSize == kSlotCount * kInstrSize);
}
// static
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
// See {EmitFarJumpSlot} for the offset of the target (16 bytes with
// CFI enabled, 8 bytes otherwise).
int kTargetOffset =
ENABLE_CONTROL_FLOW_INTEGRITY_BOOL ? 4 * kInstrSize : 2 * kInstrSize;
// The slot needs to be pointer-size aligned so we can atomically update it.
DCHECK(IsAligned(slot + kTargetOffset, kSystemPointerSize));
reinterpret_cast<std::atomic<Address>*>(slot + kTargetOffset)
->store(target, std::memory_order_relaxed);
// The data update is guaranteed to be atomic since it's a properly aligned
// and stores a single machine word. This update will eventually be observed
// by any concurrent [ldr] on the same address because of the data cache
// coherence. It's ok if other cores temporarily jump to the old target.
}
void JumpTableAssembler::NopBytes(int bytes) {
DCHECK_LE(0, bytes);
DCHECK_EQ(0, bytes % kInstrSize);
for (; bytes > 0; bytes -= kInstrSize) {
nop();
}
}
void JumpTableAssembler::SkipUntil(int offset) {
// On this platform the jump table is not zapped with valid instructions, so
// skipping over bytes is not allowed.
DCHECK_EQ(offset, pc_offset());
}
#elif V8_TARGET_ARCH_S390X
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
Address lazy_compile_target) {
// Load function index to r7. 6 bytes
lgfi(kWasmCompileLazyFuncIndexRegister, Operand(func_index));
// Jump to {lazy_compile_target}. 6 bytes or 12 bytes
mov(r1, Operand(lazy_compile_target, RelocInfo::CODE_TARGET));
b(r1); // 2 bytes
}
bool JumpTableAssembler::EmitJumpSlot(Address target) {
intptr_t relative_target = reinterpret_cast<uint8_t*>(target) - pc_;
if (!is_int32(relative_target / 2)) {
return false;
}
brcl(al, Operand(relative_target / 2));
nop(0); // make the slot align to 8 bytes
return true;
}
void JumpTableAssembler::EmitFarJumpSlot(Address target) {
Label target_addr;
lgrl(ip, &target_addr); // 6 bytes
b(ip); // 8 bytes
CHECK_EQ(reinterpret_cast<Address>(pc_) & 0x7, 0); // Alignment
bind(&target_addr);
dp(target);
}
// static
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
Address target_addr = slot + 8;
reinterpret_cast<std::atomic<Address>*>(target_addr)
->store(target, std::memory_order_relaxed);
}
void JumpTableAssembler::NopBytes(int bytes) {
DCHECK_LE(0, bytes);
DCHECK_EQ(0, bytes % 2);
for (; bytes > 0; bytes -= 2) {
nop(0);
}
}
void JumpTableAssembler::SkipUntil(int offset) {
// On this platform the jump table is not zapped with valid instructions, so
// skipping over bytes is not allowed.
DCHECK_EQ(offset, pc_offset());
}
#elif V8_TARGET_ARCH_MIPS64
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
Address lazy_compile_target) {
int start = pc_offset();
li(kWasmCompileLazyFuncIndexRegister, func_index); // max. 2 instr
// Jump produces max. 4 instructions for 32-bit platform
// and max. 6 instructions for 64-bit platform.
Jump(lazy_compile_target, RelocInfo::NO_INFO);
int nop_bytes = start + kLazyCompileTableSlotSize - pc_offset();
DCHECK_EQ(nop_bytes % kInstrSize, 0);
for (int i = 0; i < nop_bytes; i += kInstrSize) nop();
}
bool JumpTableAssembler::EmitJumpSlot(Address target) {
PatchAndJump(target);
return true;
}
void JumpTableAssembler::EmitFarJumpSlot(Address target) {
li(t9, Operand(target, RelocInfo::OFF_HEAP_TARGET));
Jump(t9);
}
// static
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
UNREACHABLE();
}
void JumpTableAssembler::NopBytes(int bytes) {
DCHECK_LE(0, bytes);
DCHECK_EQ(0, bytes % kInstrSize);
for (; bytes > 0; bytes -= kInstrSize) {
nop();
}
}
void JumpTableAssembler::SkipUntil(int offset) {
// On this platform the jump table is not zapped with valid instructions, so
// skipping over bytes is not allowed.
DCHECK_EQ(offset, pc_offset());
}
#elif V8_TARGET_ARCH_LOONG64
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
Address lazy_compile_target) {
DCHECK(is_int32(func_index));
int start = pc_offset();
li(kWasmCompileLazyFuncIndexRegister, (int32_t)func_index); // max. 2 instr
// EmitJumpSlot produces 1 instructions.
CHECK(EmitJumpSlot(lazy_compile_target));
int nop_bytes = start + kLazyCompileTableSlotSize - pc_offset();
DCHECK_EQ(nop_bytes % kInstrSize, 0);
for (int i = 0; i < nop_bytes; i += kInstrSize) nop();
}
bool JumpTableAssembler::EmitJumpSlot(Address target) {
intptr_t relative_target = reinterpret_cast<uint8_t*>(target) - pc_;
DCHECK_EQ(relative_target % 4, 0);
intptr_t instr_offset = relative_target / kInstrSize;
if (!is_int26(instr_offset)) {
return false;
}
b(instr_offset);
return true;
}
void JumpTableAssembler::EmitFarJumpSlot(Address target) {
pcaddi(t7, 4);
Ld_d(t7, MemOperand(t7, 0));
jirl(zero_reg, t7, 0);
nop(); // pc_ should be align.
DCHECK_EQ(reinterpret_cast<uint64_t>(pc_) % 8, 0);
dq(target);
}
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
Address target_addr = slot + kFarJumpTableSlotSize - 8;
reinterpret_cast<std::atomic<Address>*>(target_addr)
->store(target, std::memory_order_relaxed);
}
void JumpTableAssembler::NopBytes(int bytes) {
DCHECK_LE(0, bytes);
DCHECK_EQ(0, bytes % kInstrSize);
for (; bytes > 0; bytes -= kInstrSize) {
nop();
}
}
void JumpTableAssembler::SkipUntil(int offset) {
// On this platform the jump table is not zapped with valid instructions, so
// skipping over bytes is not allowed.
DCHECK_EQ(offset, pc_offset());
}
#elif V8_TARGET_ARCH_PPC64
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
Address lazy_compile_target) {
int start = pc_offset();
// Load function index to register. max 5 instrs
mov(kWasmCompileLazyFuncIndexRegister, Operand(func_index));
// Jump to {lazy_compile_target}. max 5 instrs
mov(r0, Operand(lazy_compile_target));
mtctr(r0);
bctr();
int nop_bytes = start + kLazyCompileTableSlotSize - pc_offset();
DCHECK_EQ(nop_bytes % kInstrSize, 0);
for (int i = 0; i < nop_bytes; i += kInstrSize) nop();
}
bool JumpTableAssembler::EmitJumpSlot(Address target) {
intptr_t relative_target = reinterpret_cast<uint8_t*>(target) - pc_;
if (!is_int26(relative_target)) {
return false;
}
b(relative_target, LeaveLK);
return true;
}
void JumpTableAssembler::EmitFarJumpSlot(Address target) {
uint8_t* start = pc_;
mov(ip, Operand(reinterpret_cast<Address>(start + kFarJumpTableSlotSize -
8))); // 5 instr
LoadU64(ip, MemOperand(ip));
mtctr(ip);
bctr();
uint8_t* end = pc_;
int used = end - start;
CHECK(used < kFarJumpTableSlotSize - 8);
NopBytes(kFarJumpTableSlotSize - 8 - used);
CHECK_EQ(reinterpret_cast<Address>(pc_) & 0x7, 0); // Alignment
dp(target);
}
// static
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
Address target_addr = slot + kFarJumpTableSlotSize - 8;
reinterpret_cast<std::atomic<Address>*>(target_addr)
->store(target, std::memory_order_relaxed);
}
void JumpTableAssembler::NopBytes(int bytes) {
DCHECK_LE(0, bytes);
DCHECK_EQ(0, bytes % 4);
for (; bytes > 0; bytes -= 4) {
nop(0);
}
}
void JumpTableAssembler::SkipUntil(int offset) {
// On this platform the jump table is not zapped with valid instructions, so
// skipping over bytes is not allowed.
DCHECK_EQ(offset, pc_offset());
}
#elif V8_TARGET_ARCH_RISCV64
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
Address lazy_compile_target) {
int start = pc_offset();
li(kWasmCompileLazyFuncIndexRegister, func_index); // max. 2 instr
// Jump produces max. 8 instructions (include constant pool and j)
Jump(lazy_compile_target, RelocInfo::NO_INFO);
int nop_bytes = start + kLazyCompileTableSlotSize - pc_offset();
DCHECK_EQ(nop_bytes % kInstrSize, 0);
for (int i = 0; i < nop_bytes; i += kInstrSize) nop();
}
bool JumpTableAssembler::EmitJumpSlot(Address target) {
PatchAndJump(target);
return true;
}
void JumpTableAssembler::EmitFarJumpSlot(Address target) {
UseScratchRegisterScope temp(this);
Register rd = temp.Acquire();
auipc(rd, 0);
ld(rd, rd, 4 * kInstrSize);
Jump(rd);
nop();
dq(target);
}
// static
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
UNREACHABLE();
}
void JumpTableAssembler::NopBytes(int bytes) {
DCHECK_LE(0, bytes);
DCHECK_EQ(0, bytes % kInstrSize);
for (; bytes > 0; bytes -= kInstrSize) {
nop();
}
}
void JumpTableAssembler::SkipUntil(int offset) {
// On this platform the jump table is not zapped with valid instructions, so
// skipping over bytes is not allowed.
DCHECK_EQ(offset, pc_offset());
}
#elif V8_TARGET_ARCH_RISCV32
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
Address lazy_compile_target) {
int start = pc_offset();
li(kWasmCompileLazyFuncIndexRegister, func_index); // max. 2 instr
// Jump produces max. 8 instructions (include constant pool and j)
Jump(lazy_compile_target, RelocInfo::NO_INFO);
int nop_bytes = start + kLazyCompileTableSlotSize - pc_offset();
DCHECK_EQ(nop_bytes % kInstrSize, 0);
for (int i = 0; i < nop_bytes; i += kInstrSize) nop();
}
bool JumpTableAssembler::EmitJumpSlot(Address target) {
PatchAndJump(target);
return true;
}
void JumpTableAssembler::EmitFarJumpSlot(Address target) {
UseScratchRegisterScope temp(this);
Register rd = temp.Acquire();
auipc(rd, 0);
lw(rd, rd, 4 * kInstrSize);
Jump(rd);
nop();
dq(target);
}
// static
void JumpTableAssembler::PatchFarJumpSlot(Address slot, Address target) {
UNREACHABLE();
}
void JumpTableAssembler::NopBytes(int bytes) {
DCHECK_LE(0, bytes);
DCHECK_EQ(0, bytes % kInstrSize);
for (; bytes > 0; bytes -= kInstrSize) {
nop();
}
}
void JumpTableAssembler::SkipUntil(int offset) {
// On this platform the jump table is not zapped with valid instructions, so
// skipping over bytes is not allowed.
DCHECK_EQ(offset, pc_offset());
}
#else
#error Unknown architecture.
#endif
} // namespace wasm
} // namespace internal
} // namespace v8