%PDF- %PDF-
| Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/snapshot/ |
| Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/snapshot/context-serializer.cc |
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/snapshot/context-serializer.h"
#include "src/snapshot/startup-serializer.h"
#include "src/api/api-inl.h"
#include "src/execution/microtask-queue.h"
#include "src/heap/combined-heap.h"
#include "src/numbers/math-random.h"
#include "src/objects/objects-inl.h"
#include "src/objects/slots.h"
namespace v8 {
namespace internal {
namespace {
// During serialization, puts the native context into a state understood by the
// serializer (e.g. by clearing lists of InstructionStream objects). After
// serialization, the original state is restored.
class V8_NODISCARD SanitizeNativeContextScope final {
public:
SanitizeNativeContextScope(Isolate* isolate,
Tagged<NativeContext> native_context,
bool allow_active_isolate_for_testing,
const DisallowGarbageCollection& no_gc)
: native_context_(native_context), no_gc_(no_gc) {
#ifdef DEBUG
if (!allow_active_isolate_for_testing) {
// Microtasks.
MicrotaskQueue* microtask_queue = native_context_->microtask_queue();
DCHECK_EQ(0, microtask_queue->size());
DCHECK(!microtask_queue->HasMicrotasksSuppressions());
DCHECK_EQ(0, microtask_queue->GetMicrotasksScopeDepth());
DCHECK(microtask_queue->DebugMicrotasksScopeDepthIsZero());
}
#endif
microtask_queue_external_pointer_ =
native_context
->RawExternalPointerField(NativeContext::kMicrotaskQueueOffset,
kNativeContextMicrotaskQueueTag)
.GetAndClearContentForSerialization(no_gc);
}
~SanitizeNativeContextScope() {
// Restore saved fields.
native_context_
->RawExternalPointerField(NativeContext::kMicrotaskQueueOffset,
kNativeContextMicrotaskQueueTag)
.RestoreContentAfterSerialization(microtask_queue_external_pointer_,
no_gc_);
}
private:
Tagged<NativeContext> native_context_;
ExternalPointerSlot::RawContent microtask_queue_external_pointer_;
const DisallowGarbageCollection& no_gc_;
};
} // namespace
ContextSerializer::ContextSerializer(
Isolate* isolate, Snapshot::SerializerFlags flags,
StartupSerializer* startup_serializer,
v8::SerializeEmbedderFieldsCallback callback)
: Serializer(isolate, flags),
startup_serializer_(startup_serializer),
serialize_embedder_fields_(callback),
can_be_rehashed_(true) {
InitializeCodeAddressMap();
}
ContextSerializer::~ContextSerializer() {
OutputStatistics("ContextSerializer");
}
void ContextSerializer::Serialize(Tagged<Context>* o,
const DisallowGarbageCollection& no_gc) {
context_ = *o;
DCHECK(IsNativeContext(context_));
// Upon deserialization, references to the global proxy and its map will be
// replaced.
reference_map()->AddAttachedReference(context_->global_proxy());
reference_map()->AddAttachedReference(context_->global_proxy()->map());
// The bootstrap snapshot has a code-stub context. When serializing the
// context snapshot, it is chained into the weak context list on the isolate
// and it's next context pointer may point to the code-stub context. Clear
// it before serializing, it will get re-added to the context list
// explicitly when it's loaded.
// TODO(v8:10416): These mutations should not observably affect the running
// context.
context_->set(Context::NEXT_CONTEXT_LINK,
ReadOnlyRoots(isolate()).undefined_value());
DCHECK(!IsUndefined(context_->global_object()));
// Reset math random cache to get fresh random numbers.
MathRandom::ResetContext(context_);
SanitizeNativeContextScope sanitize_native_context(
isolate(), context_->native_context(), allow_active_isolate_for_testing(),
no_gc);
VisitRootPointer(Root::kStartupObjectCache, nullptr, FullObjectSlot(o));
SerializeDeferredObjects();
// Add section for embedder-serialized embedder fields.
if (!embedder_fields_sink_.data()->empty()) {
sink_.Put(kEmbedderFieldsData, "embedder fields data");
sink_.Append(embedder_fields_sink_);
sink_.Put(kSynchronize, "Finished with embedder fields data");
}
Pad();
}
void ContextSerializer::SerializeObjectImpl(Handle<HeapObject> obj,
SlotType slot_type) {
DCHECK(!ObjectIsBytecodeHandler(*obj)); // Only referenced in dispatch table.
if (!allow_active_isolate_for_testing()) {
// When serializing a snapshot intended for real use, we should not end up
// at another native context.
// But in test scenarios there is no way to avoid this. Since we only
// serialize a single context in these cases, and this context does not
// have to be executable, we can simply ignore this.
DCHECK_IMPLIES(IsNativeContext(*obj), *obj == context_);
}
{
DisallowGarbageCollection no_gc;
Tagged<HeapObject> raw = *obj;
if (SerializeHotObject(raw)) return;
if (SerializeRoot(raw)) return;
if (SerializeBackReference(raw)) return;
if (SerializeReadOnlyObjectReference(raw, &sink_)) return;
}
if (startup_serializer_->SerializeUsingSharedHeapObjectCache(&sink_, obj)) {
return;
}
if (ShouldBeInTheStartupObjectCache(*obj)) {
startup_serializer_->SerializeUsingStartupObjectCache(&sink_, obj);
return;
}
// Pointers from the context snapshot to the objects in the startup snapshot
// should go through the root array or through the startup object cache.
// If this is not the case you may have to add something to the root array.
DCHECK(!startup_serializer_->ReferenceMapContains(obj));
// All the internalized strings that the context snapshot needs should be
// either in the root table or in the shared heap object cache.
DCHECK(!IsInternalizedString(*obj));
// Function and object templates are not context specific.
DCHECK(!IsTemplateInfo(*obj));
InstanceType instance_type = obj->map()->instance_type();
if (InstanceTypeChecker::IsFeedbackVector(instance_type)) {
// Clear literal boilerplates and feedback.
Handle<FeedbackVector>::cast(obj)->ClearSlots(isolate());
} else if (InstanceTypeChecker::IsJSObject(instance_type)) {
if (SerializeJSObjectWithEmbedderFields(Handle<JSObject>::cast(obj))) {
return;
}
if (InstanceTypeChecker::IsJSFunction(instance_type)) {
DisallowGarbageCollection no_gc;
// Unconditionally reset the JSFunction to its SFI's code, since we can't
// serialize optimized code anyway.
Tagged<JSFunction> closure = JSFunction::cast(*obj);
if (closure->shared()->HasBytecodeArray()) {
closure->SetInterruptBudget(isolate());
}
closure->ResetIfCodeFlushed();
if (closure->is_compiled()) {
if (closure->shared()->HasBaselineCode()) {
closure->shared()->FlushBaselineCode();
}
closure->set_code(closure->shared()->GetCode(isolate()), kReleaseStore);
}
}
}
CheckRehashability(*obj);
// Object has not yet been serialized. Serialize it here.
ObjectSerializer serializer(this, obj, &sink_);
serializer.Serialize(slot_type);
}
bool ContextSerializer::ShouldBeInTheStartupObjectCache(Tagged<HeapObject> o) {
// We can't allow scripts to be part of the context snapshot because they
// contain a unique ID, and deserializing several context snapshots containing
// script would cause dupes.
return IsName(o) || IsScript(o) || IsSharedFunctionInfo(o) ||
IsHeapNumber(o) || IsCode(o) || IsInstructionStream(o) ||
IsScopeInfo(o) || IsAccessorInfo(o) || IsTemplateInfo(o) ||
IsClassPositions(o) ||
o->map() == ReadOnlyRoots(isolate()).fixed_cow_array_map();
}
bool ContextSerializer::ShouldBeInTheSharedObjectCache(Tagged<HeapObject> o) {
// v8_flags.shared_string_table may be true during deserialization, so put
// internalized strings into the shared object snapshot.
return IsInternalizedString(o);
}
namespace {
bool DataIsEmpty(const StartupData& data) { return data.raw_size == 0; }
} // anonymous namespace
bool ContextSerializer::SerializeJSObjectWithEmbedderFields(
Handle<JSObject> obj) {
DisallowGarbageCollection no_gc;
Tagged<JSObject> js_obj = *obj;
int embedder_fields_count = js_obj->GetEmbedderFieldCount();
if (embedder_fields_count == 0) return false;
CHECK_GT(embedder_fields_count, 0);
DCHECK(!js_obj->NeedsRehashing(cage_base()));
DisallowJavascriptExecution no_js(isolate());
DisallowCompilation no_compile(isolate());
v8::Local<v8::Object> api_obj = v8::Utils::ToLocal(obj);
std::vector<EmbedderDataSlot::RawData> original_embedder_values;
std::vector<StartupData> serialized_data;
// 1) Iterate embedder fields. Hold onto the original value of the fields.
// Ignore references to heap objects since these are to be handled by the
// serializer. For aligned pointers, call the serialize callback. Hold
// onto the result.
for (int i = 0; i < embedder_fields_count; i++) {
EmbedderDataSlot embedder_data_slot(js_obj, i);
original_embedder_values.emplace_back(
embedder_data_slot.load_raw(isolate(), no_gc));
Tagged<Object> object = embedder_data_slot.load_tagged();
if (IsHeapObject(object)) {
DCHECK(IsValidHeapObject(isolate()->heap(), HeapObject::cast(object)));
serialized_data.push_back({nullptr, 0});
} else {
// If no serializer is provided and the field was empty, we serialize it
// by default to nullptr.
if (serialize_embedder_fields_.callback == nullptr &&
object == Smi::zero()) {
serialized_data.push_back({nullptr, 0});
} else {
DCHECK_NOT_NULL(serialize_embedder_fields_.callback);
StartupData data = serialize_embedder_fields_.callback(
api_obj, i, serialize_embedder_fields_.data);
serialized_data.push_back(data);
}
}
}
// 2) Embedder fields for which the embedder callback produced non-zero
// serialized data should be considered aligned pointers to objects owned
// by the embedder. Clear these memory addresses to avoid non-determism
// in the snapshot. This is done separately to step 1 to no not interleave
// with embedder callbacks.
for (int i = 0; i < embedder_fields_count; i++) {
if (!DataIsEmpty(serialized_data[i])) {
EmbedderDataSlot(js_obj, i).store_raw(isolate(), kNullAddress, no_gc);
}
}
// 3) Serialize the object. References from embedder fields to heap objects or
// smis are serialized regularly.
{
AllowGarbageCollection allow_gc;
ObjectSerializer(this, obj, &sink_).Serialize(SlotType::kAnySlot);
// Reload raw pointer.
js_obj = *obj;
}
// 4) Obtain back reference for the serialized object.
const SerializerReference* reference =
reference_map()->LookupReference(js_obj);
DCHECK_NOT_NULL(reference);
DCHECK(reference->is_back_reference());
// 5) Write data returned by the embedder callbacks into a separate sink,
// headed by the back reference. Restore the original embedder fields.
for (int i = 0; i < embedder_fields_count; i++) {
StartupData data = serialized_data[i];
if (DataIsEmpty(data)) continue;
// Restore original values from cleared fields.
EmbedderDataSlot(js_obj, i).store_raw(isolate(),
original_embedder_values[i], no_gc);
embedder_fields_sink_.Put(kNewObject, "embedder field holder");
embedder_fields_sink_.PutUint30(reference->back_ref_index(),
"BackRefIndex");
embedder_fields_sink_.PutUint30(i, "embedder field index");
embedder_fields_sink_.PutUint30(data.raw_size, "embedder fields data size");
embedder_fields_sink_.PutRaw(reinterpret_cast<const uint8_t*>(data.data),
data.raw_size, "embedder fields data");
delete[] data.data;
}
// 6) The content of the separate sink is appended eventually to the default
// sink. The ensures that during deserialization, we call the deserializer
// callback at the end, and can guarantee that the deserialized objects are
// in a consistent state. See ContextSerializer::Serialize.
return true;
}
void ContextSerializer::CheckRehashability(Tagged<HeapObject> obj) {
if (!can_be_rehashed_) return;
if (!obj->NeedsRehashing(cage_base())) return;
if (obj->CanBeRehashed(cage_base())) return;
can_be_rehashed_ = false;
}
} // namespace internal
} // namespace v8