%PDF- %PDF-
| Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/handles/ |
| Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/handles/handles.h |
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HANDLES_HANDLES_H_
#define V8_HANDLES_HANDLES_H_
#include <type_traits>
#include "src/base/functional.h"
#include "src/base/macros.h"
#include "src/common/checks.h"
#include "src/common/globals.h"
#include "src/objects/tagged.h"
#include "src/zone/zone.h"
#ifdef V8_ENABLE_DIRECT_HANDLE
#include "src/flags/flags.h"
#endif
namespace v8 {
class HandleScope;
namespace internal {
// Forward declarations.
class HandleScopeImplementer;
class Isolate;
class LocalHeap;
class LocalIsolate;
class TaggedIndex;
class Object;
class OrderedHashMap;
class OrderedHashSet;
class OrderedNameDictionary;
class RootVisitor;
class SmallOrderedHashMap;
class SmallOrderedHashSet;
class SmallOrderedNameDictionary;
class SwissNameDictionary;
class WasmExportedFunctionData;
constexpr Address kTaggedNullAddress = 0x1;
// ----------------------------------------------------------------------------
// Base class for Handle instantiations. Don't use directly.
class HandleBase {
public:
// Check if this handle refers to the exact same object as the other handle.
V8_INLINE bool is_identical_to(const HandleBase& that) const;
V8_INLINE bool is_null() const { return location_ == nullptr; }
// Returns the raw address where this handle is stored. This should only be
// used for hashing handles; do not ever try to dereference it.
V8_INLINE Address address() const {
return base::bit_cast<Address>(location_);
}
// Returns the address to where the raw pointer is stored.
// TODO(leszeks): This should probably be a const Address*, to encourage using
// PatchValue for modifying the handle's value.
V8_INLINE Address* location() const {
SLOW_DCHECK(location_ == nullptr || IsDereferenceAllowed());
return location_;
}
protected:
V8_INLINE explicit HandleBase(Address* location) : location_(location) {}
V8_INLINE explicit HandleBase(Address object, Isolate* isolate);
V8_INLINE explicit HandleBase(Address object, LocalIsolate* isolate);
V8_INLINE explicit HandleBase(Address object, LocalHeap* local_heap);
#ifdef DEBUG
bool V8_EXPORT_PRIVATE IsDereferenceAllowed() const;
#else
V8_INLINE
bool V8_EXPORT_PRIVATE IsDereferenceAllowed() const { return true; }
#endif // DEBUG
// This uses type Address* as opposed to a pointer type to a typed
// wrapper class, because it doesn't point to instances of such a
// wrapper class. Design overview: https://goo.gl/Ph4CGz
Address* location_;
};
// ----------------------------------------------------------------------------
// A Handle provides a reference to an object that survives relocation by
// the garbage collector.
//
// Handles are only valid within a HandleScope. When a handle is created
// for an object a cell is allocated in the current HandleScope.
//
// Also note that Handles do not provide default equality comparison or hashing
// operators on purpose. Such operators would be misleading, because intended
// semantics is ambiguous between Handle location and object identity. Instead
// use either {is_identical_to} or {location} explicitly.
template <typename T>
class Handle final : public HandleBase {
public:
V8_INLINE Handle() : HandleBase(nullptr) {}
V8_INLINE explicit Handle(Address* location) : HandleBase(location) {
// TODO(jkummerow): Runtime type check here as a SLOW_DCHECK?
}
V8_INLINE Handle(Tagged<T> object, Isolate* isolate);
V8_INLINE Handle(Tagged<T> object, LocalIsolate* isolate);
V8_INLINE Handle(Tagged<T> object, LocalHeap* local_heap);
// Allocate a new handle for the object.
V8_INLINE static Handle<T> New(Tagged<T> object, Isolate* isolate);
// Constructor for handling automatic up casting.
// Ex. Handle<JSFunction> can be passed when Handle<Object> is expected.
template <typename S, typename = std::enable_if_t<is_subtype_v<S, T>>>
V8_INLINE Handle(Handle<S> handle) : HandleBase(handle) {}
// Access a member of the T object referenced by this handle.
//
// This is actually a double dereference -- first it dereferences the Handle
// pointing to a Tagged<T>, and then continues through Tagged<T>::operator->.
// This means that this is only permitted for Tagged<T> with an operator->,
// i.e. for on-heap object T.
V8_INLINE Tagged<T> operator->() const {
if constexpr (is_subtype_v<T, HeapObject>) {
return **this;
} else {
// `static_assert(false)` in this else clause was an unconditional error
// before CWG2518. See https://reviews.llvm.org/D144285
#if defined(__clang__) && __clang_major__ >= 17
// For non-HeapObjects, there's no on-heap object to dereference, so
// disallow using operator->.
//
// If you got an error here and want to access the Tagged<T>, use
// operator* -- e.g. for `Tagged<Smi>::value()`, use `(*handle).value()`.
static_assert(
false,
"This handle does not reference a heap object. Use `(*handle).foo`.");
#endif
}
}
V8_INLINE Tagged<T> operator*() const {
// This static type check also fails for forward class declarations. We
// check on access instead of on construction to allow Handles to forward
// declared types.
static_assert(is_taggable_v<T>, "static type violation");
// Direct construction of Tagged from address, without a type check, because
// we rather trust Handle<T> to contain a T than include all the respective
// -inl.h headers for SLOW_DCHECKs.
SLOW_DCHECK(IsDereferenceAllowed());
return Tagged<T>(*location());
}
template <typename S>
inline static const Handle<T> cast(Handle<S> that);
// Consider declaring values that contain empty handles as
// MaybeHandle to force validation before being used as handles.
static const Handle<T> null() { return Handle<T>(); }
// Location equality.
bool equals(Handle<T> other) const { return address() == other.address(); }
// Patches this Handle's value, in-place, with a new value. All handles with
// the same location will see this update.
void PatchValue(Tagged<T> new_value) {
SLOW_DCHECK(location_ != nullptr && IsDereferenceAllowed());
*location_ = new_value.ptr();
}
// Provide function object for location equality comparison.
struct equal_to {
V8_INLINE bool operator()(Handle<T> lhs, Handle<T> rhs) const {
return lhs.equals(rhs);
}
};
// Provide function object for location hashing.
struct hash {
V8_INLINE size_t operator()(Handle<T> const& handle) const {
return base::hash<Address>()(handle.address());
}
};
private:
// Handles of different classes are allowed to access each other's location_.
template <typename>
friend class Handle;
// MaybeHandle is allowed to access location_.
template <typename>
friend class MaybeHandle;
};
template <typename T>
std::ostream& operator<<(std::ostream& os, Handle<T> handle);
// ----------------------------------------------------------------------------
// A stack-allocated class that governs a number of local handles.
// After a handle scope has been created, all local handles will be
// allocated within that handle scope until either the handle scope is
// deleted or another handle scope is created. If there is already a
// handle scope and a new one is created, all allocations will take
// place in the new handle scope until it is deleted. After that,
// new handles will again be allocated in the original handle scope.
//
// After the handle scope of a local handle has been deleted the
// garbage collector will no longer track the object stored in the
// handle and may deallocate it. The behavior of accessing a handle
// for which the handle scope has been deleted is undefined.
class V8_NODISCARD HandleScope {
public:
explicit V8_INLINE HandleScope(Isolate* isolate);
inline HandleScope(HandleScope&& other) V8_NOEXCEPT;
HandleScope(const HandleScope&) = delete;
HandleScope& operator=(const HandleScope&) = delete;
// Allow placement new.
void* operator new(size_t size, void* storage) {
return ::operator new(size, storage);
}
// Prevent heap allocation or illegal handle scopes.
void* operator new(size_t size) = delete;
void operator delete(void* size_t) = delete;
V8_INLINE ~HandleScope();
inline HandleScope& operator=(HandleScope&& other) V8_NOEXCEPT;
// Counts the number of allocated handles.
V8_EXPORT_PRIVATE static int NumberOfHandles(Isolate* isolate);
// Creates a new handle with the given value.
V8_INLINE static Address* CreateHandle(Isolate* isolate, Address value);
// Deallocates any extensions used by the current scope.
V8_EXPORT_PRIVATE static void DeleteExtensions(Isolate* isolate);
static Address current_next_address(Isolate* isolate);
static Address current_limit_address(Isolate* isolate);
static Address current_level_address(Isolate* isolate);
// Closes the HandleScope (invalidating all handles
// created in the scope of the HandleScope) and returns
// a Handle backed by the parent scope holding the
// value of the argument handle.
template <typename T>
Handle<T> CloseAndEscape(Handle<T> handle_value);
Isolate* isolate() { return isolate_; }
// Limit for number of handles with --check-handle-count. This is
// large enough to compile natives and pass unit tests with some
// slack for future changes to natives.
static const int kCheckHandleThreshold = 30 * 1024;
private:
Isolate* isolate_;
Address* prev_next_;
Address* prev_limit_;
// Close the handle scope resetting limits to a previous state.
static V8_INLINE void CloseScope(Isolate* isolate, Address* prev_next,
Address* prev_limit);
// Extend the handle scope making room for more handles.
V8_EXPORT_PRIVATE V8_NOINLINE static Address* Extend(Isolate* isolate);
#ifdef ENABLE_HANDLE_ZAPPING
// Zaps the handles in the half-open interval [start, end).
V8_EXPORT_PRIVATE static void ZapRange(Address* start, Address* end);
#endif
friend class v8::HandleScope;
friend class HandleScopeImplementer;
friend class Isolate;
friend class LocalHandles;
friend class LocalHandleScope;
friend class PersistentHandles;
};
// Forward declaration for CanonicalHandlesMap.
template <typename V, class AllocationPolicy>
class IdentityMap;
using CanonicalHandlesMap = IdentityMap<Address*, ZoneAllocationPolicy>;
// Seal off the current HandleScope so that new handles can only be created
// if a new HandleScope is entered.
class V8_NODISCARD SealHandleScope final {
public:
#ifndef DEBUG
explicit SealHandleScope(Isolate* isolate) {}
~SealHandleScope() = default;
#else
explicit inline SealHandleScope(Isolate* isolate);
inline ~SealHandleScope();
private:
Isolate* isolate_;
Address* prev_limit_;
int prev_sealed_level_;
#endif
};
struct HandleScopeData final {
static constexpr uint32_t kSizeInBytes =
2 * kSystemPointerSize + 2 * kInt32Size;
Address* next;
Address* limit;
int level;
int sealed_level;
void Initialize() {
next = limit = nullptr;
sealed_level = level = 0;
}
};
static_assert(HandleScopeData::kSizeInBytes == sizeof(HandleScopeData));
#ifdef V8_ENABLE_DIRECT_HANDLE
// Direct handles should not be used without conservative stack scanning,
// as this would break the correctness of the GC.
static_assert(V8_ENABLE_CONSERVATIVE_STACK_SCANNING_BOOL);
// ----------------------------------------------------------------------------
// Base class for DirectHandle instantiations. Don't use directly.
class DirectHandleBase {
public:
// Check if this handle refers to the exact same object as the other handle.
V8_INLINE bool is_identical_to(const DirectHandleBase& that) const;
V8_INLINE bool is_null() const { return obj_ == kTaggedNullAddress; }
V8_INLINE Address address() const { return obj_; }
protected:
V8_INLINE explicit DirectHandleBase(Address object) : obj_(object) {
#ifdef DEBUG
VerifyOnStackAndMainThread();
#endif
}
V8_INLINE explicit DirectHandleBase(Address object, Isolate* isolate);
V8_INLINE explicit DirectHandleBase(Address object, LocalIsolate* isolate);
V8_INLINE explicit DirectHandleBase(Address object, LocalHeap* local_heap);
#ifdef DEBUG
bool V8_EXPORT_PRIVATE IsDereferenceAllowed() const;
V8_EXPORT_PRIVATE void VerifyOnStackAndMainThread() const;
#else
V8_INLINE
bool V8_EXPORT_PRIVATE IsDereferenceAllowed() const { return true; }
#endif // DEBUG
// This is a direct pointer to either a tagged object or SMI. Design overview:
// https://docs.google.com/document/d/1uRGYQM76vk1fc_aDqDH3pm2qhaJtnK2oyzeVng4cS6I/
Address obj_;
};
// ----------------------------------------------------------------------------
// A DirectHandle provides a reference to an object without an intermediate
// pointer.
//
// A DirectHandle is a simple wrapper around a tagged pointer to a heap object
// or a SMI. Its methods are symmetrical with Handle, so that Handles can be
// easily migrated.
//
// DirectHandles are intended to be used with conservative stack scanning, as
// they do not provide a mechanism for keeping an object alive across a garbage
// collection.
//
// Further motivation is explained in the design doc:
// https://docs.google.com/document/d/1uRGYQM76vk1fc_aDqDH3pm2qhaJtnK2oyzeVng4cS6I/
template <typename T>
class DirectHandle final : public DirectHandleBase {
public:
V8_INLINE DirectHandle() : DirectHandle(kTaggedNullAddress) {}
V8_INLINE explicit DirectHandle(Address object) : DirectHandleBase(object) {}
V8_INLINE explicit DirectHandle(Tagged<T> object);
V8_INLINE DirectHandle(Tagged<T> object, Isolate* isolate)
: DirectHandle(object) {}
V8_INLINE DirectHandle(Tagged<T> object, LocalIsolate* isolate)
: DirectHandle(object) {}
V8_INLINE DirectHandle(Tagged<T> object, LocalHeap* local_heap)
: DirectHandle(object) {}
V8_INLINE explicit DirectHandle(Address* address)
: DirectHandle(address == nullptr ? kTaggedNullAddress : *address) {}
V8_INLINE static DirectHandle<T> New(Tagged<T> object, Isolate* isolate) {
return DirectHandle<T>(object);
}
// Constructor for handling automatic up casting.
// Ex. DirectHandle<JSFunction> can be passed when DirectHandle<Object> is
// expected.
template <typename S, typename = std::enable_if_t<is_subtype_v<S, T>>>
V8_INLINE DirectHandle(DirectHandle<S> handle) : DirectHandle(handle.obj_) {}
template <typename S, typename = std::enable_if_t<is_subtype_v<S, T>>>
V8_INLINE DirectHandle(Handle<S> handle)
: DirectHandle(handle.location() != nullptr ? *handle.location()
: kTaggedNullAddress) {}
V8_INLINE Tagged<T> operator->() const {
if constexpr (std::is_base_of_v<HeapObject, T> ||
std::is_convertible_v<T*, HeapObject*>) {
return **this;
} else {
// For non-HeapObjects, there's no on-heap object to dereference, so
// disallow using operator->.
//
// If you got an error here and want to access the Tagged<T>, use
// operator* -- e.g. for `Tagged<Smi>::value()`, use `(*handle).value()`.
static_assert(
false,
"This handle does not reference a heap object. Use `(*handle).foo`.");
}
}
V8_INLINE Tagged<T> operator*() const {
// This static type check also fails for forward class declarations. We
// check on access instead of on construction to allow DirectHandles to
// forward declared types.
static_assert(is_taggable_v<T>, "static type violation");
// Direct construction of Tagged from address, without a type check, because
// we rather trust DirectHandle<T> to contain a T than include all the
// respective -inl.h headers for SLOW_DCHECKs.
SLOW_DCHECK(IsDereferenceAllowed());
return Tagged<T>(address());
}
template <typename S>
V8_INLINE static const DirectHandle<T> cast(DirectHandle<S> that);
template <typename S>
V8_INLINE static const DirectHandle<T> cast(Handle<S> that);
// Consider declaring values that contain empty handles as
// MaybeDirectHandle to force validation before being used as handles.
V8_INLINE static const DirectHandle<T> null() { return DirectHandle<T>(); }
private:
// DirectHandles of different classes are allowed to access each other's
// obj_.
template <typename>
friend class DirectHandle;
// MaybeDirectHandle is allowed to access obj_.
template <typename>
friend class MaybeDirectHandle;
};
template <typename T>
std::ostream& operator<<(std::ostream& os, DirectHandle<T> handle);
#endif // V8_ENABLE_DIRECT_HANDLE
} // namespace internal
} // namespace v8
#endif // V8_HANDLES_HANDLES_H_