%PDF- %PDF-
| Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/base/ |
| Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/base/small-vector.h |
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_BASE_SMALL_VECTOR_H_
#define V8_BASE_SMALL_VECTOR_H_
#include <algorithm>
#include <type_traits>
#include <utility>
#include "src/base/bits.h"
#include "src/base/macros.h"
#include "src/base/vector.h"
namespace v8 {
namespace base {
// Minimal SmallVector implementation. Uses inline storage first, switches to
// dynamic storage when it overflows.
template <typename T, size_t kSize, typename Allocator = std::allocator<T>>
class SmallVector {
// Currently only support trivially copyable and trivially destructible data
// types, as it uses memcpy to copy elements and never calls destructors.
ASSERT_TRIVIALLY_COPYABLE(T);
static_assert(std::is_trivially_destructible<T>::value);
public:
static constexpr size_t kInlineSize = kSize;
using value_type = T;
SmallVector() = default;
explicit SmallVector(const Allocator& allocator) : allocator_(allocator) {}
explicit V8_INLINE SmallVector(size_t size,
const Allocator& allocator = Allocator())
: allocator_(allocator) {
resize_no_init(size);
}
SmallVector(const SmallVector& other) V8_NOEXCEPT
: allocator_(other.allocator_) {
*this = other;
}
SmallVector(const SmallVector& other, const Allocator& allocator) V8_NOEXCEPT
: allocator_(allocator) {
*this = other;
}
SmallVector(SmallVector&& other) V8_NOEXCEPT
: allocator_(std::move(other.allocator_)) {
*this = std::move(other);
}
SmallVector(SmallVector&& other, const Allocator& allocator) V8_NOEXCEPT
: allocator_(allocator) {
*this = std::move(other);
}
V8_INLINE SmallVector(std::initializer_list<T> init,
const Allocator& allocator = Allocator())
: SmallVector(init.size(), allocator) {
memcpy(begin_, init.begin(), sizeof(T) * init.size());
}
explicit V8_INLINE SmallVector(base::Vector<const T> init,
const Allocator& allocator = Allocator())
: SmallVector(init.size(), allocator) {
memcpy(begin_, init.begin(), sizeof(T) * init.size());
}
~SmallVector() {
static_assert(std::is_trivially_destructible_v<T>);
if (is_big()) FreeDynamicStorage();
}
SmallVector& operator=(const SmallVector& other) V8_NOEXCEPT {
if (this == &other) return *this;
size_t other_size = other.size();
if (capacity() < other_size) {
// Create large-enough heap-allocated storage.
if (is_big()) FreeDynamicStorage();
begin_ = AllocateDynamicStorage(other_size);
end_of_storage_ = begin_ + other_size;
}
memcpy(begin_, other.begin_, sizeof(T) * other_size);
end_ = begin_ + other_size;
return *this;
}
SmallVector& operator=(SmallVector&& other) V8_NOEXCEPT {
if (this == &other) return *this;
if (other.is_big()) {
if (is_big()) FreeDynamicStorage();
begin_ = other.begin_;
end_ = other.end_;
end_of_storage_ = other.end_of_storage_;
} else {
DCHECK_GE(capacity(), other.size()); // Sanity check.
size_t other_size = other.size();
memcpy(begin_, other.begin_, sizeof(T) * other_size);
end_ = begin_ + other_size;
}
other.reset_to_inline_storage();
return *this;
}
T* data() { return begin_; }
const T* data() const { return begin_; }
T* begin() { return begin_; }
const T* begin() const { return begin_; }
T* end() { return end_; }
const T* end() const { return end_; }
auto rbegin() { return std::make_reverse_iterator(end_); }
auto rbegin() const { return std::make_reverse_iterator(end_); }
auto rend() { return std::make_reverse_iterator(begin_); }
auto rend() const { return std::make_reverse_iterator(begin_); }
size_t size() const { return end_ - begin_; }
bool empty() const { return end_ == begin_; }
size_t capacity() const { return end_of_storage_ - begin_; }
T& front() {
DCHECK_NE(0, size());
return begin_[0];
}
const T& front() const {
DCHECK_NE(0, size());
return begin_[0];
}
T& back() {
DCHECK_NE(0, size());
return end_[-1];
}
const T& back() const {
DCHECK_NE(0, size());
return end_[-1];
}
T& operator[](size_t index) {
DCHECK_GT(size(), index);
return begin_[index];
}
const T& at(size_t index) const {
DCHECK_GT(size(), index);
return begin_[index];
}
const T& operator[](size_t index) const { return at(index); }
template <typename... Args>
void emplace_back(Args&&... args) {
if (V8_UNLIKELY(end_ == end_of_storage_)) Grow();
void* storage = end_;
end_ += 1;
new (storage) T(std::forward<Args>(args)...);
}
void push_back(T x) { emplace_back(std::move(x)); }
void pop_back(size_t count = 1) {
DCHECK_GE(size(), count);
end_ -= count;
}
T* insert(T* pos, const T& value) { return insert(pos, 1, value); }
T* insert(T* pos, size_t count, const T& value) {
DCHECK_LE(pos, end_);
size_t offset = pos - begin_;
size_t old_size = size();
resize_no_init(old_size + count);
pos = begin_ + offset;
T* old_end = begin_ + old_size;
DCHECK_LE(old_end, end_);
std::move_backward(pos, old_end, end_);
std::fill_n(pos, count, value);
return pos;
}
template <typename It>
T* insert(T* pos, It begin, It end) {
DCHECK_LE(pos, end_);
size_t offset = pos - begin_;
size_t count = std::distance(begin, end);
size_t old_size = size();
resize_no_init(old_size + count);
pos = begin_ + offset;
T* old_end = begin_ + old_size;
DCHECK_LE(old_end, end_);
std::move_backward(pos, old_end, end_);
std::copy(begin, end, pos);
return pos;
}
void resize_no_init(size_t new_size) {
// Resizing without initialization is safe if T is trivially copyable.
ASSERT_TRIVIALLY_COPYABLE(T);
if (new_size > capacity()) Grow(new_size);
end_ = begin_ + new_size;
}
void resize_and_init(size_t new_size) {
static_assert(std::is_trivially_destructible_v<T>);
if (new_size > capacity()) Grow(new_size);
T* new_end = begin_ + new_size;
if (new_end > end_) {
std::uninitialized_fill(end_, new_end, T{});
}
end_ = new_end;
}
void reserve(size_t new_capacity) {
if (new_capacity > capacity()) Grow(new_capacity);
}
// Clear without reverting back to inline storage.
void clear() { end_ = begin_; }
Allocator get_allocator() const { return allocator_; }
private:
// Grows the backing store by a factor of two. Returns the new end of the used
// storage (this reduces binary size).
V8_NOINLINE V8_PRESERVE_MOST void Grow() { Grow(0); }
// Grows the backing store by a factor of two, and at least to {min_capacity}.
V8_NOINLINE V8_PRESERVE_MOST void Grow(size_t min_capacity) {
size_t in_use = end_ - begin_;
size_t new_capacity =
base::bits::RoundUpToPowerOfTwo(std::max(min_capacity, 2 * capacity()));
T* new_storage = AllocateDynamicStorage(new_capacity);
if (new_storage == nullptr) {
// Should be: V8::FatalProcessOutOfMemory, but we don't include V8 from
// base. The message is intentionally the same as FatalProcessOutOfMemory
// since that will help fuzzers and chromecrash to categorize such
// crashes appropriately.
FATAL("Fatal process out of memory: base::SmallVector::Grow");
}
memcpy(new_storage, begin_, sizeof(T) * in_use);
if (is_big()) FreeDynamicStorage();
begin_ = new_storage;
end_ = new_storage + in_use;
end_of_storage_ = new_storage + new_capacity;
}
T* AllocateDynamicStorage(size_t number_of_elements) {
return allocator_.allocate(number_of_elements);
}
V8_NOINLINE V8_PRESERVE_MOST void FreeDynamicStorage() {
DCHECK(is_big());
allocator_.deallocate(begin_, end_of_storage_ - begin_);
}
// Clear and go back to inline storage. Dynamic storage is *not* freed. For
// internal use only.
void reset_to_inline_storage() {
begin_ = inline_storage_begin();
end_ = begin_;
end_of_storage_ = begin_ + kInlineSize;
}
bool is_big() const { return begin_ != inline_storage_begin(); }
T* inline_storage_begin() { return reinterpret_cast<T*>(&inline_storage_); }
const T* inline_storage_begin() const {
return reinterpret_cast<const T*>(&inline_storage_);
}
V8_NO_UNIQUE_ADDRESS Allocator allocator_;
T* begin_ = inline_storage_begin();
T* end_ = begin_;
T* end_of_storage_ = begin_ + kInlineSize;
typename std::aligned_storage<sizeof(T) * kInlineSize, alignof(T)>::type
inline_storage_;
};
} // namespace base
} // namespace v8
#endif // V8_BASE_SMALL_VECTOR_H_