%PDF- %PDF-
| Direktori : /usr/include/Imath/ |
| Current File : //usr/include/Imath/PyImathFixedArray.h |
//
// SPDX-License-Identifier: BSD-3-Clause
// Copyright Contributors to the OpenEXR Project.
//
// clang-format off
#ifndef _PyImathFixedArray_h_
#define _PyImathFixedArray_h_
#include <boost/python.hpp>
#include <boost/operators.hpp>
#include <boost/shared_array.hpp>
#include <boost/any.hpp>
#include <iostream>
#include "PyImathUtil.h"
//
// Note: when PyImath from the v2 release of OpenEXR depended on Iex,
// the PY_IMATH_LEAVE/RETURN_PYTHON macros bracketed calls that
// enabled/disabled float-point exceptions via via the MathExcOn
// class. This was a compile-time option based on the setting of
// PYIMATH_ENABLE_EXCEPTIONS. This behavior is now deprecated, hence
// the empty macros.
//
#define PY_IMATH_LEAVE_PYTHON PyImath::PyReleaseLock pyunlock;
#define PY_IMATH_RETURN_PYTHON
namespace PyImath {
namespace {
//
// Utility classes used for converting array members to boost python objects.
//
template <class T>
struct ReturnReference
{
static boost::python::object applyReadOnly (const T& val)
{
typename boost::python::copy_const_reference::apply<const T&>::type converter;
return boost::python::object(boost::python::handle<>(converter(val)));
}
static boost::python::object applyWritable (T& val)
{
typename boost::python::reference_existing_object::apply<T&>::type converter;
return boost::python::object(boost::python::handle<>(converter(val)));
}
static bool isReferenceWrap () { return true; }
};
template <class T>
struct ReturnByValue
{
static boost::python::object applyReadOnly (const T& val)
{
typename boost::python::return_by_value::apply<T>::type converter;
return boost::python::object(boost::python::handle<>(converter(val)));
}
static boost::python::object applyWritable (T& val)
{
return applyReadOnly (val);
}
static bool isReferenceWrap () { return false; }
};
} // namespace
//
// Utility class for a runtime-specified fixed length array type in python
//
template <class T>
struct FixedArrayDefaultValue
{
static T value();
};
enum Uninitialized {UNINITIALIZED};
template <class T>
class FixedArray
{
T * _ptr;
size_t _length;
size_t _stride;
bool _writable;
// this handle optionally stores a shared_array to allocated array data
// so that everything is freed properly on exit.
boost::any _handle;
boost::shared_array<size_t> _indices; // non-NULL iff I'm a masked reference
size_t _unmaskedLength;
public:
typedef T BaseType;
FixedArray(T *ptr, Py_ssize_t length, Py_ssize_t stride = 1, bool writable = true)
: _ptr(ptr), _length(length), _stride(stride), _writable(writable),
_handle(), _unmaskedLength(0)
{
if (length < 0)
{
throw std::domain_error ("Fixed array length must be non-negative");
}
if (stride <= 0)
{
throw std::domain_error ("Fixed array stride must be positive");
}
// nothing
}
FixedArray(T *ptr, Py_ssize_t length, Py_ssize_t stride,
boost::any handle, bool writable = true)
: _ptr(ptr), _length(length), _stride(stride), _writable(writable),
_handle(handle), _unmaskedLength(0)
{
if (_length < 0)
{
throw std::domain_error("Fixed array length must be non-negative");
}
if (stride <= 0)
{
throw std::domain_error("Fixed array stride must be positive");
}
// nothing
}
FixedArray(const T *ptr, Py_ssize_t length, Py_ssize_t stride = 1)
: _ptr(const_cast<T *>(ptr)), _length(length), _stride(stride),
_writable(false), _handle(), _unmaskedLength(0)
{
if (length < 0)
{
throw std::logic_error("Fixed array length must be non-negative");
}
if (stride <= 0)
{
throw std::logic_error("Fixed array stride must be positive");
}
// nothing
}
FixedArray(const T *ptr, Py_ssize_t length, Py_ssize_t stride, boost::any handle)
: _ptr(const_cast<T *>(ptr)), _length(length), _stride(stride), _writable(false),
_handle(handle), _unmaskedLength(0)
{
if (_length < 0)
{
throw std::logic_error("Fixed array length must be non-negative");
}
if (stride <= 0)
{
throw std::logic_error("Fixed array stride must be positive");
}
// nothing
}
explicit FixedArray(Py_ssize_t length)
: _ptr(0), _length(length), _stride(1), _writable(true),
_handle(), _unmaskedLength(0)
{
if (_length < 0) {
throw std::domain_error("Fixed array length must be non-negative");
}
boost::shared_array<T> a(new T[length]);
T tmp = FixedArrayDefaultValue<T>::value();
for (Py_ssize_t i=0; i<length; ++i) a[i] = tmp;
_handle = a;
_ptr = a.get();
}
FixedArray(Py_ssize_t length,Uninitialized)
: _ptr(0), _length(length), _stride(1), _writable(true),
_handle(), _unmaskedLength(0)
{
if (_length < 0) {
throw std::domain_error("Fixed array length must be non-negative");
}
boost::shared_array<T> a(new T[length]);
_handle = a;
_ptr = a.get();
}
FixedArray(const T &initialValue, Py_ssize_t length)
: _ptr(0), _length(length), _stride(1), _writable(true),
_handle(), _unmaskedLength(0)
{
if (_length < 0) {
throw std::domain_error("Fixed array length must be non-negative");
}
boost::shared_array<T> a(new T[length]);
for (Py_ssize_t i=0; i<length; ++i) a[i] = initialValue;
_handle = a;
_ptr = a.get();
}
template <typename MaskArrayType>
FixedArray(FixedArray& f, const MaskArrayType& mask)
: _ptr(f._ptr), _stride(f._stride), _writable(f._writable), _handle(f._handle), _unmaskedLength(0)
{
if (f.isMaskedReference())
{
throw std::invalid_argument("Masking an already-masked FixedArray not supported yet (SQ27000)");
}
size_t len = f.match_dimension(mask);
_unmaskedLength = len;
size_t reduced_len = 0;
for (size_t i = 0; i < len; ++i)
if (mask[i])
reduced_len++;
_indices.reset(new size_t[reduced_len]);
for (size_t i = 0, j = 0; i < len; ++i)
{
if (mask[i])
{
_indices[j] = i;
j++;
}
}
_length = reduced_len;
}
template <typename MaskArrayType>
FixedArray(const FixedArray& f, const MaskArrayType& mask)
: _ptr(f._ptr), _stride(f._stride), _writable(false), _handle(f._handle), _unmaskedLength(0)
{
if (f.isMaskedReference())
{
throw std::invalid_argument("Masking an already-masked FixedArray not supported yet (SQ27000)");
}
size_t len = f.match_dimension(mask);
_unmaskedLength = len;
size_t reduced_len = 0;
for (size_t i = 0; i < len; ++i)
if (mask[i])
reduced_len++;
_indices.reset(new size_t[reduced_len]);
for (size_t i = 0, j = 0; i < len; ++i)
{
if (mask[i])
{
_indices[j] = i;
j++;
}
}
_length = reduced_len;
}
template <class S>
explicit FixedArray(const FixedArray<S> &other)
: _ptr(0), _length(other.len()), _stride(1), _writable(true),
_handle(), _unmaskedLength(other.unmaskedLength())
{
boost::shared_array<T> a(new T[_length]);
for (size_t i=0; i<_length; ++i) a[i] = T(other[i]);
_handle = a;
_ptr = a.get();
if (_unmaskedLength)
{
_indices.reset(new size_t[_length]);
for (size_t i = 0; i < _length; ++i)
_indices[i] = other.raw_ptr_index(i);
}
}
FixedArray(const FixedArray &other)
: _ptr(other._ptr), _length(other._length), _stride(other._stride),
_writable(other._writable),
_handle(other._handle),
_indices(other._indices),
_unmaskedLength(other._unmaskedLength)
{
}
const FixedArray &
operator = (const FixedArray &other)
{
if (&other == this) return *this;
_ptr = other._ptr;
_length = other._length;
_stride = other._stride;
_writable = other._writable;
_handle = other._handle;
_unmaskedLength = other._unmaskedLength;
_indices = other._indices;
return *this;
}
~FixedArray()
{
// nothing
}
explicit operator bool() const {return _ptr != nullptr;}
const boost::any & handle() { return _handle; }
//
// Make an index suitable for indexing into an array in c++ from
// a python index, which can be negative for indexing relative to
// the end of an array
//
size_t canonical_index(Py_ssize_t index) const
{
if (index < 0) index += len();
if (index >= len() || index < 0) {
PyErr_SetString(PyExc_IndexError, "Index out of range");
boost::python::throw_error_already_set();
}
return index; // still a virtual index if this is a masked reference array
}
void extract_slice_indices(PyObject *index, size_t &start, size_t &end, Py_ssize_t &step, size_t &slicelength) const
{
if (PySlice_Check(index)) {
#if PY_MAJOR_VERSION > 2
PyObject *slice = index;
#else
PySliceObject *slice = reinterpret_cast<PySliceObject *>(index);
#endif
Py_ssize_t s,e,sl;
if (PySlice_GetIndicesEx(slice,_length,&s,&e,&step,&sl) == -1) {
boost::python::throw_error_already_set();
}
// e can be -1 if the iteration is backwards with a negative slice operator [::-n] (n > 0).
if (s < 0 || e < -1 || sl < 0) {
throw std::domain_error("Slice extraction produced invalid start, end, or length indices");
}
start = s;
end = e;
slicelength = sl;
} else if (PyInt_Check(index)) {
size_t i = canonical_index(PyInt_AsSsize_t(index));
start = i; end = i+1; step = 1; slicelength = 1;
} else {
PyErr_SetString(PyExc_TypeError, "Object is not a slice");
boost::python::throw_error_already_set();
}
}
// Although this method isn't used directly by this class,
// there are some sub-classes that are using it.
typedef typename boost::mpl::if_<boost::is_class<T>, T&,T>::type get_type;
get_type getitem(Py_ssize_t index) { return (*this)[canonical_index(index)]; }
typedef typename boost::mpl::if_<boost::is_class<T>,const T&,T>::type get_type_const;
get_type_const getitem(Py_ssize_t index) const { return (*this)[canonical_index(index)]; }
// We return an internal reference for class-types and a copy of the data
// for non-class types. Returning an internal refeference doesn't seem
// to work with non-class types.
boost::python::object getobjectTuple (Py_ssize_t index)
{
typedef typename boost::mpl::if_<boost::is_class<T>,
ReturnReference<T>,
ReturnByValue<T> >::type convertType;
boost::python::object retval;
int referenceMode = 0;
const size_t i = canonical_index(index);
T& val = _ptr[(isMaskedReference() ? raw_ptr_index(i) : i) * _stride];
if (_writable)
{
retval = convertType::applyWritable (val);
if (convertType::isReferenceWrap())
referenceMode = 0; // Managed reference.
else
referenceMode = 2; // Default policy (return-by-value)
}
else
{
retval = convertType::applyReadOnly (val);
if (convertType::isReferenceWrap())
referenceMode = 1; // Copy const reference
else
referenceMode = 2; // Default policy (return-by-value)
}
return boost::python::make_tuple (referenceMode, retval);
}
boost::python::object getobjectTuple (Py_ssize_t index) const
{
typedef typename boost::mpl::if_<boost::is_class<T>,
ReturnReference<T>,
ReturnByValue<T> >::type convertType;
boost::python::object retval;
int referenceMode = 1;
const size_t i = canonical_index(index);
const T& val = _ptr[(isMaskedReference() ? raw_ptr_index(i) : i) * _stride];
retval = convertType::applyReadOnly (val);
if (convertType::isReferenceWrap())
referenceMode = 1; // Copy const reference
else
referenceMode = 2; // Default policy (return-by-value)
return boost::python::make_tuple (referenceMode, retval);
}
FixedArray getslice(::PyObject *index) const
{
size_t start=0, end=0, slicelength=0;
Py_ssize_t step;
extract_slice_indices(index,start,end,step,slicelength);
FixedArray f(slicelength);
if (isMaskedReference())
{
for (size_t i=0; i<slicelength; ++i)
f._ptr[i] = _ptr[raw_ptr_index(start+i*step)*_stride];
}
else
{
for (size_t i=0; i<slicelength; ++i)
f._ptr[i] = _ptr[(start+i*step)*_stride];
}
return f;
}
template <typename MaskArrayType>
FixedArray getslice_mask(const MaskArrayType& mask)
{
// 'writable' state is preserved in the returned fixed-array.
FixedArray f(*this, mask);
return f;
}
void
setitem_scalar(PyObject *index, const T &data)
{
if (!_writable)
throw std::invalid_argument("Fixed array is read-only.");
size_t start=0, end=0, slicelength=0;
Py_ssize_t step;
extract_slice_indices(index,start,end,step,slicelength);
if (isMaskedReference())
{
for (size_t i=0; i<slicelength; ++i)
_ptr[raw_ptr_index(start+i*step)*_stride] = data;
}
else
{
for (size_t i=0; i<slicelength; ++i)
_ptr[(start+i*step)*_stride] = data;
}
}
template <typename MaskArrayType>
void
setitem_scalar_mask(const MaskArrayType &mask, const T &data)
{
if (!_writable)
throw std::invalid_argument("Fixed array is read-only.");
size_t len = match_dimension(mask, false);
if (isMaskedReference())
{
for (size_t i = 0; i < len; ++i)
_ptr[raw_ptr_index(i)*_stride] = data;
}
else
{
for (size_t i=0; i<len; ++i)
if (mask[i]) _ptr[i*_stride] = data;
}
}
template <typename ArrayType>
void
setitem_vector(::PyObject *index, const ArrayType &data)
{
if (!_writable)
throw std::invalid_argument("Fixed array is read-only.");
size_t start=0, end=0, slicelength=0;
Py_ssize_t step;
extract_slice_indices(index,start,end,step,slicelength);
// we have a valid range of indices
if ((size_t)data.len() != slicelength) {
PyErr_SetString(PyExc_IndexError, "Dimensions of source do not match destination");
boost::python::throw_error_already_set();
}
if (isMaskedReference())
{
for (size_t i=0; i<slicelength; ++i)
_ptr[raw_ptr_index(start+i*step)*_stride] = data[i];
}
else
{
for (size_t i=0; i<slicelength; ++i)
_ptr[(start+i*step)*_stride] = data[i];
}
}
template <typename MaskArrayType, typename ArrayType>
void
setitem_vector_mask(const MaskArrayType &mask, const ArrayType &data)
{
if (!_writable)
throw std::invalid_argument("Fixed array is read-only.");
// We could relax this but this restriction if there's a good
// enough reason too.
if (isMaskedReference())
{
throw std::invalid_argument("We don't support setting item masks for masked reference arrays.");
}
size_t len = match_dimension(mask);
if ((size_t)data.len() == len)
{
for (size_t i = 0; i < len; ++i)
if (mask[i]) _ptr[i*_stride] = data[i];
}
else
{
size_t count = 0;
for (size_t i = 0; i < len; ++i)
if (mask[i]) count++;
if (data.len() != count) {
throw std::invalid_argument("Dimensions of source data do not match destination either masked or unmasked");
}
Py_ssize_t dataIndex = 0;
for (size_t i = 0; i < len; ++i)
{
if (mask[i])
{
_ptr[i*_stride] = data[dataIndex];
dataIndex++;
}
}
}
}
// exposed as Py_ssize_t for compatilbity with standard python sequences
Py_ssize_t len() const { return _length; }
size_t stride() const { return _stride; }
bool writable() const { return _writable; }
// This method is mainly here for use in confidence tests, but there may
// be other use-cases where a writable array needs to be made read-only.
// Note that we do not provide a 'makeWritable' method here, because that
// type of operation shouldn't be allowed.
void makeReadOnly() { _writable = false; }
// no bounds checking on i!
T& operator [] (size_t i)
{
if (!_writable)
throw std::invalid_argument("Fixed array is read-only.");
return _ptr[(isMaskedReference() ? raw_ptr_index(i) : i) * _stride];
}
// no bounds checking on i!
const T& operator [] (size_t i) const
{
return _ptr[(isMaskedReference() ? raw_ptr_index(i) : i) * _stride];
}
// no mask conversion or bounds checking on i!
T& direct_index(size_t i)
{
if (!_writable)
throw std::invalid_argument("Fixed array is read-only.");
return _ptr[i*_stride];
}
// no mask conversion or bounds checking on i!
const T& direct_index (size_t i) const
{
return _ptr[i*_stride];
}
// In some cases, an access to the raw data without the 'writable' check
// is needed. Generally in specialized python-wrapping helpers.
T& unchecked_index (size_t i)
{
return _ptr[(isMaskedReference() ? raw_ptr_index(i) : i) * _stride];
}
T& unchecked_direct_index (size_t i)
{
return _ptr[i*_stride];
}
bool isMaskedReference() const {return _indices.get() != 0;}
size_t unmaskedLength() const {return _unmaskedLength;}
// Conversion of indices to raw pointer indices.
// This should only be called when this is a masked reference.
// No safety checks done for performance.
size_t raw_ptr_index(size_t i) const
{
assert(isMaskedReference());
assert(i < _length);
assert(_indices[i] >= 0 && _indices[i] < _unmaskedLength);
return _indices[i];
}
static boost::python::class_<FixedArray<T> > register_(const char *doc)
{
// Depending on the data-type (class or fundamental) and the writable
// state of the array, different forms are returned by the '__getitem__'
// method. If writable and a class, an internal reference to the data
// is returned so that its value can be changed. If not-writable or a
// fundemental data type (float, int, etc.), then a 'copy' of the data
// is returned.
typename boost::python::object (FixedArray<T>::*nonconst_getobject)(Py_ssize_t) =
&FixedArray<T>::getobjectTuple;
typename boost::python::object (FixedArray<T>:: *const_getobject)(Py_ssize_t) const =
&FixedArray<T>::getobjectTuple;
boost::python::class_<FixedArray<T> > c(name(),doc, boost::python::init<size_t>("construct an array of the specified length initialized to the default value for the type"));
c
.def(boost::python::init<const FixedArray<T> &>("construct an array with the same values as the given array"))
.def(boost::python::init<const T &,size_t>("construct an array of the specified length initialized to the specified default value"))
.def("__getitem__", &FixedArray<T>::getslice)
.def("__getitem__", &FixedArray<T>::getslice_mask<FixedArray<int> > )
.def("__getitem__", const_getobject,
selectable_postcall_policy_from_tuple<
boost::python::with_custodian_and_ward_postcall<0,1>,
boost::python::return_value_policy<boost::python::copy_const_reference>,
boost::python::default_call_policies>())
.def("__getitem__", nonconst_getobject,
selectable_postcall_policy_from_tuple<
boost::python::with_custodian_and_ward_postcall<0,1>,
boost::python::return_value_policy<boost::python::copy_const_reference>,
boost::python::default_call_policies>())
.def("__setitem__", &FixedArray<T>::setitem_scalar)
.def("__setitem__", &FixedArray<T>::setitem_scalar_mask<FixedArray<int> >)
.def("__setitem__", &FixedArray<T>::setitem_vector<FixedArray<T> >)
.def("__setitem__", &FixedArray<T>::setitem_vector_mask<FixedArray<int>, FixedArray<T> >)
.def("__len__",&FixedArray<T>::len)
.def("writable",&FixedArray<T>::writable)
.def("makeReadOnly", &FixedArray<T>::makeReadOnly)
.def("ifelse",&FixedArray<T>::ifelse_scalar)
.def("ifelse",&FixedArray<T>::ifelse_vector)
;
return c;
}
template <typename ArrayType>
size_t match_dimension(const ArrayType &a1, bool strictComparison = true) const
{
if (len() == a1.len())
return len();
bool throwExc = false;
if (strictComparison)
throwExc = true;
else if (isMaskedReference())
{
if (_unmaskedLength != a1.len())
throwExc = true;
}
else
throwExc = true;
if (throwExc)
{
throw std::invalid_argument("Dimensions of source do not match destination");
}
return len();
}
FixedArray<T> ifelse_vector(const FixedArray<int> &choice, const FixedArray<T> &other) {
size_t len = match_dimension(choice);
match_dimension(other);
FixedArray<T> tmp(len); // should use default construction but V3f doens't initialize
for (size_t i=0; i < len; ++i) tmp[i] = choice[i] ? (*this)[i] : other[i];
return tmp;
}
FixedArray<T> ifelse_scalar(const FixedArray<int> &choice, const T &other) {
size_t len = match_dimension(choice);
FixedArray<T> tmp(len); // should use default construction but V3f doens't initialize
for (size_t i=0; i < len; ++i) tmp[i] = choice[i] ? (*this)[i] : other;
return tmp;
}
// Instantiations of fixed ararys must implement this static member
static const char *name();
// Various 'Accessor' classes used in performance-critical areas while also
// managing the writable/read-only state efficiently.
class ReadOnlyDirectAccess
{
public:
ReadOnlyDirectAccess (const FixedArray<T>& array)
: _ptr (array._ptr), _stride (array._stride)
{
if (array.isMaskedReference())
throw std::invalid_argument ("Fixed array is masked. ReadOnlyDirectAccess not granted.");
}
ReadOnlyDirectAccess (const ReadOnlyDirectAccess& other)
: _ptr (other._ptr), _stride (other._stride) {}
const T& operator[] (size_t i) const { return _ptr[i*_stride]; }
private:
const T* _ptr;
protected:
const size_t _stride;
};
class WritableDirectAccess : public ReadOnlyDirectAccess
{
public:
WritableDirectAccess (FixedArray<T>& array)
: ReadOnlyDirectAccess (array), _ptr (array._ptr)
{
if (!array.writable())
throw std::invalid_argument ("Fixed array is read-only. WritableDirectAccess not granted.");
}
WritableDirectAccess (const WritableDirectAccess& other)
: ReadOnlyDirectAccess (other), _ptr (other._ptr) {}
T& operator[] (size_t i) { return _ptr[i*_stride]; }
private:
T* _ptr;
using ReadOnlyDirectAccess::_stride;
};
//
class ReadOnlyMaskedAccess
{
public:
ReadOnlyMaskedAccess (const FixedArray<T>& array)
: _ptr (array._ptr), _stride (array._stride),
_indices (array._indices)
{
if (!array.isMaskedReference())
throw std::invalid_argument ("Fixed array is not masked. ReadOnlyMaskedAccess not granted.");
}
ReadOnlyMaskedAccess (const ReadOnlyMaskedAccess& other)
: _ptr (other._ptr), _stride (other._stride),
_indices (other._indices) {}
// No index-range check here.
const T& operator[] (size_t i) const { return _ptr[_indices[i]*_stride]; }
private:
const T* _ptr;
protected:
const size_t _stride;
boost::shared_array<size_t> _indices;
};
class WritableMaskedAccess : public ReadOnlyMaskedAccess
{
public:
WritableMaskedAccess (FixedArray<T>& array)
: ReadOnlyMaskedAccess (array), _ptr (array._ptr)
{
if (!array.writable())
std::invalid_argument ("Fixed array is read-only. WritableMaskedAccess not granted.");
}
WritableMaskedAccess (const WritableMaskedAccess& other)
: ReadOnlyMaskedAccess (other), _ptr (other._ptr) {}
// No index-range check here.
T& operator[] (size_t i) { return _ptr[_indices[i]*_stride]; }
private:
T* _ptr;
using ReadOnlyMaskedAccess::_stride;
using ReadOnlyMaskedAccess::_indices;
};
};
//
// Helper struct for arary indexing with a known compile time length
//
template <class Container, class Data>
struct IndexAccessDefault {
typedef Data & result_type;
static Data & apply(Container &c, size_t i) { return c[i]; }
};
template <class Container, class Data, int Length, class IndexAccess = IndexAccessDefault<Container,Data> >
struct StaticFixedArray
{
static Py_ssize_t len(const Container &) { return Length; }
static typename IndexAccess::result_type getitem(Container &c, Py_ssize_t index) { return IndexAccess::apply(c,canonical_index(index)); }
static void setitem(Container &c, Py_ssize_t index, const Data &data) { IndexAccess::apply(c,canonical_index(index)) = data; }
static size_t canonical_index(Py_ssize_t index)
{
if (index < 0) index += Length;
if (index < 0 || index >= Length) {
PyErr_SetString(PyExc_IndexError, "Index out of range");
boost::python::throw_error_already_set();
}
return index;
}
};
}
#endif // _PyImathFixedArray_h_