%PDF- %PDF-
| Direktori : /proc/self/root/usr/include/boost/geometry/algorithms/detail/disjoint/ |
| Current File : //proc/self/root/usr/include/boost/geometry/algorithms/detail/disjoint/multipoint_geometry.hpp |
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2017 Adam Wulkiewicz, Lodz, Poland.
// Copyright (c) 2014-2020, Oracle and/or its affiliates.
// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Licensed under the Boost Software License version 1.0.
// http://www.boost.org/users/license.html
#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_DISJOINT_MULTIPOINT_GEOMETRY_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_DISJOINT_MULTIPOINT_GEOMETRY_HPP
#include <algorithm>
#include <vector>
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/range/size.hpp>
#include <boost/range/value_type.hpp>
#include <boost/geometry/core/assert.hpp>
#include <boost/geometry/core/tag.hpp>
#include <boost/geometry/core/tags.hpp>
#include <boost/geometry/geometries/box.hpp>
#include <boost/geometry/iterators/segment_iterator.hpp>
#include <boost/geometry/algorithms/envelope.hpp>
#include <boost/geometry/algorithms/expand.hpp>
#include <boost/geometry/algorithms/detail/check_iterator_range.hpp>
#include <boost/geometry/algorithms/detail/partition.hpp>
#include <boost/geometry/algorithms/detail/disjoint/box_box.hpp>
#include <boost/geometry/algorithms/detail/disjoint/multirange_geometry.hpp>
#include <boost/geometry/algorithms/detail/disjoint/point_box.hpp>
#include <boost/geometry/algorithms/detail/disjoint/point_point.hpp>
#include <boost/geometry/algorithms/detail/disjoint/point_geometry.hpp>
#include <boost/geometry/algorithms/dispatch/disjoint.hpp>
#include <boost/geometry/policies/compare.hpp>
// TEMP
#include <boost/geometry/strategies/envelope/cartesian.hpp>
#include <boost/geometry/strategies/envelope/geographic.hpp>
#include <boost/geometry/strategies/envelope/spherical.hpp>
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace disjoint
{
class multipoint_multipoint
{
private:
template <typename Iterator, typename CSTag>
class unary_disjoint_predicate
: geometry::less<void, -1, CSTag>
{
private:
typedef geometry::less<void, -1, CSTag> base_type;
public:
unary_disjoint_predicate(Iterator first, Iterator last)
: base_type(), m_first(first), m_last(last)
{}
template <typename Point>
inline bool apply(Point const& point) const
{
return !std::binary_search(m_first,
m_last,
point,
static_cast<base_type const&>(*this));
}
private:
Iterator m_first, m_last;
};
public:
template <typename MultiPoint1, typename MultiPoint2, typename Strategy>
static inline bool apply(MultiPoint1 const& multipoint1,
MultiPoint2 const& multipoint2,
Strategy const&)
{
typedef typename Strategy::cs_tag cs_tag;
typedef geometry::less<void, -1, cs_tag> less_type;
BOOST_GEOMETRY_ASSERT( boost::size(multipoint1) <= boost::size(multipoint2) );
typedef typename boost::range_value<MultiPoint1>::type point1_type;
std::vector<point1_type> points1(boost::begin(multipoint1),
boost::end(multipoint1));
std::sort(points1.begin(), points1.end(), less_type());
typedef unary_disjoint_predicate
<
typename std::vector<point1_type>::const_iterator,
cs_tag
> predicate_type;
return check_iterator_range
<
predicate_type
>::apply(boost::begin(multipoint2),
boost::end(multipoint2),
predicate_type(points1.begin(), points1.end()));
}
};
template <typename MultiPoint, typename Linear>
class multipoint_linear
{
private:
template <typename ExpandPointBoxStrategy>
struct expand_box_point
{
template <typename Box, typename Point>
static inline void apply(Box& total, Point const& point)
{
geometry::expand(total, point, ExpandPointBoxStrategy());
}
};
template <typename EnvelopeStrategy>
struct expand_box_segment
{
explicit expand_box_segment(EnvelopeStrategy const& strategy)
: m_strategy(strategy)
{}
template <typename Box, typename Segment>
inline void apply(Box& total, Segment const& segment) const
{
geometry::expand(total,
geometry::return_envelope<Box>(segment, m_strategy),
// TEMP - envelope umbrella strategy also contains
// expand strategies
strategies::envelope::services::strategy_converter
<
EnvelopeStrategy
>::get(m_strategy));
}
EnvelopeStrategy const& m_strategy;
};
template <typename DisjointPointBoxStrategy>
struct overlaps_box_point
{
template <typename Box, typename Point>
static inline bool apply(Box const& box, Point const& point)
{
// The default strategy is enough in this case
return ! detail::disjoint::disjoint_point_box(point, box,
DisjointPointBoxStrategy());
}
};
template <typename DisjointStrategy>
struct overlaps_box_segment
{
explicit overlaps_box_segment(DisjointStrategy const& strategy)
: m_strategy(strategy)
{}
template <typename Box, typename Segment>
inline bool apply(Box const& box, Segment const& segment) const
{
return ! dispatch::disjoint<Segment, Box>::apply(segment, box, m_strategy);
}
DisjointStrategy const& m_strategy;
};
template <typename PtSegStrategy>
class item_visitor_type
{
public:
item_visitor_type(PtSegStrategy const& strategy)
: m_intersection_found(false)
, m_strategy(strategy)
{}
template <typename Item1, typename Item2>
inline bool apply(Item1 const& item1, Item2 const& item2)
{
if (! m_intersection_found
&& ! dispatch::disjoint<Item1, Item2>::apply(item1, item2, m_strategy))
{
m_intersection_found = true;
return false;
}
return true;
}
inline bool intersection_found() const { return m_intersection_found; }
private:
bool m_intersection_found;
PtSegStrategy const& m_strategy;
};
// structs for partition -- end
class segment_range
{
public:
typedef geometry::segment_iterator<Linear const> const_iterator;
typedef const_iterator iterator;
segment_range(Linear const& linear)
: m_linear(linear)
{}
const_iterator begin() const
{
return geometry::segments_begin(m_linear);
}
const_iterator end() const
{
return geometry::segments_end(m_linear);
}
private:
Linear const& m_linear;
};
public:
template <typename Strategy>
static inline bool apply(MultiPoint const& multipoint, Linear const& linear, Strategy const& strategy)
{
item_visitor_type<Strategy> visitor(strategy);
typedef typename Strategy::expand_point_strategy_type expand_point_strategy_type;
typedef typename Strategy::envelope_strategy_type envelope_strategy_type;
typedef typename Strategy::disjoint_strategy_type disjoint_strategy_type;
typedef typename Strategy::disjoint_point_box_strategy_type disjoint_pb_strategy_type;
// TODO: disjoint Segment/Box may be called in partition multiple times
// possibly for non-cartesian segments which could be slow. We should consider
// passing a range of bounding boxes of segments after calculating them once.
// Alternatively instead of a range of segments a range of Segment/Envelope pairs
// should be passed, where envelope would be lazily calculated when needed the first time
geometry::partition
<
geometry::model::box<typename point_type<MultiPoint>::type>
>::apply(multipoint, segment_range(linear), visitor,
expand_box_point<expand_point_strategy_type>(),
overlaps_box_point<disjoint_pb_strategy_type>(),
expand_box_segment<envelope_strategy_type>(strategy.get_envelope_strategy()),
overlaps_box_segment<disjoint_strategy_type>(strategy.get_disjoint_strategy()));
return ! visitor.intersection_found();
}
template <typename Strategy>
static inline bool apply(Linear const& linear, MultiPoint const& multipoint, Strategy const& strategy)
{
return apply(multipoint, linear, strategy);
}
};
template <typename MultiPoint, typename SingleGeometry>
class multi_point_single_geometry
{
public:
template <typename Strategy>
static inline bool apply(MultiPoint const& multi_point,
SingleGeometry const& single_geometry,
Strategy const& strategy)
{
typedef typename Strategy::disjoint_point_box_strategy_type d_pb_strategy_type;
typedef typename point_type<MultiPoint>::type point1_type;
typedef typename point_type<SingleGeometry>::type point2_type;
typedef model::box<point2_type> box2_type;
box2_type box2;
geometry::envelope(single_geometry, box2, strategy.get_envelope_strategy());
geometry::detail::expand_by_epsilon(box2);
typedef typename boost::range_const_iterator<MultiPoint>::type iterator;
for ( iterator it = boost::begin(multi_point) ; it != boost::end(multi_point) ; ++it )
{
// The default strategy is enough for Point/Box
if (! detail::disjoint::disjoint_point_box(*it, box2, d_pb_strategy_type())
&& ! dispatch::disjoint<point1_type, SingleGeometry>::apply(*it, single_geometry, strategy))
{
return false;
}
}
return true;
}
template <typename Strategy>
static inline bool apply(SingleGeometry const& single_geometry, MultiPoint const& multi_point, Strategy const& strategy)
{
return apply(multi_point, single_geometry, strategy);
}
};
template <typename MultiPoint, typename MultiGeometry>
class multi_point_multi_geometry
{
private:
template <typename ExpandPointStrategy>
struct expand_box_point
{
template <typename Box, typename Point>
static inline void apply(Box& total, Point const& point)
{
geometry::expand(total, point, ExpandPointStrategy());
}
};
template <typename ExpandBoxStrategy>
struct expand_box_box_pair
{
template <typename Box, typename BoxPair>
inline void apply(Box& total, BoxPair const& box_pair) const
{
geometry::expand(total, box_pair.first, ExpandBoxStrategy());
}
};
template <typename DisjointPointBoxStrategy>
struct overlaps_box_point
{
template <typename Box, typename Point>
static inline bool apply(Box const& box, Point const& point)
{
// The default strategy is enough for Point/Box
return ! detail::disjoint::disjoint_point_box(point, box,
DisjointPointBoxStrategy());
}
};
template <typename DisjointBoxBoxStrategy>
struct overlaps_box_box_pair
{
template <typename Box, typename BoxPair>
inline bool apply(Box const& box, BoxPair const& box_pair) const
{
// The default strategy is enough for Box/Box
return ! detail::disjoint::disjoint_box_box(box_pair.first, box,
DisjointBoxBoxStrategy());
}
};
template <typename PtSegStrategy>
class item_visitor_type
{
public:
item_visitor_type(MultiGeometry const& multi_geometry,
PtSegStrategy const& strategy)
: m_intersection_found(false)
, m_multi_geometry(multi_geometry)
, m_strategy(strategy)
{}
template <typename Point, typename BoxPair>
inline bool apply(Point const& point, BoxPair const& box_pair)
{
typedef typename PtSegStrategy::disjoint_point_box_strategy_type d_pb_strategy_type;
typedef typename boost::range_value<MultiGeometry>::type single_type;
// The default strategy is enough for Point/Box
if (! m_intersection_found
&& ! detail::disjoint::disjoint_point_box(point, box_pair.first, d_pb_strategy_type())
&& ! dispatch::disjoint<Point, single_type>::apply(point, range::at(m_multi_geometry, box_pair.second), m_strategy))
{
m_intersection_found = true;
return false;
}
return true;
}
inline bool intersection_found() const { return m_intersection_found; }
private:
bool m_intersection_found;
MultiGeometry const& m_multi_geometry;
PtSegStrategy const& m_strategy;
};
// structs for partition -- end
public:
template <typename Strategy>
static inline bool apply(MultiPoint const& multi_point, MultiGeometry const& multi_geometry, Strategy const& strategy)
{
typedef typename point_type<MultiPoint>::type point1_type;
typedef typename point_type<MultiGeometry>::type point2_type;
typedef model::box<point1_type> box1_type;
typedef model::box<point2_type> box2_type;
typedef std::pair<box2_type, std::size_t> box_pair_type;
typename Strategy::envelope_strategy_type const
envelope_strategy = strategy.get_envelope_strategy();
std::size_t count2 = boost::size(multi_geometry);
std::vector<box_pair_type> boxes(count2);
for (std::size_t i = 0 ; i < count2 ; ++i)
{
geometry::envelope(range::at(multi_geometry, i), boxes[i].first, envelope_strategy);
geometry::detail::expand_by_epsilon(boxes[i].first);
boxes[i].second = i;
}
item_visitor_type<Strategy> visitor(multi_geometry, strategy);
typedef expand_box_point
<
typename Strategy::expand_point_strategy_type
> expand_box_point_type;
typedef overlaps_box_point
<
typename Strategy::disjoint_point_box_strategy_type
> overlaps_box_point_type;
typedef expand_box_box_pair
<
// TEMP - envelope umbrella strategy also contains
// expand strategies
decltype(strategies::envelope::services::strategy_converter
<
typename Strategy::envelope_strategy_type
>::get(strategy.get_envelope_strategy())
.expand(std::declval<box1_type>(),
std::declval<box2_type>()))
> expand_box_box_pair_type;
typedef overlaps_box_box_pair
<
typename Strategy::disjoint_box_box_strategy_type
> overlaps_box_box_pair_type;
geometry::partition
<
box1_type
>::apply(multi_point, boxes, visitor,
expand_box_point_type(),
overlaps_box_point_type(),
expand_box_box_pair_type(),
overlaps_box_box_pair_type());
return ! visitor.intersection_found();
}
template <typename Strategy>
static inline bool apply(MultiGeometry const& multi_geometry, MultiPoint const& multi_point, Strategy const& strategy)
{
return apply(multi_point, multi_geometry, strategy);
}
};
template <typename MultiPoint, typename Areal, typename Tag = typename tag<Areal>::type>
struct multipoint_areal
: multi_point_single_geometry<MultiPoint, Areal>
{};
template <typename MultiPoint, typename Areal>
struct multipoint_areal<MultiPoint, Areal, multi_polygon_tag>
: multi_point_multi_geometry<MultiPoint, Areal>
{};
}} // namespace detail::disjoint
#endif // DOXYGEN_NO_DETAIL
#ifndef DOXYGEN_NO_DISPATCH
namespace dispatch
{
template <typename Point, typename MultiPoint, std::size_t DimensionCount>
struct disjoint
<
Point, MultiPoint, DimensionCount, point_tag, multi_point_tag, false
> : detail::disjoint::multirange_constant_size_geometry<MultiPoint, Point>
{};
template <typename MultiPoint, typename Segment, std::size_t DimensionCount>
struct disjoint
<
MultiPoint, Segment, DimensionCount, multi_point_tag, segment_tag, false
> : detail::disjoint::multirange_constant_size_geometry<MultiPoint, Segment>
{};
template <typename MultiPoint, typename Box, std::size_t DimensionCount>
struct disjoint
<
MultiPoint, Box, DimensionCount, multi_point_tag, box_tag, false
> : detail::disjoint::multirange_constant_size_geometry<MultiPoint, Box>
{};
template
<
typename MultiPoint1,
typename MultiPoint2,
std::size_t DimensionCount
>
struct disjoint
<
MultiPoint1, MultiPoint2, DimensionCount,
multi_point_tag, multi_point_tag, false
>
{
template <typename Strategy>
static inline bool apply(MultiPoint1 const& multipoint1,
MultiPoint2 const& multipoint2,
Strategy const& strategy)
{
if ( boost::size(multipoint2) < boost::size(multipoint1) )
{
return detail::disjoint::multipoint_multipoint
::apply(multipoint2, multipoint1, strategy);
}
return detail::disjoint::multipoint_multipoint
::apply(multipoint1, multipoint2, strategy);
}
};
template <typename Linear, typename MultiPoint, std::size_t DimensionCount>
struct disjoint
<
Linear, MultiPoint, DimensionCount, linear_tag, multi_point_tag, false
> : detail::disjoint::multipoint_linear<MultiPoint, Linear>
{};
template <typename MultiPoint, typename Linear, std::size_t DimensionCount>
struct disjoint
<
MultiPoint, Linear, DimensionCount, multi_point_tag, linear_tag, false
> : detail::disjoint::multipoint_linear<MultiPoint, Linear>
{};
template <typename Areal, typename MultiPoint, std::size_t DimensionCount>
struct disjoint
<
Areal, MultiPoint, DimensionCount, areal_tag, multi_point_tag, false
> : detail::disjoint::multipoint_areal<MultiPoint, Areal>
{};
template <typename MultiPoint, typename Areal, std::size_t DimensionCount>
struct disjoint
<
MultiPoint, Areal, DimensionCount, multi_point_tag, areal_tag, false
> : detail::disjoint::multipoint_areal<MultiPoint, Areal>
{};
} // namespace dispatch
#endif // DOXYGEN_NO_DISPATCH
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_DISJOINT_MULTIPOINT_GEOMETRY_HPP