%PDF- %PDF-
| Direktori : /home2/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/strings/ |
| Current File : //home2/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/strings/unicode-decoder.h |
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_STRINGS_UNICODE_DECODER_H_
#define V8_STRINGS_UNICODE_DECODER_H_
#include "src/base/vector.h"
#include "src/strings/unicode.h"
namespace v8 {
namespace internal {
// The return value may point to the first aligned word containing the first
// non-one-byte character, rather than directly to the non-one-byte character.
// If the return value is >= the passed length, the entire string was
// one-byte.
inline int NonAsciiStart(const uint8_t* chars, int length) {
const uint8_t* start = chars;
const uint8_t* limit = chars + length;
if (static_cast<size_t>(length) >= kIntptrSize) {
// Check unaligned bytes.
while (!IsAligned(reinterpret_cast<intptr_t>(chars), kIntptrSize)) {
if (*chars > unibrow::Utf8::kMaxOneByteChar) {
return static_cast<int>(chars - start);
}
++chars;
}
// Check aligned words.
DCHECK_EQ(unibrow::Utf8::kMaxOneByteChar, 0x7F);
const uintptr_t non_one_byte_mask = kUintptrAllBitsSet / 0xFF * 0x80;
while (chars + sizeof(uintptr_t) <= limit) {
if (*reinterpret_cast<const uintptr_t*>(chars) & non_one_byte_mask) {
return static_cast<int>(chars - start);
}
chars += sizeof(uintptr_t);
}
}
// Check remaining unaligned bytes.
while (chars < limit) {
if (*chars > unibrow::Utf8::kMaxOneByteChar) {
return static_cast<int>(chars - start);
}
++chars;
}
return static_cast<int>(chars - start);
}
template <class Decoder>
class Utf8DecoderBase {
public:
enum class Encoding : uint8_t { kAscii, kLatin1, kUtf16, kInvalid };
bool is_invalid() const {
return static_cast<const Decoder&>(*this).is_invalid();
}
bool is_ascii() const { return encoding_ == Encoding::kAscii; }
bool is_one_byte() const { return encoding_ <= Encoding::kLatin1; }
int utf16_length() const {
DCHECK(!is_invalid());
return utf16_length_;
}
int non_ascii_start() const {
DCHECK(!is_invalid());
return non_ascii_start_;
}
template <typename Char>
void Decode(Char* out, base::Vector<const uint8_t> data);
protected:
explicit Utf8DecoderBase(base::Vector<const uint8_t> data);
Encoding encoding_;
int non_ascii_start_;
int utf16_length_;
};
class V8_EXPORT_PRIVATE Utf8Decoder final
: public Utf8DecoderBase<Utf8Decoder> {
public:
explicit Utf8Decoder(base::Vector<const uint8_t> data)
: Utf8DecoderBase(data) {}
// This decoder never fails; an invalid byte sequence decodes to U+FFFD and
// then the decode continues.
bool is_invalid() const {
DCHECK_NE(encoding_, Encoding::kInvalid);
return false;
}
};
#if V8_ENABLE_WEBASSEMBLY
// Like Utf8Decoder above, except that instead of replacing invalid sequences
// with U+FFFD, we have a separate Encoding::kInvalid state, and we also accept
// isolated surrogates.
class Wtf8Decoder : public Utf8DecoderBase<Wtf8Decoder> {
public:
explicit Wtf8Decoder(base::Vector<const uint8_t> data)
: Utf8DecoderBase(data) {}
bool is_invalid() const { return encoding_ == Encoding::kInvalid; }
};
// Like Utf8Decoder above, except that instead of replacing invalid sequences
// with U+FFFD, we have a separate Encoding::kInvalid state.
class StrictUtf8Decoder : public Utf8DecoderBase<StrictUtf8Decoder> {
public:
explicit StrictUtf8Decoder(base::Vector<const uint8_t> data)
: Utf8DecoderBase(data) {}
bool is_invalid() const { return encoding_ == Encoding::kInvalid; }
};
#endif // V8_ENABLE_WEBASSEMBLY
} // namespace internal
} // namespace v8
#endif // V8_STRINGS_UNICODE_DECODER_H_