%PDF- %PDF-
| Direktori : /home2/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/heap/ |
| Current File : //home2/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/heap/memory-chunk.cc |
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/heap/memory-chunk.h"
#include "src/base/logging.h"
#include "src/base/platform/mutex.h"
#include "src/base/platform/platform.h"
#include "src/common/globals.h"
#include "src/heap/basic-memory-chunk.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/marking-state-inl.h"
#include "src/heap/memory-allocator.h"
#include "src/heap/memory-chunk-inl.h"
#include "src/heap/memory-chunk-layout.h"
#include "src/heap/spaces.h"
#include "src/objects/heap-object.h"
namespace v8 {
namespace internal {
void MemoryChunk::DiscardUnusedMemory(Address addr, size_t size) {
base::AddressRegion memory_area =
MemoryAllocator::ComputeDiscardMemoryArea(addr, size);
if (memory_area.size() != 0) {
MemoryAllocator* memory_allocator = heap_->memory_allocator();
v8::PageAllocator* page_allocator =
memory_allocator->page_allocator(owner_identity());
CHECK(page_allocator->DiscardSystemPages(
reinterpret_cast<void*>(memory_area.begin()), memory_area.size()));
}
}
void MemoryChunk::InitializationMemoryFence() {
base::SeqCst_MemoryFence();
#ifdef THREAD_SANITIZER
// Since TSAN does not process memory fences, we use the following annotation
// to tell TSAN that there is no data race when emitting a
// InitializationMemoryFence. Note that the other thread still needs to
// perform MemoryChunk::synchronized_heap().
base::Release_Store(reinterpret_cast<base::AtomicWord*>(&heap_),
reinterpret_cast<base::AtomicWord>(heap_));
#endif
}
void MemoryChunk::DecrementWriteUnprotectCounterAndMaybeSetPermissions(
PageAllocator::Permission permission) {
DCHECK(!V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT);
DCHECK(permission == PageAllocator::kRead ||
permission == PageAllocator::kReadExecute);
DCHECK(IsFlagSet(MemoryChunk::IS_EXECUTABLE));
DCHECK(IsAnyCodeSpace(owner_identity()));
page_protection_change_mutex_->AssertHeld();
Address protect_start =
address() + MemoryChunkLayout::ObjectPageOffsetInCodePage();
size_t page_size = MemoryAllocator::GetCommitPageSize();
DCHECK(IsAligned(protect_start, page_size));
size_t protect_size = RoundUp(area_size(), page_size);
CHECK(reservation_.SetPermissions(protect_start, protect_size, permission));
}
void MemoryChunk::SetReadable() {
DecrementWriteUnprotectCounterAndMaybeSetPermissions(PageAllocator::kRead);
}
void MemoryChunk::SetReadAndExecutable() {
DCHECK(!v8_flags.jitless);
DecrementWriteUnprotectCounterAndMaybeSetPermissions(
PageAllocator::kReadExecute);
}
base::MutexGuard MemoryChunk::SetCodeModificationPermissions() {
DCHECK(!V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT);
DCHECK(IsFlagSet(MemoryChunk::IS_EXECUTABLE));
DCHECK(IsAnyCodeSpace(owner_identity()));
// Incrementing the write_unprotect_counter_ and changing the page
// protection mode has to be atomic.
base::MutexGuard guard(page_protection_change_mutex_);
Address unprotect_start =
address() + MemoryChunkLayout::ObjectPageOffsetInCodePage();
size_t page_size = MemoryAllocator::GetCommitPageSize();
DCHECK(IsAligned(unprotect_start, page_size));
size_t unprotect_size = RoundUp(area_size(), page_size);
// We may use RWX pages to write code. Some CPUs have optimisations to push
// updates to code to the icache through a fast path, and they may filter
// updates based on the written memory being executable.
CHECK(reservation_.SetPermissions(
unprotect_start, unprotect_size,
MemoryChunk::GetCodeModificationPermission()));
return guard;
}
void MemoryChunk::SetDefaultCodePermissions() {
if (v8_flags.jitless) {
SetReadable();
} else {
SetReadAndExecutable();
}
}
MemoryChunk::MemoryChunk(Heap* heap, BaseSpace* space, size_t chunk_size,
Address area_start, Address area_end,
VirtualMemory reservation, Executability executable,
PageSize page_size)
: BasicMemoryChunk(heap, space, chunk_size, area_start, area_end,
std::move(reservation)),
mutex_(new base::Mutex()),
shared_mutex_(new base::SharedMutex()),
page_protection_change_mutex_(new base::Mutex()) {
DCHECK_NE(space->identity(), RO_SPACE);
if (executable == EXECUTABLE) {
SetFlag(IS_EXECUTABLE);
}
if (page_size == PageSize::kRegular) {
active_system_pages_ = new ActiveSystemPages;
active_system_pages_->Init(MemoryChunkLayout::kMemoryChunkHeaderSize,
MemoryAllocator::GetCommitPageSizeBits(),
size());
} else {
// We do not track active system pages for large pages.
active_system_pages_ = nullptr;
}
// All pages of a shared heap need to be marked with this flag.
if (owner()->identity() == SHARED_SPACE ||
owner()->identity() == SHARED_LO_SPACE) {
SetFlag(MemoryChunk::IN_WRITABLE_SHARED_SPACE);
}
#ifdef DEBUG
ValidateOffsets(this);
#endif
}
size_t MemoryChunk::CommittedPhysicalMemory() const {
if (!base::OS::HasLazyCommits() || IsLargePage()) return size();
return active_system_pages_->Size(MemoryAllocator::GetCommitPageSizeBits());
}
void MemoryChunk::SetOldGenerationPageFlags(MarkingMode marking_mode) {
if (marking_mode == MarkingMode::kMajorMarking) {
SetFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING);
SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
SetFlag(MemoryChunk::INCREMENTAL_MARKING);
} else if (owner_identity() == SHARED_SPACE ||
owner_identity() == SHARED_LO_SPACE) {
// We need to track pointers into the SHARED_SPACE for OLD_TO_SHARED.
SetFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING);
// No need to track OLD_TO_NEW or OLD_TO_SHARED within the shared space.
ClearFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
ClearFlag(MemoryChunk::INCREMENTAL_MARKING);
} else {
ClearFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING);
SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
if (marking_mode == MarkingMode::kMinorMarking) {
SetFlag(MemoryChunk::INCREMENTAL_MARKING);
} else {
ClearFlags(MemoryChunk::INCREMENTAL_MARKING);
}
}
}
void MemoryChunk::SetYoungGenerationPageFlags(MarkingMode marking_mode) {
SetFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING);
if (marking_mode != MarkingMode::kNoMarking) {
SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
SetFlag(MemoryChunk::INCREMENTAL_MARKING);
} else {
ClearFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
ClearFlag(MemoryChunk::INCREMENTAL_MARKING);
}
}
// -----------------------------------------------------------------------------
// MemoryChunk implementation
void MemoryChunk::ReleaseAllocatedMemoryNeededForWritableChunk() {
DCHECK(SweepingDone());
if (mutex_ != nullptr) {
delete mutex_;
mutex_ = nullptr;
}
if (shared_mutex_) {
delete shared_mutex_;
shared_mutex_ = nullptr;
}
if (page_protection_change_mutex_ != nullptr) {
delete page_protection_change_mutex_;
page_protection_change_mutex_ = nullptr;
}
if (active_system_pages_ != nullptr) {
delete active_system_pages_;
active_system_pages_ = nullptr;
}
possibly_empty_buckets_.Release();
ReleaseSlotSet(OLD_TO_NEW);
ReleaseSlotSet(OLD_TO_NEW_BACKGROUND);
ReleaseSlotSet(OLD_TO_OLD);
ReleaseSlotSet(OLD_TO_CODE);
ReleaseSlotSet(OLD_TO_SHARED);
ReleaseTypedSlotSet(OLD_TO_NEW);
ReleaseTypedSlotSet(OLD_TO_OLD);
ReleaseTypedSlotSet(OLD_TO_SHARED);
if (!IsLargePage()) {
Page* page = static_cast<Page*>(this);
page->ReleaseFreeListCategories();
}
}
void MemoryChunk::ReleaseAllAllocatedMemory() {
ReleaseAllocatedMemoryNeededForWritableChunk();
}
SlotSet* MemoryChunk::AllocateSlotSet(RememberedSetType type) {
SlotSet* new_slot_set = SlotSet::Allocate(buckets());
SlotSet* old_slot_set = base::AsAtomicPointer::AcquireRelease_CompareAndSwap(
&slot_set_[type], nullptr, new_slot_set);
if (old_slot_set) {
SlotSet::Delete(new_slot_set, buckets());
new_slot_set = old_slot_set;
}
DCHECK_NOT_NULL(new_slot_set);
return new_slot_set;
}
void MemoryChunk::ReleaseSlotSet(RememberedSetType type) {
SlotSet* slot_set = slot_set_[type];
if (slot_set) {
slot_set_[type] = nullptr;
SlotSet::Delete(slot_set, buckets());
}
}
TypedSlotSet* MemoryChunk::AllocateTypedSlotSet(RememberedSetType type) {
TypedSlotSet* typed_slot_set = new TypedSlotSet(address());
TypedSlotSet* old_value = base::AsAtomicPointer::Release_CompareAndSwap(
&typed_slot_set_[type], nullptr, typed_slot_set);
if (old_value) {
delete typed_slot_set;
typed_slot_set = old_value;
}
DCHECK(typed_slot_set);
return typed_slot_set;
}
void MemoryChunk::ReleaseTypedSlotSet(RememberedSetType type) {
TypedSlotSet* typed_slot_set = typed_slot_set_[type];
if (typed_slot_set) {
typed_slot_set_[type] = nullptr;
delete typed_slot_set;
}
}
bool MemoryChunk::ContainsAnySlots() const {
for (int rs_type = 0; rs_type < NUMBER_OF_REMEMBERED_SET_TYPES; rs_type++) {
if (slot_set_[rs_type] || typed_slot_set_[rs_type]) {
return true;
}
}
return false;
}
void MemoryChunk::ClearLiveness() {
marking_bitmap()->Clear<AccessMode::NON_ATOMIC>();
SetLiveBytes(0);
}
int MemoryChunk::ComputeFreeListsLength() {
int length = 0;
for (int cat = kFirstCategory; cat <= owner()->free_list()->last_category();
cat++) {
if (categories_[cat] != nullptr) {
length += categories_[cat]->FreeListLength();
}
}
return length;
}
#ifdef DEBUG
void MemoryChunk::ValidateOffsets(MemoryChunk* chunk) {
// Note that we cannot use offsetof because MemoryChunk is not a POD.
DCHECK_EQ(reinterpret_cast<Address>(&chunk->slot_set_) - chunk->address(),
MemoryChunkLayout::kSlotSetOffset);
DCHECK_EQ(reinterpret_cast<Address>(&chunk->progress_bar_) - chunk->address(),
MemoryChunkLayout::kProgressBarOffset);
DCHECK_EQ(
reinterpret_cast<Address>(&chunk->live_byte_count_) - chunk->address(),
MemoryChunkLayout::kLiveByteCountOffset);
DCHECK_EQ(
reinterpret_cast<Address>(&chunk->typed_slot_set_) - chunk->address(),
MemoryChunkLayout::kTypedSlotSetOffset);
DCHECK_EQ(reinterpret_cast<Address>(&chunk->mutex_) - chunk->address(),
MemoryChunkLayout::kMutexOffset);
DCHECK_EQ(reinterpret_cast<Address>(&chunk->shared_mutex_) - chunk->address(),
MemoryChunkLayout::kSharedMutexOffset);
DCHECK_EQ(reinterpret_cast<Address>(&chunk->concurrent_sweeping_) -
chunk->address(),
MemoryChunkLayout::kConcurrentSweepingOffset);
DCHECK_EQ(reinterpret_cast<Address>(&chunk->page_protection_change_mutex_) -
chunk->address(),
MemoryChunkLayout::kPageProtectionChangeMutexOffset);
DCHECK_EQ(reinterpret_cast<Address>(&chunk->external_backing_store_bytes_) -
chunk->address(),
MemoryChunkLayout::kExternalBackingStoreBytesOffset);
DCHECK_EQ(reinterpret_cast<Address>(&chunk->list_node_) - chunk->address(),
MemoryChunkLayout::kListNodeOffset);
DCHECK_EQ(reinterpret_cast<Address>(&chunk->categories_) - chunk->address(),
MemoryChunkLayout::kCategoriesOffset);
DCHECK_EQ(reinterpret_cast<Address>(&chunk->possibly_empty_buckets_) -
chunk->address(),
MemoryChunkLayout::kPossiblyEmptyBucketsOffset);
DCHECK_EQ(reinterpret_cast<Address>(&chunk->active_system_pages_) -
chunk->address(),
MemoryChunkLayout::kActiveSystemPagesOffset);
DCHECK_EQ(
reinterpret_cast<Address>(&chunk->allocated_lab_size_) - chunk->address(),
MemoryChunkLayout::kAllocatedLabSizeOffset);
DCHECK_EQ(
reinterpret_cast<Address>(&chunk->age_in_new_space_) - chunk->address(),
MemoryChunkLayout::kAgeInNewSpaceOffset);
}
#endif
} // namespace internal
} // namespace v8