%PDF- %PDF-
| Direktori : /home2/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/heap/ |
| Current File : //home2/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/heap/heap.h |
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HEAP_HEAP_H_
#define V8_HEAP_HEAP_H_
#include <atomic>
#include <cmath>
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <vector>
// Clients of this interface shouldn't depend on lots of heap internals.
// Do not include anything from src/heap here!
#include "include/v8-callbacks.h"
#include "include/v8-embedder-heap.h"
#include "include/v8-internal.h"
#include "include/v8-isolate.h"
#include "src/base/atomic-utils.h"
#include "src/base/enum-set.h"
#include "src/base/platform/condition-variable.h"
#include "src/base/platform/mutex.h"
#include "src/builtins/accessors.h"
#include "src/common/assert-scope.h"
#include "src/common/code-memory-access.h"
#include "src/common/globals.h"
#include "src/heap/allocation-observer.h"
#include "src/heap/allocation-result.h"
#include "src/heap/gc-callbacks.h"
#include "src/heap/heap-allocator.h"
#include "src/heap/marking-state.h"
#include "src/heap/minor-gc-job.h"
#include "src/heap/pretenuring-handler.h"
#include "src/heap/sweeper.h"
#include "src/init/heap-symbols.h"
#include "src/objects/allocation-site.h"
#include "src/objects/fixed-array.h"
#include "src/objects/hash-table.h"
#include "src/objects/heap-object.h"
#include "src/objects/js-array-buffer.h"
#include "src/objects/objects.h"
#include "src/objects/smi.h"
#include "src/objects/visitors.h"
#include "src/roots/roots.h"
#include "src/sandbox/code-pointer-table.h"
#include "src/sandbox/external-pointer-table.h"
#include "src/sandbox/indirect-pointer-table.h"
#include "src/utils/allocation.h"
#include "testing/gtest/include/gtest/gtest_prod.h" // nogncheck
namespace cppgc::internal {
enum class HeapObjectNameForUnnamedObject : uint8_t;
class ClassNameAsHeapObjectNameScope;
} // namespace cppgc::internal
namespace heap::base {
class Stack;
} // namespace heap::base
namespace v8 {
namespace debug {
using OutOfMemoryCallback = void (*)(void* data);
} // namespace debug
namespace internal {
namespace heap {
class HeapTester;
class TestMemoryAllocatorScope;
} // namespace heap
namespace third_party_heap {
class Heap;
class Impl;
} // namespace third_party_heap
class ArrayBufferCollector;
class ArrayBufferSweeper;
class BackingStore;
class BasicMemoryChunk;
class Boolean;
class CodeLargeObjectSpace;
class CodeRange;
class CollectionBarrier;
class ConcurrentAllocator;
class ConcurrentMarking;
class CppHeap;
class EphemeronRememberedSet;
class GCIdleTimeHandler;
class GCIdleTimeHeapState;
class GCTracer;
class IncrementalMarking;
class IsolateSafepoint;
class HeapObjectAllocationTracker;
class HeapObjectsFilter;
class HeapStats;
class Isolate;
class JSArrayBuffer;
class JSFinalizationRegistry;
class JSPromise;
class LinearAllocationArea;
class LocalHeap;
class MemoryAllocator;
class MemoryBalancer;
class MemoryChunk;
class MemoryMeasurement;
class MemoryReducer;
class MinorMarkSweepCollector;
class NativeContext;
class NopRwxMemoryWriteScope;
class ObjectIterator;
class ObjectStats;
class Page;
class PagedSpace;
class PagedNewSpace;
class ReadOnlyHeap;
class RootVisitor;
class RwxMemoryWriteScope;
class SafepointScope;
class Scavenger;
class ScavengerCollector;
class SharedLargeObjectSpace;
class SharedReadOnlySpace;
class SharedSpace;
class Space;
class StressScavengeObserver;
class TimedHistogram;
class TrustedLargeObjectSpace;
class TrustedSpace;
class WeakObjectRetainer;
enum class ClearRecordedSlots { kYes, kNo };
enum class InvalidateRecordedSlots { kYes, kNo };
enum class ClearFreedMemoryMode { kClearFreedMemory, kDontClearFreedMemory };
enum class RetainingPathOption { kDefault, kTrackEphemeronPath };
enum class GCIdleTimeAction : uint8_t;
enum class SkipRoot {
kExternalStringTable,
kGlobalHandles,
kTracedHandles,
kOldGeneration,
kStack,
kMainThreadHandles,
kUnserializable,
kWeak,
kConservativeStack,
kReadOnlyBuiltins,
};
class StrongRootsEntry final {
explicit StrongRootsEntry(const char* label) : label(label) {}
// Label that identifies the roots in tooling.
const char* label;
FullObjectSlot start;
FullObjectSlot end;
StrongRootsEntry* prev;
StrongRootsEntry* next;
friend class Heap;
};
#ifdef DEBUG
struct CommentStatistic {
const char* comment;
int size;
int count;
void Clear() {
comment = nullptr;
size = 0;
count = 0;
}
// Must be small, since an iteration is used for lookup.
static const int kMaxComments = 64;
};
#endif
// An alias for std::unordered_map<Tagged<HeapObject>, T> which also
// sets proper Hash and KeyEqual functions.
template <typename T>
using UnorderedHeapObjectMap =
std::unordered_map<Tagged<HeapObject>, T, Object::Hasher,
Object::KeyEqualSafe>;
enum class GCFlag : uint8_t {
kNoFlags = 0,
kReduceMemoryFootprint = 1 << 0,
// GCs that are forced, either through testing configurations (requiring
// --expose-gc) or through DevTools (using LowMemoryNotification).
kForced = 1 << 1,
};
using GCFlags = base::Flags<GCFlag, uint8_t>;
DEFINE_OPERATORS_FOR_FLAGS(GCFlags)
class Heap final {
public:
enum class HeapGrowingMode { kSlow, kConservative, kMinimal, kDefault };
enum HeapState {
NOT_IN_GC,
SCAVENGE,
MARK_COMPACT,
MINOR_MARK_SWEEP,
TEAR_DOWN
};
// Emits GC events for DevTools timeline.
class V8_NODISCARD DevToolsTraceEventScope {
public:
DevToolsTraceEventScope(Heap* heap, const char* event_name,
const char* event_type);
~DevToolsTraceEventScope();
private:
Heap* heap_;
const char* event_name_;
};
class ExternalMemoryAccounting {
public:
int64_t total() const { return total_.load(std::memory_order_relaxed); }
int64_t limit() const { return limit_.load(std::memory_order_relaxed); }
int64_t low_since_mark_compact() const {
return low_since_mark_compact_.load(std::memory_order_relaxed);
}
void ResetAfterGC() {
set_low_since_mark_compact(total());
set_limit(total() + kExternalAllocationSoftLimit);
}
int64_t Update(int64_t delta) {
const int64_t amount =
total_.fetch_add(delta, std::memory_order_relaxed) + delta;
if (amount < low_since_mark_compact()) {
set_low_since_mark_compact(amount);
set_limit(amount + kExternalAllocationSoftLimit);
}
return amount;
}
int64_t AllocatedSinceMarkCompact() const {
int64_t total_bytes = total();
int64_t low_since_mark_compact_bytes = low_since_mark_compact();
if (total_bytes <= low_since_mark_compact_bytes) {
return 0;
}
return static_cast<uint64_t>(total_bytes - low_since_mark_compact_bytes);
}
private:
void set_total(int64_t value) {
total_.store(value, std::memory_order_relaxed);
}
void set_limit(int64_t value) {
limit_.store(value, std::memory_order_relaxed);
}
void set_low_since_mark_compact(int64_t value) {
low_since_mark_compact_.store(value, std::memory_order_relaxed);
}
// The amount of external memory registered through the API.
std::atomic<int64_t> total_{0};
// The limit when to trigger memory pressure from the API.
std::atomic<int64_t> limit_{kExternalAllocationSoftLimit};
// Caches the amount of external memory registered at the last MC.
std::atomic<int64_t> low_since_mark_compact_{0};
};
// Taking this mutex prevents the GC from entering a phase that relocates
// object references.
base::Mutex* relocation_mutex() { return &relocation_mutex_; }
// Support for context snapshots. After calling this we have a linear
// space to write objects in each space.
struct Chunk {
uint32_t size;
Address start;
Address end;
};
using Reservation = std::vector<Chunk>;
#if V8_OS_ANDROID
// Don't apply pointer multiplier on Android since it has no swap space and
// should instead adapt it's heap size based on available physical memory.
static const int kPointerMultiplier = 1;
static const int kHeapLimitMultiplier = 1;
#else
static const int kPointerMultiplier = kTaggedSize / 4;
// The heap limit needs to be computed based on the system pointer size
// because we want a pointer-compressed heap to have larger limit than
// an ordinary 32-bit which that is constrained by 2GB virtual address space.
static const int kHeapLimitMultiplier = kSystemPointerSize / 4;
#endif
static const size_t kMaxInitialOldGenerationSize =
256 * MB * kHeapLimitMultiplier;
// These constants control heap configuration based on the physical memory.
static constexpr size_t kPhysicalMemoryToOldGenerationRatio = 4;
static constexpr size_t kOldGenerationLowMemory =
128 * MB * kHeapLimitMultiplier;
static constexpr size_t kNewLargeObjectSpaceToSemiSpaceRatio = 1;
static const int kTraceRingBufferSize = 512;
static const int kStacktraceBufferSize = 512;
// The minimum size of a HeapObject on the heap.
static const int kMinObjectSizeInTaggedWords = 2;
static size_t DefaultMinSemiSpaceSize();
V8_EXPORT_PRIVATE static size_t DefaultMaxSemiSpaceSize();
// Young generation size is the same for compressed heaps and 32-bit heaps.
static size_t OldGenerationToSemiSpaceRatio();
static size_t OldGenerationToSemiSpaceRatioLowMemory();
// Calculates the maximum amount of filler that could be required by the
// given alignment.
V8_EXPORT_PRIVATE static int GetMaximumFillToAlign(
AllocationAlignment alignment);
// Calculates the actual amount of filler required for a given address at the
// given alignment.
V8_EXPORT_PRIVATE static int GetFillToAlign(Address address,
AllocationAlignment alignment);
// Returns the size of the initial area of a code-range, which is marked
// writable and reserved to contain unwind information.
static size_t GetCodeRangeReservedAreaSize();
[[noreturn]] V8_EXPORT_PRIVATE void FatalProcessOutOfMemory(
const char* location);
// Checks whether the space is valid.
static bool IsValidAllocationSpace(AllocationSpace space);
// Helper function to get the bytecode flushing mode based on the flags. This
// is required because it is not safe to access flags in concurrent marker.
static inline base::EnumSet<CodeFlushMode> GetCodeFlushMode(Isolate* isolate);
static inline bool IsYoungGenerationCollector(GarbageCollector collector) {
return collector == GarbageCollector::SCAVENGER ||
collector == GarbageCollector::MINOR_MARK_SWEEPER;
}
static inline GarbageCollector YoungGenerationCollector() {
return (v8_flags.minor_ms) ? GarbageCollector::MINOR_MARK_SWEEPER
: GarbageCollector::SCAVENGER;
}
// Copy block of memory from src to dst. Size of block should be aligned
// by pointer size.
static inline void CopyBlock(Address dst, Address src, int byte_size);
// Executes generational and/or marking write barrier for a [start, end) range
// of non-weak slots inside |object|.
template <typename TSlot>
V8_EXPORT_PRIVATE void WriteBarrierForRange(Tagged<HeapObject> object,
TSlot start, TSlot end);
// Implements slow path of both generational & shared heap barrier.
V8_EXPORT_PRIVATE static void CombinedGenerationalAndSharedBarrierSlow(
Tagged<HeapObject> object, Address slot, Tagged<HeapObject> value);
V8_EXPORT_PRIVATE static void
CombinedGenerationalAndSharedEphemeronBarrierSlow(
Tagged<EphemeronHashTable> table, Address slot, Tagged<HeapObject> value);
V8_EXPORT_PRIVATE static void GenerationalBarrierSlow(
Tagged<HeapObject> object, Address slot, Tagged<HeapObject> value);
V8_EXPORT_PRIVATE static void SharedHeapBarrierSlow(Tagged<HeapObject> object,
Address slot);
V8_EXPORT_PRIVATE static void GenerationalBarrierForCodeSlow(
Tagged<InstructionStream> host, RelocInfo* rinfo,
Tagged<HeapObject> value);
V8_EXPORT_PRIVATE static bool PageFlagsAreConsistent(
Tagged<HeapObject> object);
V8_EXPORT_PRIVATE inline void RecordEphemeronKeyWrite(
Tagged<EphemeronHashTable> table, Address key_slot);
V8_EXPORT_PRIVATE static void EphemeronKeyWriteBarrierFromCode(
Address raw_object, Address address, Isolate* isolate);
EphemeronRememberedSet* ephemeron_remembered_set() {
return ephemeron_remembered_set_.get();
}
// Notifies the heap that is ok to start marking or other activities that
// should not happen during deserialization.
void NotifyDeserializationComplete();
// Weakens StrongDescriptorArray objects into regular DescriptorArray objects.
//
// Thread-safe.
void WeakenDescriptorArrays(
GlobalHandleVector<DescriptorArray> strong_descriptor_arrays);
void NotifyBootstrapComplete();
void NotifyOldGenerationExpansion(AllocationSpace space, MemoryChunk* chunk);
void NotifyOldGenerationExpansionBackground(AllocationSpace space,
MemoryChunk* chunk);
inline Address* NewSpaceAllocationTopAddress();
inline Address* NewSpaceAllocationLimitAddress();
inline Address* OldSpaceAllocationTopAddress();
inline Address* OldSpaceAllocationLimitAddress();
size_t NewSpaceSize();
size_t NewSpaceCapacity() const;
size_t NewSpaceTargetCapacity() const;
// Move len non-weak tagged elements from src_slot to dst_slot of dst_object.
// The source and destination memory ranges can overlap.
V8_EXPORT_PRIVATE void MoveRange(Tagged<HeapObject> dst_object,
ObjectSlot dst_slot, ObjectSlot src_slot,
int len, WriteBarrierMode mode);
// Copy len non-weak tagged elements from src_slot to dst_slot of dst_object.
// The source and destination memory ranges must not overlap.
template <typename TSlot>
void CopyRange(Tagged<HeapObject> dst_object, TSlot dst_slot, TSlot src_slot,
int len, WriteBarrierMode mode);
// Initialize a filler object to keep the ability to iterate over the heap
// when introducing gaps within pages. This method will verify that no slots
// are recorded in this free memory.
V8_EXPORT_PRIVATE void CreateFillerObjectAt(
Address addr, int size,
ClearFreedMemoryMode clear_memory_mode =
ClearFreedMemoryMode::kDontClearFreedMemory);
// Initialize a filler object at a specific address. Unlike
// `CreateFillerObjectAt` this method will not perform slot verification since
// this would race on background threads.
void CreateFillerObjectAtBackground(Address addr, int size);
// This method is used by the sweeper on free memory ranges to make the page
// iterable again. Unlike `CreateFillerObjectAt` this method will not verify
// slots since the sweeper can run concurrently.
void CreateFillerObjectAtSweeper(Address addr, int size);
template <typename T>
void CreateFillerForArray(Tagged<T> object, int elements_to_trim,
int bytes_to_trim);
bool CanMoveObjectStart(Tagged<HeapObject> object);
bool IsImmovable(Tagged<HeapObject> object);
V8_EXPORT_PRIVATE static bool IsLargeObject(Tagged<HeapObject> object);
// Trim the given array from the left. Note that this relocates the object
// start and hence is only valid if there is only a single reference to it.
V8_EXPORT_PRIVATE Tagged<FixedArrayBase> LeftTrimFixedArray(
Tagged<FixedArrayBase> obj, int elements_to_trim);
// Trim the given array from the right.
V8_EXPORT_PRIVATE void RightTrimFixedArray(Tagged<FixedArrayBase> obj,
int elements_to_trim);
void RightTrimWeakFixedArray(Tagged<WeakFixedArray> obj,
int elements_to_trim);
// Converts the given boolean condition to JavaScript boolean value.
inline Tagged<Boolean> ToBoolean(bool condition);
// Notify the heap that a context has been disposed. `has_dependent_context`
// implies that a top-level context (no dependent contexts) has been disposed.
V8_EXPORT_PRIVATE int NotifyContextDisposed(bool has_dependent_context);
void set_native_contexts_list(Tagged<Object> object) {
native_contexts_list_.store(object.ptr(), std::memory_order_release);
}
Tagged<Object> native_contexts_list() const {
return Tagged<Object>(
native_contexts_list_.load(std::memory_order_acquire));
}
void set_allocation_sites_list(Tagged<Object> object) {
allocation_sites_list_ = object;
}
Tagged<Object> allocation_sites_list() { return allocation_sites_list_; }
void set_dirty_js_finalization_registries_list(Tagged<Object> object) {
dirty_js_finalization_registries_list_ = object;
}
Tagged<Object> dirty_js_finalization_registries_list() {
return dirty_js_finalization_registries_list_;
}
void set_dirty_js_finalization_registries_list_tail(Tagged<Object> object) {
dirty_js_finalization_registries_list_tail_ = object;
}
Tagged<Object> dirty_js_finalization_registries_list_tail() {
return dirty_js_finalization_registries_list_tail_;
}
// Used in CreateAllocationSiteStub and the (de)serializer.
Address allocation_sites_list_address() {
return reinterpret_cast<Address>(&allocation_sites_list_);
}
// Traverse all the allocation_sites [nested_site and weak_next] in the list
// and foreach call the visitor
void ForeachAllocationSite(
Tagged<Object> list,
const std::function<void(Tagged<AllocationSite>)>& visitor);
// Number of mark-sweeps.
int ms_count() const { return ms_count_; }
// Checks whether the given object is allowed to be migrated from it's
// current space into the given destination space. Used for debugging.
bool AllowedToBeMigrated(Tagged<Map> map, Tagged<HeapObject> object,
AllocationSpace dest);
void CheckHandleCount();
// Print short heap statistics.
void PrintShortHeapStatistics();
// Print statistics of freelists of old_space:
// with v8_flags.trace_gc_freelists: summary of each FreeListCategory.
// with v8_flags.trace_gc_freelists_verbose: also prints the statistics of
// each FreeListCategory of each page.
void PrintFreeListsStats();
// Dump heap statistics in JSON format.
void DumpJSONHeapStatistics(std::stringstream& stream);
bool write_protect_code_memory() const {
if (V8_HAS_PTHREAD_JIT_WRITE_PROTECT) {
// On MacOS on ARM64 ("Apple M1"/Apple Silicon) code modification
// protection must be used. It can be achieved by one of the following
// approaches:
// 1) switching memory protection between RW-RX as on other architectures
// => return true,
// 2) fast W^X machinery (see V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT) which
// doesn not require memory protection changes => return false.
return !V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT;
}
return write_protect_code_memory_;
}
inline HeapState gc_state() const {
return gc_state_.load(std::memory_order_relaxed);
}
void SetGCState(HeapState state);
bool IsTearingDown() const { return gc_state() == TEAR_DOWN; }
bool IsInGC() const {
return gc_state() != NOT_IN_GC && gc_state() != TEAR_DOWN;
}
bool force_oom() const { return force_oom_; }
bool ignore_local_gc_requests() const {
return ignore_local_gc_requests_depth_ > 0;
}
bool IsAllocationObserverActive() const {
return pause_allocation_observers_depth_ == 0;
}
bool IsGCWithStack() const;
V8_EXPORT_PRIVATE void ForceSharedGCWithEmptyStackForTesting();
bool CanShortcutStringsDuringGC(GarbageCollector collector) const;
// Performs GC after background allocation failure.
void CollectGarbageForBackground(LocalHeap* local_heap);
//
// Support for the API.
//
void CreateReadOnlyApiObjects();
void CreateMutableApiObjects();
// Implements the corresponding V8 API function.
bool IdleNotification(double deadline_in_seconds);
bool IdleNotification(int idle_time_in_ms);
V8_EXPORT_PRIVATE void MemoryPressureNotification(
v8::MemoryPressureLevel level, bool is_isolate_locked);
void CheckMemoryPressure();
V8_EXPORT_PRIVATE void AddNearHeapLimitCallback(v8::NearHeapLimitCallback,
void* data);
V8_EXPORT_PRIVATE void RemoveNearHeapLimitCallback(
v8::NearHeapLimitCallback callback, size_t heap_limit);
V8_EXPORT_PRIVATE void AutomaticallyRestoreInitialHeapLimit(
double threshold_percent);
void AppendArrayBufferExtension(Tagged<JSArrayBuffer> object,
ArrayBufferExtension* extension);
void DetachArrayBufferExtension(Tagged<JSArrayBuffer> object,
ArrayBufferExtension* extension);
IsolateSafepoint* safepoint() { return safepoint_.get(); }
V8_EXPORT_PRIVATE double MonotonicallyIncreasingTimeInMs() const;
#if DEBUG
void VerifyNewSpaceTop();
#endif // DEBUG
void RecordStats(HeapStats* stats, bool take_snapshot = false);
bool MeasureMemory(std::unique_ptr<v8::MeasureMemoryDelegate> delegate,
v8::MeasureMemoryExecution execution);
std::unique_ptr<v8::MeasureMemoryDelegate> MeasureMemoryDelegate(
Handle<NativeContext> context, Handle<JSPromise> promise,
v8::MeasureMemoryMode mode);
void VisitExternalResources(v8::ExternalResourceVisitor* visitor);
void IncrementDeferredCount(v8::Isolate::UseCounterFeature feature);
inline int NextScriptId();
inline int NextDebuggingId();
inline int GetNextTemplateSerialNumber();
void SetSerializedObjects(Tagged<FixedArray> objects);
void SetSerializedGlobalProxySizes(Tagged<FixedArray> sizes);
void SetBasicBlockProfilingData(Handle<ArrayList> list);
// For post mortem debugging.
void RememberUnmappedPage(Address page, bool compacted);
int64_t external_memory_hard_limit() { return max_old_generation_size() / 2; }
V8_INLINE int64_t external_memory();
V8_EXPORT_PRIVATE int64_t external_memory_limit();
V8_INLINE int64_t update_external_memory(int64_t delta);
V8_EXPORT_PRIVATE size_t YoungArrayBufferBytes();
V8_EXPORT_PRIVATE size_t OldArrayBufferBytes();
uint64_t backing_store_bytes() const {
return backing_store_bytes_.load(std::memory_order_relaxed);
}
void CompactWeakArrayLists();
V8_EXPORT_PRIVATE void AddRetainedMaps(Handle<NativeContext> context,
GlobalHandleVector<Map> maps);
// This event is triggered after object is moved to a new place.
void OnMoveEvent(Tagged<HeapObject> source, Tagged<HeapObject> target,
int size_in_bytes);
bool deserialization_complete() const { return deserialization_complete_; }
// We can only invoke Safepoint() on the main thread local heap after
// deserialization is complete. Before that, main_thread_local_heap_ might be
// null.
V8_INLINE bool CanSafepoint() const { return deserialization_complete(); }
bool HasLowAllocationRate();
bool HasHighFragmentation();
void ActivateMemoryReducerIfNeeded();
V8_EXPORT_PRIVATE bool ShouldOptimizeForMemoryUsage();
bool HighMemoryPressure() {
return memory_pressure_level_.load(std::memory_order_relaxed) !=
v8::MemoryPressureLevel::kNone;
}
bool CollectionRequested();
void CheckCollectionRequested();
void RestoreHeapLimit(size_t heap_limit) {
// Do not set the limit lower than the live size + some slack.
size_t min_limit = SizeOfObjects() + SizeOfObjects() / 4;
SetOldGenerationAndGlobalMaximumSize(
std::min(max_old_generation_size(), std::max(heap_limit, min_limit)));
}
#if V8_ENABLE_WEBASSEMBLY
// TODO(manoskouk): Consider inlining/moving this if
// STRONG_MUTABLE_MOVABLE_ROOT_LIST setters become public.
V8_EXPORT_PRIVATE void EnsureWasmCanonicalRttsSize(int length);
#endif
// ===========================================================================
// Initialization. ===========================================================
// ===========================================================================
void ConfigureHeap(const v8::ResourceConstraints& constraints);
void ConfigureHeapDefault();
// Prepares the heap, setting up for deserialization.
void SetUp(LocalHeap* main_thread_local_heap);
// Sets read-only heap and space.
void SetUpFromReadOnlyHeap(ReadOnlyHeap* ro_heap);
void ReplaceReadOnlySpace(SharedReadOnlySpace* shared_ro_space);
// Sets up the heap memory without creating any objects.
void SetUpSpaces(LinearAllocationArea& new_allocation_info,
LinearAllocationArea& old_allocation_info);
// Prepares the heap, setting up for deserialization.
void InitializeMainThreadLocalHeap(LocalHeap* main_thread_local_heap);
// (Re-)Initialize hash seed from flag or RNG.
void InitializeHashSeed();
// Invoked once for the process from V8::Initialize.
static void InitializeOncePerProcess();
// Bootstraps the object heap with the core set of objects required to run.
// Returns whether it succeeded.
bool CreateReadOnlyHeapObjects();
bool CreateMutableHeapObjects();
// Create ObjectStats if live_object_stats_ or dead_object_stats_ are nullptr.
void CreateObjectStats();
// Sets the TearDown state, so no new GC tasks get posted.
void StartTearDown();
// Destroys all data that might require the shared heap.
void TearDownWithSharedHeap();
// Destroys all memory allocated by the heap.
void TearDown();
// Returns whether SetUp has been called.
bool HasBeenSetUp() const;
// ===========================================================================
// Getters for spaces. =======================================================
// ===========================================================================
V8_INLINE Address NewSpaceTop();
V8_INLINE Address NewSpaceLimit();
NewSpace* new_space() const { return new_space_; }
inline PagedNewSpace* paged_new_space() const;
OldSpace* old_space() const { return old_space_; }
CodeSpace* code_space() const { return code_space_; }
SharedSpace* shared_space() const { return shared_space_; }
OldLargeObjectSpace* lo_space() const { return lo_space_; }
CodeLargeObjectSpace* code_lo_space() const { return code_lo_space_; }
SharedLargeObjectSpace* shared_lo_space() const { return shared_lo_space_; }
NewLargeObjectSpace* new_lo_space() const { return new_lo_space_; }
ReadOnlySpace* read_only_space() const { return read_only_space_; }
TrustedSpace* trusted_space() const { return trusted_space_; }
TrustedLargeObjectSpace* trusted_lo_space() const {
return trusted_lo_space_;
}
PagedSpace* shared_allocation_space() const {
return shared_allocation_space_;
}
OldLargeObjectSpace* shared_lo_allocation_space() const {
return shared_lo_allocation_space_;
}
inline PagedSpace* paged_space(int idx) const;
inline Space* space(int idx) const;
#ifdef V8_COMPRESS_POINTERS
ExternalPointerTable::Space* external_pointer_space() {
return &external_pointer_space_;
}
ExternalPointerTable::Space* read_only_external_pointer_space() {
return &read_only_external_pointer_space_;
}
IndirectPointerTable::Space* indirect_pointer_space() {
return &indirect_pointer_space_;
}
#endif // V8_COMPRESS_POINTERS
#ifdef V8_ENABLE_SANDBOX
CodePointerTable::Space* code_pointer_space() { return &code_pointer_space_; }
#endif // V8_ENABLE_SANDBOX
// ===========================================================================
// Getters to other components. ==============================================
// ===========================================================================
GCTracer* tracer() { return tracer_.get(); }
MemoryAllocator* memory_allocator() { return memory_allocator_.get(); }
const MemoryAllocator* memory_allocator() const {
return memory_allocator_.get();
}
inline Isolate* isolate() const;
// Check if we run on isolate's main thread.
inline bool IsMainThread() const;
// Check if we run on the current main thread of the shared isolate during
// shared GC.
inline bool IsSharedMainThread() const;
MarkCompactCollector* mark_compact_collector() {
return mark_compact_collector_.get();
}
MinorMarkSweepCollector* minor_mark_sweep_collector() {
return minor_mark_sweep_collector_.get();
}
Sweeper* sweeper() { return sweeper_.get(); }
ArrayBufferSweeper* array_buffer_sweeper() {
return array_buffer_sweeper_.get();
}
// The potentially overreserved address space region reserved by the code
// range if it exists or empty region otherwise.
const base::AddressRegion& code_region();
CodeRange* code_range() {
#if V8_COMPRESS_POINTERS_IN_SHARED_CAGE
return code_range_;
#else
return code_range_.get();
#endif
}
// The base of the code range if it exists or null address.
inline Address code_range_base();
LocalHeap* main_thread_local_heap() { return main_thread_local_heap_; }
Heap* AsHeap() { return this; }
// ===========================================================================
// Root set access. ==========================================================
// ===========================================================================
// Shortcut to the roots table stored in the Isolate.
V8_INLINE RootsTable& roots_table();
// Heap root getters.
#define ROOT_ACCESSOR(type, name, CamelName) inline Tagged<type> name();
MUTABLE_ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR
V8_INLINE Tagged<FixedArray> single_character_string_table();
V8_INLINE void SetRootMaterializedObjects(Tagged<FixedArray> objects);
V8_INLINE void SetRootScriptList(Tagged<Object> value);
V8_INLINE void SetRootNoScriptSharedFunctionInfos(Tagged<Object> value);
V8_INLINE void SetMessageListeners(Tagged<ArrayList> value);
V8_INLINE void SetFunctionsMarkedForManualOptimization(
Tagged<Object> bytecode);
StrongRootsEntry* RegisterStrongRoots(const char* label, FullObjectSlot start,
FullObjectSlot end);
void UnregisterStrongRoots(StrongRootsEntry* entry);
void UpdateStrongRoots(StrongRootsEntry* entry, FullObjectSlot start,
FullObjectSlot end);
void SetBuiltinsConstantsTable(Tagged<FixedArray> cache);
void SetDetachedContexts(Tagged<WeakArrayList> detached_contexts);
void EnqueueDirtyJSFinalizationRegistry(
Tagged<JSFinalizationRegistry> finalization_registry,
std::function<void(Tagged<HeapObject> object, ObjectSlot slot,
Tagged<Object> target)>
gc_notify_updated_slot);
MaybeHandle<JSFinalizationRegistry> DequeueDirtyJSFinalizationRegistry();
// Called from Heap::NotifyContextDisposed to remove all
// FinalizationRegistries with {context} from the dirty list when the context
// e.g. navigates away or is detached. If the dirty list is empty afterwards,
// the cleanup task is aborted if needed.
void RemoveDirtyFinalizationRegistriesOnContext(
Tagged<NativeContext> context);
inline bool HasDirtyJSFinalizationRegistries();
void PostFinalizationRegistryCleanupTaskIfNeeded();
void set_is_finalization_registry_cleanup_task_posted(bool posted) {
is_finalization_registry_cleanup_task_posted_ = posted;
}
bool is_finalization_registry_cleanup_task_posted() {
return is_finalization_registry_cleanup_task_posted_;
}
V8_EXPORT_PRIVATE void KeepDuringJob(Handle<HeapObject> target);
void ClearKeptObjects();
// ===========================================================================
// Inline allocation. ========================================================
// ===========================================================================
// Switch whether inline bump-pointer allocation should be used.
V8_EXPORT_PRIVATE void EnableInlineAllocation();
V8_EXPORT_PRIVATE void DisableInlineAllocation();
// ===========================================================================
// Methods triggering GCs. ===================================================
// ===========================================================================
// Performs garbage collection operation.
// Returns whether there is a chance that another major GC could
// collect more garbage.
V8_EXPORT_PRIVATE void CollectGarbage(
AllocationSpace space, GarbageCollectionReason gc_reason,
const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
// Performs a full garbage collection.
V8_EXPORT_PRIVATE void CollectAllGarbage(
GCFlags gc_flags, GarbageCollectionReason gc_reason,
const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
// Last hope garbage collection. Will try to free as much memory as possible
// with multiple rounds of garbage collection.
V8_EXPORT_PRIVATE void CollectAllAvailableGarbage(
GarbageCollectionReason gc_reason);
// Precise garbage collection that potentially finalizes already running
// incremental marking before performing an atomic garbage collection.
// Only use if absolutely necessary or in tests to avoid floating garbage!
V8_EXPORT_PRIVATE void PreciseCollectAllGarbage(
GCFlags gc_flags, GarbageCollectionReason gc_reason,
const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
// Performs garbage collection operation for the shared heap.
V8_EXPORT_PRIVATE bool CollectGarbageShared(
LocalHeap* local_heap, GarbageCollectionReason gc_reason);
// Requests garbage collection from some other thread.
V8_EXPORT_PRIVATE bool CollectGarbageFromAnyThread(
LocalHeap* local_heap,
GarbageCollectionReason gc_reason =
GarbageCollectionReason::kBackgroundAllocationFailure);
// Reports and external memory pressure event, either performs a major GC or
// completes incremental marking in order to free external resources.
void ReportExternalMemoryPressure();
using GetExternallyAllocatedMemoryInBytesCallback =
v8::Isolate::GetExternallyAllocatedMemoryInBytesCallback;
void SetGetExternallyAllocatedMemoryInBytesCallback(
GetExternallyAllocatedMemoryInBytesCallback callback) {
external_memory_callback_ = callback;
}
// Invoked when GC was requested via the stack guard.
void HandleGCRequest();
// ===========================================================================
// Iterators. ================================================================
// ===========================================================================
// In the case of shared GC, kMainIsolate is used for the main isolate and
// kClientIsolate for the (other) client isolates.
enum class IterateRootsMode { kMainIsolate, kClientIsolate };
// None of these methods iterate over the read-only roots. To do this use
// ReadOnlyRoots::Iterate. Read-only root iteration is not necessary for
// garbage collection and is usually only performed as part of
// (de)serialization or heap verification.
// Iterates over the strong roots and the weak roots.
void IterateRoots(
RootVisitor* v, base::EnumSet<SkipRoot> options,
IterateRootsMode roots_mode = IterateRootsMode::kMainIsolate);
void IterateRootsIncludingClients(RootVisitor* v,
base::EnumSet<SkipRoot> options);
// Iterates over entries in the smi roots list. Only interesting to the
// serializer/deserializer, since GC does not care about smis.
void IterateSmiRoots(RootVisitor* v);
// Iterates over weak string tables.
void IterateWeakRoots(RootVisitor* v, base::EnumSet<SkipRoot> options);
void IterateWeakGlobalHandles(RootVisitor* v);
void IterateBuiltins(RootVisitor* v);
void IterateStackRoots(RootVisitor* v);
void IterateConservativeStackRoots(
RootVisitor* v,
IterateRootsMode roots_mode = IterateRootsMode::kMainIsolate);
// ===========================================================================
// Remembered set API. =======================================================
// ===========================================================================
// Used for query incremental marking status in generated code.
uint8_t* IsMarkingFlagAddress();
uint8_t* IsMinorMarkingFlagAddress();
void ClearRecordedSlot(Tagged<HeapObject> object, ObjectSlot slot);
void ClearRecordedSlotRange(Address start, Address end);
static int InsertIntoRememberedSetFromCode(MemoryChunk* chunk, Address slot);
#ifdef DEBUG
void VerifySlotRangeHasNoRecordedSlots(Address start, Address end);
#endif
// ===========================================================================
// Incremental marking API. ==================================================
// ===========================================================================
GCFlags GCFlagsForIncrementalMarking() {
return ShouldOptimizeForMemoryUsage() ? GCFlag::kReduceMemoryFootprint
: GCFlag::kNoFlags;
}
// Starts incremental marking assuming incremental marking is currently
// stopped.
V8_EXPORT_PRIVATE void StartIncrementalMarking(
GCFlags gc_flags, GarbageCollectionReason gc_reason,
GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags,
GarbageCollector collector = GarbageCollector::MARK_COMPACTOR);
V8_EXPORT_PRIVATE void StartIncrementalMarkingOnInterrupt();
V8_EXPORT_PRIVATE void StartIncrementalMarkingIfAllocationLimitIsReached(
GCFlags gc_flags,
GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags);
void StartIncrementalMarkingIfAllocationLimitIsReachedBackground();
// Synchronously finalizes incremental marking.
V8_EXPORT_PRIVATE void FinalizeIncrementalMarkingAtomically(
GarbageCollectionReason gc_reason);
V8_EXPORT_PRIVATE void CompleteSweepingFull();
void CompleteSweepingYoung();
// Ensures that sweeping is finished for that object's page.
void EnsureSweepingCompletedForObject(Tagged<HeapObject> object);
IncrementalMarking* incremental_marking() const {
return incremental_marking_.get();
}
// ===========================================================================
// Concurrent marking API. ===================================================
// ===========================================================================
ConcurrentMarking* concurrent_marking() const {
return concurrent_marking_.get();
}
// The runtime uses this function to notify potentially unsafe object layout
// changes that require special synchronization with the concurrent marker.
// By default recorded slots in the object are invalidated. Pass
// InvalidateRecordedSlots::kNo if this is not necessary or to perform this
// manually.
void NotifyObjectLayoutChange(
Tagged<HeapObject> object, const DisallowGarbageCollection&,
InvalidateRecordedSlots invalidate_recorded_slots, int new_size = 0);
V8_EXPORT_PRIVATE static void NotifyObjectLayoutChangeDone(
Tagged<HeapObject> object);
// The runtime uses this function to inform the GC of object size changes. The
// GC will fill this area with a filler object and might clear recorded slots
// in that area.
void NotifyObjectSizeChange(Tagged<HeapObject>, int old_size, int new_size,
ClearRecordedSlots clear_recorded_slots);
// ===========================================================================
// Deoptimization support API. ===============================================
// ===========================================================================
// Setters for code offsets of well-known deoptimization targets.
void SetConstructStubCreateDeoptPCOffset(int pc_offset);
void SetConstructStubInvokeDeoptPCOffset(int pc_offset);
void SetInterpreterEntryReturnPCOffset(int pc_offset);
void DeoptMarkedAllocationSites();
// ===========================================================================
// Unified heap (C++) support. ===============================================
// ===========================================================================
V8_EXPORT_PRIVATE void AttachCppHeap(v8::CppHeap* cpp_heap);
V8_EXPORT_PRIVATE void DetachCppHeap();
v8::CppHeap* cpp_heap() const { return cpp_heap_; }
const cppgc::EmbedderStackState* overriden_stack_state() const;
V8_EXPORT_PRIVATE void SetStackStart(void* stack_start);
V8_EXPORT_PRIVATE ::heap::base::Stack& stack();
// ===========================================================================
// Embedder roots optimizations. =============================================
// ===========================================================================
V8_EXPORT_PRIVATE
void SetEmbedderRootsHandler(EmbedderRootsHandler* handler);
EmbedderRootsHandler* GetEmbedderRootsHandler() const;
// ===========================================================================
// External string table API. ================================================
// ===========================================================================
// Registers an external string.
inline void RegisterExternalString(Tagged<String> string);
// Called when a string's resource is changed. The size of the payload is sent
// as argument of the method.
V8_EXPORT_PRIVATE void UpdateExternalString(Tagged<String> string,
size_t old_payload,
size_t new_payload);
// Finalizes an external string by deleting the associated external
// data and clearing the resource pointer.
inline void FinalizeExternalString(Tagged<String> string);
static Tagged<String> UpdateYoungReferenceInExternalStringTableEntry(
Heap* heap, FullObjectSlot pointer);
// ===========================================================================
// Methods checking/returning the space of a given object/address. ===========
// ===========================================================================
// Returns whether the object resides in new space.
static inline bool InYoungGeneration(Tagged<Object> object);
static inline bool InYoungGeneration(MaybeObject object);
static inline bool InYoungGeneration(Tagged<HeapObject> heap_object);
static inline bool InFromPage(Tagged<Object> object);
static inline bool InFromPage(MaybeObject object);
static inline bool InFromPage(Tagged<HeapObject> heap_object);
static inline bool InToPage(Tagged<Object> object);
static inline bool InToPage(MaybeObject object);
static inline bool InToPage(Tagged<HeapObject> heap_object);
// Returns whether the object resides in old space.
inline bool InOldSpace(Tagged<Object> object);
// Checks whether an address/object is in the non-read-only heap (including
// auxiliary area and unused area). Use IsValidHeapObject if checking both
// heaps is required.
V8_EXPORT_PRIVATE bool Contains(Tagged<HeapObject> value) const;
// Same as above, but checks whether the object resides in any of the code
// spaces.
V8_EXPORT_PRIVATE bool ContainsCode(Tagged<HeapObject> value) const;
// Checks whether object resides in the non-read-only shared heap.
static inline bool InWritableSharedSpace(MaybeObject object);
// Checks whether an address/object is in the non-read-only heap (including
// auxiliary area and unused area). Use IsValidHeapObject if checking both
// heaps is required.
V8_EXPORT_PRIVATE bool SharedHeapContains(Tagged<HeapObject> value) const;
// Returns whether the object must be in the shared old space.
V8_EXPORT_PRIVATE bool MustBeInSharedOldSpace(Tagged<HeapObject> value);
// Checks whether an address/object in a space.
// Currently used by tests, serialization and heap verification only.
V8_EXPORT_PRIVATE bool InSpace(Tagged<HeapObject> value,
AllocationSpace space) const;
// Slow methods that can be used for verification as they can also be used
// with off-heap Addresses.
V8_EXPORT_PRIVATE bool InSpaceSlow(Address addr, AllocationSpace space) const;
static inline Heap* FromWritableHeapObject(Tagged<HeapObject> obj);
// ===========================================================================
// Object statistics tracking. ===============================================
// ===========================================================================
// Returns the number of buckets used by object statistics tracking during a
// major GC. Note that the following methods fail gracefully when the bounds
// are exceeded though.
size_t NumberOfTrackedHeapObjectTypes();
// Returns object statistics about count and size at the last major GC.
// Objects are being grouped into buckets that roughly resemble existing
// instance types.
size_t ObjectCountAtLastGC(size_t index);
size_t ObjectSizeAtLastGC(size_t index);
// Retrieves names of buckets used by object statistics tracking.
bool GetObjectTypeName(size_t index, const char** object_type,
const char** object_sub_type);
// The total number of native contexts object on the heap.
size_t NumberOfNativeContexts();
// The total number of native contexts that were detached but were not
// garbage collected yet.
size_t NumberOfDetachedContexts();
// ===========================================================================
// Code statistics.
// ==========================================================
// ===========================================================================
// Collect code (Code and BytecodeArray objects) statistics.
void CollectCodeStatistics();
// ===========================================================================
// GC statistics. ============================================================
// ===========================================================================
// Returns the maximum amount of memory reserved for the heap.
V8_EXPORT_PRIVATE size_t MaxReserved() const;
size_t MaxSemiSpaceSize() { return max_semi_space_size_; }
size_t InitialSemiSpaceSize() { return initial_semispace_size_; }
size_t MaxOldGenerationSize() { return max_old_generation_size(); }
// Limit on the max old generation size imposed by the underlying allocator.
V8_EXPORT_PRIVATE static size_t AllocatorLimitOnMaxOldGenerationSize();
V8_EXPORT_PRIVATE static size_t HeapSizeFromPhysicalMemory(
uint64_t physical_memory);
V8_EXPORT_PRIVATE static void GenerationSizesFromHeapSize(
size_t heap_size, size_t* young_generation_size,
size_t* old_generation_size);
V8_EXPORT_PRIVATE static size_t YoungGenerationSizeFromOldGenerationSize(
size_t old_generation_size);
V8_EXPORT_PRIVATE static size_t YoungGenerationSizeFromSemiSpaceSize(
size_t semi_space_size);
V8_EXPORT_PRIVATE static size_t SemiSpaceSizeFromYoungGenerationSize(
size_t young_generation_size);
V8_EXPORT_PRIVATE static size_t MinYoungGenerationSize();
V8_EXPORT_PRIVATE static size_t MinOldGenerationSize();
V8_EXPORT_PRIVATE static size_t MaxOldGenerationSize(
uint64_t physical_memory);
// Returns the capacity of the heap in bytes w/o growing. Heap grows when
// more spaces are needed until it reaches the limit.
size_t Capacity();
// Returns the capacity of the old generation.
V8_EXPORT_PRIVATE size_t OldGenerationCapacity() const;
base::Mutex* heap_expansion_mutex() { return &heap_expansion_mutex_; }
// Returns the amount of memory currently held alive by the unmapper.
size_t CommittedMemoryOfUnmapper();
// Returns the amount of memory currently committed for the heap.
size_t CommittedMemory();
// Returns the amount of memory currently committed for the old space.
size_t CommittedOldGenerationMemory();
// Returns the amount of executable memory currently committed for the heap.
size_t CommittedMemoryExecutable();
// Returns the amount of physical memory currently committed for the heap.
size_t CommittedPhysicalMemory();
// Returns the maximum amount of memory ever committed for the heap.
size_t MaximumCommittedMemory() { return maximum_committed_; }
// Updates the maximum committed memory for the heap. Should be called
// whenever a space grows.
void UpdateMaximumCommitted();
// Returns the available bytes in space w/o growing.
// Heap doesn't guarantee that it can allocate an object that requires
// all available bytes. Check MaxHeapObjectSize() instead.
size_t Available();
// Returns size of all objects residing in the heap.
V8_EXPORT_PRIVATE size_t SizeOfObjects();
// Returns size of all global handles in the heap.
V8_EXPORT_PRIVATE size_t TotalGlobalHandlesSize();
// Returns size of all allocated/used global handles in the heap.
V8_EXPORT_PRIVATE size_t UsedGlobalHandlesSize();
void UpdateSurvivalStatistics(int start_new_space_size);
inline void IncrementPromotedObjectsSize(size_t object_size) {
promoted_objects_size_ += object_size;
}
inline size_t promoted_objects_size() { return promoted_objects_size_; }
inline void IncrementNewSpaceSurvivingObjectSize(size_t object_size) {
new_space_surviving_object_size_ += object_size;
}
inline size_t new_space_surviving_object_size() {
return new_space_surviving_object_size_;
}
inline size_t SurvivedYoungObjectSize() {
return promoted_objects_size_ + new_space_surviving_object_size_;
}
inline void IncrementNodesDiedInNewSpace(int count) {
nodes_died_in_new_space_ += count;
}
inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; }
inline void IncrementNodesPromoted() { nodes_promoted_++; }
inline void IncrementYoungSurvivorsCounter(size_t survived) {
survived_since_last_expansion_ += survived;
}
void UpdateNewSpaceAllocationCounter();
V8_EXPORT_PRIVATE size_t NewSpaceAllocationCounter();
// This should be used only for testing.
void set_new_space_allocation_counter(size_t new_value) {
new_space_allocation_counter_ = new_value;
}
void UpdateOldGenerationAllocationCounter() {
old_generation_allocation_counter_at_last_gc_ =
OldGenerationAllocationCounter();
old_generation_size_at_last_gc_ = 0;
}
size_t OldGenerationAllocationCounter() {
return old_generation_allocation_counter_at_last_gc_ +
PromotedSinceLastGC();
}
size_t EmbedderAllocationCounter() const;
// This should be used only for testing.
void set_old_generation_allocation_counter_at_last_gc(size_t new_value) {
old_generation_allocation_counter_at_last_gc_ = new_value;
}
size_t PromotedSinceLastGC() {
size_t old_generation_size = OldGenerationSizeOfObjects();
return old_generation_size > old_generation_size_at_last_gc_
? old_generation_size - old_generation_size_at_last_gc_
: 0;
}
int gc_count() const { return gc_count_; }
bool is_current_gc_forced() const { return is_current_gc_forced_; }
GarbageCollector current_or_last_garbage_collector() const {
return current_or_last_garbage_collector_;
}
// Returns whether the currently in-progress GC should avoid increasing the
// ages on any objects that live for a set number of collections.
bool ShouldCurrentGCKeepAgesUnchanged() const {
return is_current_gc_forced_ || is_current_gc_for_heap_profiler_;
}
// Returns the size of objects residing in non-new spaces.
// Excludes external memory held by those objects.
V8_EXPORT_PRIVATE size_t OldGenerationSizeOfObjects() const;
// Returns the size of objects held by the EmbedderHeapTracer.
V8_EXPORT_PRIVATE size_t EmbedderSizeOfObjects() const;
// Returns the global size of objects (embedder + V8 non-new spaces).
V8_EXPORT_PRIVATE size_t GlobalSizeOfObjects() const;
// We allow incremental marking to overshoot the V8 and global allocation
// limit for performance reasons. If the overshoot is too large then we are
// more eager to finalize incremental marking.
bool AllocationLimitOvershotByLargeMargin() const;
// Return the maximum size objects can be before having to allocate them as
// large objects. This takes into account allocating in the code space for
// which the size of the allocatable space per V8 page may depend on the OS
// page size at runtime. You may use kMaxRegularHeapObjectSize as a constant
// instead if you know the allocation isn't in the code spaces.
inline V8_EXPORT_PRIVATE int MaxRegularHeapObjectSize(
AllocationType allocation);
// ===========================================================================
// Prologue/epilogue callback methods.========================================
// ===========================================================================
void AddGCPrologueCallback(v8::Isolate::GCCallbackWithData callback,
GCType gc_type_filter, void* data);
void RemoveGCPrologueCallback(v8::Isolate::GCCallbackWithData callback,
void* data);
void AddGCEpilogueCallback(v8::Isolate::GCCallbackWithData callback,
GCType gc_type_filter, void* data);
void RemoveGCEpilogueCallback(v8::Isolate::GCCallbackWithData callback,
void* data);
void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags,
GCTracer::Scope::ScopeId scope_id);
void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags,
GCTracer::Scope::ScopeId scope_id);
// ===========================================================================
// Allocation methods. =======================================================
// ===========================================================================
// Creates a filler object and returns a heap object immediately after it.
V8_EXPORT_PRIVATE Tagged<HeapObject> PrecedeWithFiller(
Tagged<HeapObject> object, int filler_size);
// Creates a filler object and returns a heap object immediately after it.
// Unlike `PrecedeWithFiller` this method will not perform slot verification
// since this would race on background threads.
V8_EXPORT_PRIVATE Tagged<HeapObject> PrecedeWithFillerBackground(
Tagged<HeapObject> object, int filler_size);
// Creates a filler object if needed for alignment and returns a heap object
// immediately after it. If any space is left after the returned object,
// another filler object is created so the over allocated memory is iterable.
V8_WARN_UNUSED_RESULT Tagged<HeapObject> AlignWithFillerBackground(
Tagged<HeapObject> object, int object_size, int allocation_size,
AllocationAlignment alignment);
// Allocate an external backing store with the given allocation callback.
// If the callback fails (indicated by a nullptr result) then this function
// will re-try the allocation after performing GCs. This is useful for
// external backing stores that may be retained by (unreachable) V8 objects
// such as ArrayBuffers, ExternalStrings, etc.
//
// The function may also proactively trigger GCs even if the allocation
// callback does not fail to keep the memory usage low.
V8_EXPORT_PRIVATE void* AllocateExternalBackingStore(
const std::function<void*(size_t)>& allocate, size_t byte_length);
// ===========================================================================
// Allocation tracking. ======================================================
// ===========================================================================
// Adds {new_space_observer} to new space and {observer} to any other space.
void AddAllocationObserversToAllSpaces(
AllocationObserver* observer, AllocationObserver* new_space_observer);
// Removes {new_space_observer} from new space and {observer} from any other
// space.
void RemoveAllocationObserversFromAllSpaces(
AllocationObserver* observer, AllocationObserver* new_space_observer);
// Check if the given object was recently allocated and its fields may appear
// as uninitialized to background threads.
// This predicate may be invoked from a background thread.
inline bool IsPendingAllocation(Tagged<HeapObject> object);
inline bool IsPendingAllocation(Tagged<Object> object);
// Notifies that all previously allocated objects are properly initialized
// and ensures that IsPendingAllocation returns false for them. This function
// may be invoked only on the main thread.
V8_EXPORT_PRIVATE void PublishPendingAllocations();
// ===========================================================================
// Heap object allocation tracking. ==========================================
// ===========================================================================
V8_EXPORT_PRIVATE void AddHeapObjectAllocationTracker(
HeapObjectAllocationTracker* tracker);
V8_EXPORT_PRIVATE void RemoveHeapObjectAllocationTracker(
HeapObjectAllocationTracker* tracker);
bool has_heap_object_allocation_tracker() const {
return !allocation_trackers_.empty();
}
// ===========================================================================
// Retaining path tracking. ==================================================
// ===========================================================================
// Adds the given object to the weak table of retaining path targets.
// On each GC if the marker discovers the object, it will print the retaining
// path. This requires --track-retaining-path flag.
void AddRetainingPathTarget(Handle<HeapObject> object,
RetainingPathOption option);
// ===========================================================================
// Stack frame support. ======================================================
// ===========================================================================
// Searches for a Code object by the given interior pointer.
V8_EXPORT_PRIVATE Tagged<Code> FindCodeForInnerPointer(Address inner_pointer);
// Use the GcSafe family of functions if called while GC is in progress.
Tagged<GcSafeCode> GcSafeFindCodeForInnerPointer(Address inner_pointer);
base::Optional<Tagged<GcSafeCode>> GcSafeTryFindCodeForInnerPointer(
Address inner_pointer);
base::Optional<Tagged<InstructionStream>>
GcSafeTryFindInstructionStreamForInnerPointer(Address inner_pointer);
// Only intended for use from the `jco` gdb macro.
base::Optional<Tagged<Code>> TryFindCodeForInnerPointerForPrinting(
Address inner_pointer);
// Returns true if {addr} is contained within {instruction_stream} and false
// otherwise. Mostly useful for debugging.
bool GcSafeInstructionStreamContains(
Tagged<InstructionStream> instruction_stream, Address addr);
// ===========================================================================
// Sweeping. =================================================================
// ===========================================================================
bool sweeping_in_progress() const { return sweeper_->sweeping_in_progress(); }
bool sweeping_in_progress_for_space(AllocationSpace space) const {
return sweeper_->sweeping_in_progress_for_space(space);
}
bool minor_sweeping_in_progress() const {
return sweeper_->minor_sweeping_in_progress();
}
bool major_sweeping_in_progress() const {
return sweeper_->major_sweeping_in_progress();
}
void FinishSweepingIfOutOfWork();
enum class SweepingForcedFinalizationMode { kUnifiedHeap, kV8Only };
// Ensures that sweeping is finished.
//
// Note: Can only be called safely from main thread.
V8_EXPORT_PRIVATE void EnsureSweepingCompleted(
SweepingForcedFinalizationMode mode);
void EnsureYoungSweepingCompleted();
void DrainSweepingWorklistForSpace(AllocationSpace space);
// =============================================================================
#ifdef V8_ENABLE_ALLOCATION_TIMEOUT
void V8_EXPORT_PRIVATE set_allocation_timeout(int allocation_timeout);
#endif // V8_ENABLE_ALLOCATION_TIMEOUT
#ifdef DEBUG
void VerifyCountersAfterSweeping();
void VerifyCountersBeforeConcurrentSweeping(GarbageCollector collector);
void VerifyCommittedPhysicalMemory();
void Print();
void PrintHandles();
// Report code statistics.
void ReportCodeStatistics(const char* title);
#endif // DEBUG
void* GetRandomMmapAddr() {
void* result = v8::internal::GetRandomMmapAddr();
#if V8_TARGET_ARCH_X64
#if V8_OS_DARWIN
// The Darwin kernel [as of macOS 10.12.5] does not clean up page
// directory entries [PDE] created from mmap or mach_vm_allocate, even
// after the region is destroyed. Using a virtual address space that is
// too large causes a leak of about 1 wired [can never be paged out] page
// per call to mmap(). The page is only reclaimed when the process is
// killed. Confine the hint to a 32-bit section of the virtual address
// space. See crbug.com/700928.
uintptr_t offset = reinterpret_cast<uintptr_t>(result) & kMmapRegionMask;
result = reinterpret_cast<void*>(mmap_region_base_ + offset);
#endif // V8_OS_DARWIN
#endif // V8_TARGET_ARCH_X64
return result;
}
// Calculates the nof entries for the full sized number to string cache.
inline int MaxNumberToStringCacheSize() const;
static Isolate* GetIsolateFromWritableObject(Tagged<HeapObject> object);
// Ensure that we have swept all spaces in such a way that we can iterate
// over all objects.
V8_EXPORT_PRIVATE void MakeHeapIterable();
// Free all LABs in the heap.
V8_EXPORT_PRIVATE void FreeLinearAllocationAreas();
V8_EXPORT_PRIVATE bool CanPromoteYoungAndExpandOldGeneration(
size_t size) const;
V8_EXPORT_PRIVATE bool CanExpandOldGeneration(size_t size) const;
// Checks whether OldGenerationCapacity() can be expanded by `size` bytes and
// still fits into `max_old_generation_size_`.
V8_EXPORT_PRIVATE bool IsOldGenerationExpansionAllowed(
size_t size, const base::MutexGuard& expansion_mutex_witness) const;
bool ShouldReduceMemory() const {
return current_gc_flags_ & GCFlag::kReduceMemoryFootprint;
}
MarkingState* marking_state() { return &marking_state_; }
NonAtomicMarkingState* non_atomic_marking_state() {
return &non_atomic_marking_state_;
}
PretenuringHandler* pretenuring_handler() { return &pretenuring_handler_; }
bool IsInlineAllocationEnabled() const { return inline_allocation_enabled_; }
// Returns the amount of external memory registered since last global gc.
V8_EXPORT_PRIVATE uint64_t AllocatedExternalMemorySinceMarkCompact() const;
std::shared_ptr<v8::TaskRunner> GetForegroundTaskRunner() const;
bool ShouldUseBackgroundThreads() const;
private:
class AllocationTrackerForDebugging;
using ExternalStringTableUpdaterCallback =
Tagged<String> (*)(Heap* heap, FullObjectSlot pointer);
// External strings table is a place where all external strings are
// registered. We need to keep track of such strings to properly
// finalize them.
class ExternalStringTable {
public:
explicit ExternalStringTable(Heap* heap) : heap_(heap) {}
ExternalStringTable(const ExternalStringTable&) = delete;
ExternalStringTable& operator=(const ExternalStringTable&) = delete;
// Registers an external string.
inline void AddString(Tagged<String> string);
bool Contains(Tagged<String> string);
void IterateAll(RootVisitor* v);
void IterateYoung(RootVisitor* v);
void PromoteYoung();
// Restores internal invariant and gets rid of collected strings. Must be
// called after each Iterate*() that modified the strings.
void CleanUpAll();
void CleanUpYoung();
// Finalize all registered external strings and clear tables.
void TearDown();
void UpdateYoungReferences(
Heap::ExternalStringTableUpdaterCallback updater_func);
void UpdateReferences(
Heap::ExternalStringTableUpdaterCallback updater_func);
bool HasYoung() const { return !young_strings_.empty(); }
private:
void Verify();
void VerifyYoung();
Heap* const heap_;
// To speed up scavenge collections young string are kept separate from old
// strings.
std::vector<TaggedBase> young_strings_;
std::vector<TaggedBase> old_strings_;
// Used to protect access with --shared-string-table.
base::Mutex mutex_;
};
static const int kInitialEvalCacheSize = 64;
static const int kInitialNumberStringCacheSize = 256;
static const int kRememberedUnmappedPages = 128;
static const int kYoungSurvivalRateHighThreshold = 90;
static const int kYoungSurvivalRateAllowedDeviation = 15;
static const int kOldSurvivalRateLowThreshold = 10;
static const int kMaxMarkCompactsInIdleRound = 7;
Heap();
~Heap();
Heap(const Heap&) = delete;
Heap& operator=(const Heap&) = delete;
static bool IsRegularObjectAllocation(AllocationType allocation) {
return AllocationType::kYoung == allocation ||
AllocationType::kOld == allocation;
}
#define ROOT_ACCESSOR(type, name, CamelName) \
inline void set_##name(Tagged<type> value);
ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR
int NumberOfScavengeTasks();
// Checks whether a global GC is necessary
GarbageCollector SelectGarbageCollector(AllocationSpace space,
GarbageCollectionReason gc_reason,
const char** reason) const;
// Frees all LABs owned by the main thread.
void FreeMainThreadLinearAllocationAreas();
// Free all shared LABs.
void FreeSharedLinearAllocationAreas();
// Makes all shared LABs iterable.
void MakeSharedLinearAllocationAreasIterable();
// Free all shared LABs of main thread.
void FreeMainThreadSharedLinearAllocationAreas();
// Enables/Disables black allocation in shared LABs.
void MarkSharedLinearAllocationAreasBlack();
void UnmarkSharedLinearAllocationAreas();
// Performs garbage collection in a safepoint.
void PerformGarbageCollection(GarbageCollector collector,
GarbageCollectionReason gc_reason,
const char* collector_reason);
void PerformHeapVerification();
std::vector<Isolate*> PauseConcurrentThreadsInClients(
GarbageCollector collector);
void ResumeConcurrentThreadsInClients(std::vector<Isolate*> paused_clients);
// For static-roots builds, pads the object to the required size.
void StaticRootsEnsureAllocatedSize(Handle<HeapObject> obj, int required);
bool CreateEarlyReadOnlyMaps();
bool CreateImportantReadOnlyObjects();
bool CreateLateReadOnlyNonJSReceiverMaps();
bool CreateLateReadOnlyJSReceiverMaps();
bool CreateReadOnlyObjects();
void CreateInternalAccessorInfoObjects();
void CreateInitialMutableObjects();
enum class VerifyNoSlotsRecorded { kYes, kNo };
// Creates a filler object in the specified memory area. This method is the
// internal method used by all CreateFillerObjectAtXXX-methods.
void CreateFillerObjectAtRaw(Address addr, int size,
ClearFreedMemoryMode clear_memory_mode,
ClearRecordedSlots clear_slots_mode,
VerifyNoSlotsRecorded verify_no_slots_recorded);
// Range write barrier implementation.
template <int kModeMask, typename TSlot>
V8_INLINE void WriteBarrierForRangeImpl(MemoryChunk* source_page,
Tagged<HeapObject> object,
TSlot start_slot, TSlot end_slot);
// Deopts all code that contains allocation instruction which are tenured or
// not tenured. Moreover it clears the pretenuring allocation site statistics.
void ResetAllAllocationSitesDependentCode(AllocationType allocation);
// Evaluates local pretenuring for the old space and calls
// ResetAllTenuredAllocationSitesDependentCode if too many objects died in
// the old space.
void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc);
// Record statistics after garbage collection.
void ReportStatisticsAfterGC();
// Flush the number to string cache.
void FlushNumberStringCache();
void ActivateMemoryReducerIfNeededOnMainThread();
void ShrinkOldGenerationAllocationLimitIfNotConfigured();
double ComputeMutatorUtilization(const char* tag, double mutator_speed,
double gc_speed);
bool HasLowYoungGenerationAllocationRate();
bool HasLowOldGenerationAllocationRate();
bool HasLowEmbedderAllocationRate();
enum class ResizeNewSpaceMode { kShrink, kGrow, kNone };
ResizeNewSpaceMode ShouldResizeNewSpace();
void ExpandNewSpaceSize();
void ReduceNewSpaceSize();
GCIdleTimeHeapState ComputeHeapState();
bool PerformIdleTimeAction(GCIdleTimeAction action,
GCIdleTimeHeapState heap_state,
double deadline_in_ms);
void IdleNotificationEpilogue(GCIdleTimeAction action,
GCIdleTimeHeapState heap_state, double start_ms,
double deadline_in_ms);
void PrintMaxMarkingLimitReached();
void PrintMaxNewSpaceSizeReached();
int NextStressMarkingLimit();
void AddToRingBuffer(const char* string);
void GetFromRingBuffer(char* buffer);
void CompactRetainedMaps(Tagged<WeakArrayList> retained_maps);
void CollectGarbageOnMemoryPressure();
void EagerlyFreeExternalMemory();
bool InvokeNearHeapLimitCallback();
void InvokeIncrementalMarkingPrologueCallbacks();
void InvokeIncrementalMarkingEpilogueCallbacks();
// Casts a heap object to an InstructionStream, DCHECKs that the
// inner_pointer is within the object, and returns the attached Code object.
Tagged<GcSafeCode> GcSafeGetCodeFromInstructionStream(
Tagged<HeapObject> instruction_stream, Address inner_pointer);
// Returns the map of a HeapObject. Can be used during garbage collection,
// i.e. it supports a forwarded map.
Tagged<Map> GcSafeMapOfHeapObject(Tagged<HeapObject> object);
// ===========================================================================
// Actual GC. ================================================================
// ===========================================================================
// Code that should be run before and after each GC. Includes
// some reporting/verification activities when compiled with DEBUG set.
void GarbageCollectionPrologue(GarbageCollectionReason gc_reason,
const v8::GCCallbackFlags gc_callback_flags);
void GarbageCollectionPrologueInSafepoint();
void GarbageCollectionEpilogue(GarbageCollector collector);
void GarbageCollectionEpilogueInSafepoint(GarbageCollector collector);
// Performs a major collection in the whole heap.
void MarkCompact();
// Performs a minor collection of just the young generation.
void MinorMarkSweep();
// Code to be run before and after mark-compact.
void MarkCompactPrologue();
void MarkCompactEpilogue();
// Performs a minor collection in new generation.
void Scavenge();
void UpdateYoungReferencesInExternalStringTable(
ExternalStringTableUpdaterCallback updater_func);
void UpdateReferencesInExternalStringTable(
ExternalStringTableUpdaterCallback updater_func);
void ProcessAllWeakReferences(WeakObjectRetainer* retainer);
void ProcessNativeContexts(WeakObjectRetainer* retainer);
void ProcessAllocationSites(WeakObjectRetainer* retainer);
void ProcessDirtyJSFinalizationRegistries(WeakObjectRetainer* retainer);
void ProcessWeakListRoots(WeakObjectRetainer* retainer);
// ===========================================================================
// GC statistics. ============================================================
// ===========================================================================
inline size_t OldGenerationSpaceAvailable() {
uint64_t bytes = OldGenerationSizeOfObjects() +
AllocatedExternalMemorySinceMarkCompact();
if (old_generation_allocation_limit() <= bytes) return 0;
return old_generation_allocation_limit() - static_cast<size_t>(bytes);
}
void UpdateTotalGCTime(base::TimeDelta duration);
bool IsIneffectiveMarkCompact(size_t old_generation_size,
double mutator_utilization);
void CheckIneffectiveMarkCompact(size_t old_generation_size,
double mutator_utilization);
inline void IncrementExternalBackingStoreBytes(ExternalBackingStoreType type,
size_t amount);
inline void DecrementExternalBackingStoreBytes(ExternalBackingStoreType type,
size_t amount);
// ===========================================================================
// Growing strategy. =========================================================
// ===========================================================================
MemoryReducer* memory_reducer() { return memory_reducer_.get(); }
// For some webpages RAIL mode does not switch from PERFORMANCE_LOAD.
// This constant limits the effect of load RAIL mode on GC.
// The value is arbitrary and chosen as the largest load time observed in
// v8 browsing benchmarks.
static const int kMaxLoadTimeMs = 7000;
V8_EXPORT_PRIVATE bool ShouldOptimizeForLoadTime();
size_t old_generation_allocation_limit() const {
return old_generation_allocation_limit_.load(std::memory_order_relaxed);
}
size_t global_allocation_limit() const { return global_allocation_limit_; }
size_t max_old_generation_size() const {
return max_old_generation_size_.load(std::memory_order_relaxed);
}
size_t min_old_generation_size() const { return min_old_generation_size_; }
// Sets max_old_generation_size_ and computes the new global heap limit from
// it.
void SetOldGenerationAndGlobalMaximumSize(size_t max_old_generation_size);
// Sets allocation limits for both old generation and the global heap.
void SetOldGenerationAndGlobalAllocationLimit(
size_t new_old_generation_allocation_limit,
size_t new_global_allocation_limit);
void ResetOldGenerationAndGlobalAllocationLimit();
bool always_allocate() { return always_allocate_scope_count_ != 0; }
bool ShouldExpandOldGenerationOnSlowAllocation(LocalHeap* local_heap,
AllocationOrigin origin);
bool IsRetryOfFailedAllocation(LocalHeap* local_heap);
bool IsMainThreadParked(LocalHeap* local_heap);
bool IsMajorMarkingComplete(LocalHeap* local_heap);
HeapGrowingMode CurrentHeapGrowingMode();
double PercentToOldGenerationLimit();
double PercentToGlobalMemoryLimit();
enum class IncrementalMarkingLimit {
kNoLimit,
kSoftLimit,
kHardLimit,
kFallbackForEmbedderLimit
};
IncrementalMarkingLimit IncrementalMarkingLimitReached();
bool ShouldStressCompaction() const;
base::Optional<size_t> GlobalMemoryAvailable();
void RecomputeLimits(GarbageCollector collector, base::TimeTicks time);
// ===========================================================================
// GC Tasks. =================================================================
// ===========================================================================
void ScheduleMinorGCTaskIfNeeded();
V8_EXPORT_PRIVATE void StartMinorMSIncrementalMarkingIfNeeded();
bool MinorMSSizeTaskTriggerReached() const;
MinorGCJob* minor_gc_job() { return minor_gc_job_.get(); }
// ===========================================================================
// Allocation methods. =======================================================
// ===========================================================================
HeapAllocator* allocator() { return &heap_allocator_; }
// Allocates a JS Map in the heap.
V8_WARN_UNUSED_RESULT AllocationResult
AllocateMap(AllocationType allocation_type, InstanceType instance_type,
int instance_size,
ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
int inobject_properties = 0);
// Allocate an uninitialized object. The memory is non-executable if the
// hardware and OS allow. This is the single choke-point for allocations
// performed by the runtime and should not be bypassed (to extend this to
// inlined allocations, use the Heap::DisableInlineAllocation() support).
V8_WARN_UNUSED_RESULT V8_INLINE AllocationResult
AllocateRaw(int size_in_bytes, AllocationType allocation,
AllocationOrigin origin = AllocationOrigin::kRuntime,
AllocationAlignment alignment = kTaggedAligned);
// This method will try to allocate objects quickly (AllocationType::kYoung)
// otherwise it falls back to a slower path indicated by the mode.
enum AllocationRetryMode { kLightRetry, kRetryOrFail };
template <AllocationRetryMode mode>
V8_WARN_UNUSED_RESULT V8_INLINE Tagged<HeapObject> AllocateRawWith(
int size, AllocationType allocation,
AllocationOrigin origin = AllocationOrigin::kRuntime,
AllocationAlignment alignment = kTaggedAligned);
// Call AllocateRawWith with kRetryOrFail. Matches the method in LocalHeap.
V8_WARN_UNUSED_RESULT inline Address AllocateRawOrFail(
int size, AllocationType allocation,
AllocationOrigin origin = AllocationOrigin::kRuntime,
AllocationAlignment alignment = kTaggedAligned);
// Allocates a heap object based on the map.
V8_WARN_UNUSED_RESULT AllocationResult Allocate(Handle<Map> map,
AllocationType allocation);
// Allocates a partial map for bootstrapping.
V8_WARN_UNUSED_RESULT AllocationResult
AllocatePartialMap(InstanceType instance_type, int instance_size);
void FinalizePartialMap(Tagged<Map> map);
void set_force_oom(bool value) { force_oom_ = value; }
void set_force_gc_on_next_allocation() {
force_gc_on_next_allocation_ = true;
}
// Helper for IsPendingAllocation.
inline bool IsPendingAllocationInternal(Tagged<HeapObject> object);
// ===========================================================================
// Retaining path tracing ====================================================
// ===========================================================================
void AddRetainer(Tagged<HeapObject> retainer, Tagged<HeapObject> object);
void AddEphemeronRetainer(Tagged<HeapObject> retainer,
Tagged<HeapObject> object);
void AddRetainingRoot(Root root, Tagged<HeapObject> object);
// Returns true if the given object is a target of retaining path tracking.
// Stores the option corresponding to the object in the provided *option.
bool IsRetainingPathTarget(Tagged<HeapObject> object,
RetainingPathOption* option);
void PrintRetainingPath(Tagged<HeapObject> object,
RetainingPathOption option);
void UpdateRetainersAfterScavenge();
#ifdef DEBUG
V8_EXPORT_PRIVATE void IncrementObjectCounters();
#endif // DEBUG
std::vector<Handle<NativeContext>> FindAllNativeContexts();
std::vector<Tagged<WeakArrayList>> FindAllRetainedMaps();
MemoryMeasurement* memory_measurement() { return memory_measurement_.get(); }
AllocationType allocation_type_for_in_place_internalizable_strings() const {
return allocation_type_for_in_place_internalizable_strings_;
}
bool IsStressingScavenge();
void SetIsMarkingFlag(bool value);
void SetIsMinorMarkingFlag(bool value);
ExternalMemoryAccounting external_memory_;
// This can be calculated directly from a pointer to the heap; however, it is
// more expedient to get at the isolate directly from within Heap methods.
Isolate* isolate_ = nullptr;
HeapAllocator heap_allocator_;
// These limits are initialized in Heap::ConfigureHeap based on the resource
// constraints and flags.
size_t code_range_size_ = 0;
size_t max_semi_space_size_ = 0;
size_t initial_semispace_size_ = 0;
// Full garbage collections can be skipped if the old generation size
// is below this threshold.
size_t min_old_generation_size_ = 0;
// If the old generation size exceeds this limit, then V8 will
// crash with out-of-memory error.
std::atomic<size_t> max_old_generation_size_{0};
// TODO(mlippautz): Clarify whether this should take some embedder
// configurable limit into account.
size_t min_global_memory_size_ = 0;
size_t max_global_memory_size_ = 0;
size_t initial_max_old_generation_size_ = 0;
size_t initial_max_old_generation_size_threshold_ = 0;
size_t initial_old_generation_size_ = 0;
// Before the first full GC the old generation allocation limit is considered
// to be *not* configured (unless initial limits were provided by the
// embedder). In this mode V8 starts with a very large old generation
// allocation limit initially. Minor GCs may then shrink this initial limit
// down until the first full GC computes a proper old generation allocation
// limit in Heap::RecomputeLimits. The old generation allocation limit is then
// considered to be configured for all subsequent GCs. After the first full GC
// this field is only ever reset for top context disposals.
bool old_generation_allocation_limit_configured_ = false;
size_t maximum_committed_ = 0;
size_t old_generation_capacity_after_bootstrap_ = 0;
// Backing store bytes (array buffers and external strings).
// Use uint64_t counter since the counter could overflow the 32-bit range
// temporarily on 32-bit.
std::atomic<uint64_t> backing_store_bytes_{0};
// For keeping track of how much data has survived
// scavenge since last new space expansion.
size_t survived_since_last_expansion_ = 0;
// This is not the depth of nested AlwaysAllocateScope's but rather a single
// count, as scopes can be acquired from multiple tasks (read: threads).
std::atomic<size_t> always_allocate_scope_count_{0};
// Stores the memory pressure level that set by MemoryPressureNotification
// and reset by a mark-compact garbage collection.
std::atomic<v8::MemoryPressureLevel> memory_pressure_level_;
std::vector<std::pair<v8::NearHeapLimitCallback, void*>>
near_heap_limit_callbacks_;
// For keeping track of context disposals.
int contexts_disposed_ = 0;
// Spaces owned by this heap through space_.
NewSpace* new_space_ = nullptr;
OldSpace* old_space_ = nullptr;
CodeSpace* code_space_ = nullptr;
SharedSpace* shared_space_ = nullptr;
OldLargeObjectSpace* lo_space_ = nullptr;
CodeLargeObjectSpace* code_lo_space_ = nullptr;
NewLargeObjectSpace* new_lo_space_ = nullptr;
SharedLargeObjectSpace* shared_lo_space_ = nullptr;
ReadOnlySpace* read_only_space_ = nullptr;
TrustedSpace* trusted_space_ = nullptr;
TrustedLargeObjectSpace* trusted_lo_space_ = nullptr;
// Either pointer to owned shared spaces or pointer to unowned shared spaces
// in another isolate.
PagedSpace* shared_allocation_space_ = nullptr;
OldLargeObjectSpace* shared_lo_allocation_space_ = nullptr;
// Allocators for the shared spaces.
std::unique_ptr<ConcurrentAllocator> shared_space_allocator_;
// Map from the space id to the space.
std::unique_ptr<Space> space_[LAST_SPACE + 1];
#ifdef V8_COMPRESS_POINTERS
// The space in the ExternalPointerTable containing entries owned by objects
// in this heap.
ExternalPointerTable::Space external_pointer_space_;
// Likewise but for slots in host objects in ReadOnlySpace.
ExternalPointerTable::Space read_only_external_pointer_space_;
// Likewise but for the indirect pointer table.
IndirectPointerTable::Space indirect_pointer_space_;
#endif // V8_COMPRESS_POINTERS
#ifdef V8_ENABLE_SANDBOX
// The space in the process-wide code pointer table managed by this heap.
CodePointerTable::Space code_pointer_space_;
#endif // V8_ENABLE_SANDBOX
LocalHeap* main_thread_local_heap_ = nullptr;
// Determines whether code space is write-protected. This is essentially a
// race-free copy of the {v8_flags.write_protect_code_memory} flag.
bool write_protect_code_memory_ = false;
std::atomic<HeapState> gc_state_{NOT_IN_GC};
// Starts marking when stress_marking_percentage_% of the marking start limit
// is reached.
int stress_marking_percentage_ = 0;
// Observer that can cause early scavenge start.
StressScavengeObserver* stress_scavenge_observer_ = nullptr;
// The maximum percent of the marking limit reached without causing marking.
// This is tracked when specifying --fuzzer-gc-analysis.
double max_marking_limit_reached_ = 0.0;
// How many mark-sweep collections happened.
unsigned int ms_count_ = 0;
// How many gc happened.
unsigned int gc_count_ = 0;
// The number of Mark-Compact garbage collections that are considered as
// ineffective. See IsIneffectiveMarkCompact() predicate.
int consecutive_ineffective_mark_compacts_ = 0;
static const uintptr_t kMmapRegionMask = 0xFFFFFFFFu;
uintptr_t mmap_region_base_ = 0;
// For post mortem debugging.
int remembered_unmapped_pages_index_ = 0;
Address remembered_unmapped_pages_[kRememberedUnmappedPages];
// Limit that triggers a global GC on the next (normally caused) GC. This
// is checked when we have already decided to do a GC to help determine
// which collector to invoke, before expanding a paged space in the old
// generation and on every allocation in large object space.
std::atomic<size_t> old_generation_allocation_limit_{0};
size_t global_allocation_limit_ = 0;
// Weak list heads, threaded through the objects.
// List heads are initialized lazily and contain the undefined_value at start.
// {native_contexts_list_} is an Address instead of an Object to allow the use
// of atomic accessors.
std::atomic<Address> native_contexts_list_;
Tagged<Object> allocation_sites_list_ = Smi::zero();
Tagged<Object> dirty_js_finalization_registries_list_ = Smi::zero();
// Weak list tails.
Tagged<Object> dirty_js_finalization_registries_list_tail_ = Smi::zero();
GCCallbacks gc_prologue_callbacks_;
GCCallbacks gc_epilogue_callbacks_;
GetExternallyAllocatedMemoryInBytesCallback external_memory_callback_;
int deferred_counters_[v8::Isolate::kUseCounterFeatureCount];
size_t promoted_objects_size_ = 0;
double promotion_ratio_ = 0.0;
double promotion_rate_ = 0.0;
size_t new_space_surviving_object_size_ = 0;
size_t previous_new_space_surviving_object_size_ = 0;
double new_space_surviving_rate_ = 0.0;
int nodes_died_in_new_space_ = 0;
int nodes_copied_in_new_space_ = 0;
int nodes_promoted_ = 0;
// Total time spent in GC.
base::TimeDelta total_gc_time_ms_;
// Last time a garbage collection happened.
double last_gc_time_ = 0.0;
std::unique_ptr<GCTracer> tracer_;
std::unique_ptr<Sweeper> sweeper_;
std::unique_ptr<MarkCompactCollector> mark_compact_collector_;
std::unique_ptr<MinorMarkSweepCollector> minor_mark_sweep_collector_;
std::unique_ptr<ScavengerCollector> scavenger_collector_;
std::unique_ptr<ArrayBufferSweeper> array_buffer_sweeper_;
std::unique_ptr<MemoryAllocator> memory_allocator_;
std::unique_ptr<IncrementalMarking> incremental_marking_;
std::unique_ptr<ConcurrentMarking> concurrent_marking_;
std::unique_ptr<GCIdleTimeHandler> gc_idle_time_handler_;
std::unique_ptr<MemoryMeasurement> memory_measurement_;
std::unique_ptr<MemoryReducer> memory_reducer_;
std::unique_ptr<ObjectStats> live_object_stats_;
std::unique_ptr<ObjectStats> dead_object_stats_;
std::unique_ptr<MinorGCJob> minor_gc_job_;
std::unique_ptr<AllocationObserver> minor_gc_task_observer_;
std::unique_ptr<AllocationObserver> stress_concurrent_allocation_observer_;
std::unique_ptr<AllocationTrackerForDebugging>
allocation_tracker_for_debugging_;
std::unique_ptr<EphemeronRememberedSet> ephemeron_remembered_set_;
std::shared_ptr<v8::TaskRunner> task_runner_;
// This object controls virtual space reserved for code on the V8 heap. This
// is only valid for 64-bit architectures where kRequiresCodeRange.
//
// Owned by the heap when !V8_COMPRESS_POINTERS_IN_SHARED_CAGE, otherwise is
// process-wide.
#if V8_COMPRESS_POINTERS_IN_SHARED_CAGE
CodeRange* code_range_ = nullptr;
#else
std::unique_ptr<CodeRange> code_range_;
#endif
v8::CppHeap* cpp_heap_ = nullptr; // Owned by the embedder.
EmbedderRootsHandler* embedder_roots_handler_ =
nullptr; // Owned by the embedder.
cppgc::EmbedderStackState embedder_stack_state_ =
cppgc::EmbedderStackState::kMayContainHeapPointers;
StrongRootsEntry* strong_roots_head_ = nullptr;
base::Mutex strong_roots_mutex_;
base::Mutex heap_expansion_mutex_;
bool need_to_remove_stress_concurrent_allocation_observer_ = false;
// This counter is increased before each GC and never reset.
// To account for the bytes allocated since the last GC, use the
// NewSpaceAllocationCounter() function.
size_t new_space_allocation_counter_ = 0;
// This counter is increased before each GC and never reset. To
// account for the bytes allocated since the last GC, use the
// OldGenerationAllocationCounter() function.
size_t old_generation_allocation_counter_at_last_gc_ = 0;
// The size of objects in old generation after the last MarkCompact GC.
size_t old_generation_size_at_last_gc_{0};
// The size of global memory after the last MarkCompact GC.
size_t global_memory_at_last_gc_ = 0;
char trace_ring_buffer_[kTraceRingBufferSize];
// If it's not full then the data is from 0 to ring_buffer_end_. If it's
// full then the data is from ring_buffer_end_ to the end of the buffer and
// from 0 to ring_buffer_end_.
bool ring_buffer_full_ = false;
size_t ring_buffer_end_ = 0;
// Flag is set when the heap has been configured. The heap can be repeatedly
// configured through the API until it is set up.
bool configured_ = false;
// Currently set GC flags that are respected by all GC components.
GCFlags current_gc_flags_ = GCFlag::kNoFlags;
// Currently set GC callback flags that are used to pass information between
// the embedder and V8's GC.
GCCallbackFlags current_gc_callback_flags_ =
GCCallbackFlags::kNoGCCallbackFlags;
std::unique_ptr<IsolateSafepoint> safepoint_;
bool is_current_gc_forced_ = false;
bool is_current_gc_for_heap_profiler_ = false;
GarbageCollector current_or_last_garbage_collector_ =
GarbageCollector::SCAVENGER;
ExternalStringTable external_string_table_;
const AllocationType allocation_type_for_in_place_internalizable_strings_;
base::Mutex relocation_mutex_;
std::unique_ptr<CollectionBarrier> collection_barrier_;
int ignore_local_gc_requests_depth_ = 0;
int gc_callbacks_depth_ = 0;
bool deserialization_complete_ = false;
int max_regular_code_object_size_ = 0;
bool inline_allocation_enabled_ = true;
int pause_allocation_observers_depth_ = 0;
// Used for testing purposes.
bool force_oom_ = false;
bool force_gc_on_next_allocation_ = false;
bool delay_sweeper_tasks_for_testing_ = false;
UnorderedHeapObjectMap<Tagged<HeapObject>> retainer_;
UnorderedHeapObjectMap<Root> retaining_root_;
// If an object is retained by an ephemeron, then the retaining key of the
// ephemeron is stored in this map.
UnorderedHeapObjectMap<Tagged<HeapObject>> ephemeron_retainer_;
// For each index in the retaining_path_targets_ array this map
// stores the option of the corresponding target.
std::unordered_map<int, RetainingPathOption> retaining_path_target_option_;
std::vector<HeapObjectAllocationTracker*> allocation_trackers_;
bool is_finalization_registry_cleanup_task_posted_ = false;
std::unique_ptr<third_party_heap::Heap> tp_heap_;
MarkingState marking_state_;
NonAtomicMarkingState non_atomic_marking_state_;
PretenuringHandler pretenuring_handler_;
// This field is used only when not running with MinorMS.
ResizeNewSpaceMode resize_new_space_mode_ = ResizeNewSpaceMode::kNone;
std::unique_ptr<MemoryBalancer> mb_;
// Classes in "heap" can be friends.
friend class ActivateMemoryReducerTask;
friend class AlwaysAllocateScope;
friend class ArrayBufferCollector;
friend class ArrayBufferSweeper;
friend class ConcurrentAllocator;
friend class ConcurrentMarking;
friend class ConservativeTracedHandlesMarkingVisitor;
friend class EmbedderStackStateScope;
friend class EvacuateVisitorBase;
friend class GCCallbacksScope;
friend class GCTracer;
friend class HeapAllocator;
friend class HeapObjectIterator;
friend class HeapVerifier;
friend class IgnoreLocalGCRequests;
friend class IncrementalMarking;
friend class IncrementalMarkingRootMarkingVisitor;
friend class IncrementalMarkingJob;
friend class LargeObjectSpace;
friend class LocalHeap;
friend class MarkingBarrier;
friend class OldLargeObjectSpace;
template <typename ConcreteVisitor>
friend class MarkingVisitorBase;
friend class MarkCompactCollector;
friend class MemoryBalancer;
friend class MinorGCJob;
friend class MinorGCTaskObserver;
friend class MinorMarkSweepCollector;
friend class MinorMSIncrementalMarkingTaskObserver;
friend class NewLargeObjectSpace;
friend class NewSpace;
friend class ObjectStatsCollector;
friend class Page;
friend class PagedSpaceBase;
friend class PagedSpaceForNewSpace;
friend class PauseAllocationObserversScope;
friend class PretenuringHandler;
friend class ReadOnlyRoots;
friend class DisableConservativeStackScanningScopeForTesting;
friend class Scavenger;
friend class ScavengerCollector;
friend class ScheduleMinorGCTaskObserver;
friend class StressConcurrentAllocationObserver;
friend class Space;
friend class SpaceWithLinearArea;
friend class Sweeper;
friend class UnifiedHeapMarkingState;
friend class heap::TestMemoryAllocatorScope;
friend class third_party_heap::Heap;
friend class third_party_heap::Impl;
// The allocator interface.
friend class Factory;
friend class LocalFactory;
template <typename IsolateT>
friend class Deserializer;
// The Isolate constructs us.
friend class Isolate;
// Used in cctest.
friend class heap::HeapTester;
FRIEND_TEST(SpacesTest, InlineAllocationObserverCadence);
FRIEND_TEST(SpacesTest, AllocationObserver);
friend class HeapInternalsBase;
};
class HeapStats {
public:
static const int kStartMarker = 0xDECADE00;
static const int kEndMarker = 0xDECADE01;
intptr_t* start_marker; // 0
size_t* ro_space_size; // 1
size_t* ro_space_capacity; // 2
size_t* new_space_size; // 3
size_t* new_space_capacity; // 4
size_t* old_space_size; // 5
size_t* old_space_capacity; // 6
size_t* code_space_size; // 7
size_t* code_space_capacity; // 8
size_t* map_space_size; // 9
size_t* map_space_capacity; // 10
size_t* lo_space_size; // 11
size_t* code_lo_space_size; // 12
size_t* global_handle_count; // 13
size_t* weak_global_handle_count; // 14
size_t* pending_global_handle_count; // 15
size_t* near_death_global_handle_count; // 16
size_t* free_global_handle_count; // 17
size_t* memory_allocator_size; // 18
size_t* memory_allocator_capacity; // 19
size_t* malloced_memory; // 20
size_t* malloced_peak_memory; // 21
size_t* objects_per_type; // 22
size_t* size_per_type; // 23
int* os_error; // 24
char* last_few_messages; // 25
char* js_stacktrace; // 26
intptr_t* end_marker; // 27
};
// Disables GC for all allocations. It should not be used
// outside heap, deserializer, and isolate bootstrap.
// Use AlwaysAllocateScopeForTesting in tests.
class V8_NODISCARD AlwaysAllocateScope {
public:
inline ~AlwaysAllocateScope();
private:
friend class AlwaysAllocateScopeForTesting;
friend class Evacuator;
friend class Heap;
friend class HeapAllocator;
friend class Isolate;
// TODO(1445003): Remove this after investigating the crash.
friend class GlobalBackingStoreRegistry;
explicit inline AlwaysAllocateScope(Heap* heap);
Heap* heap_;
};
class V8_NODISCARD GCCallbacksScope final {
public:
explicit GCCallbacksScope(Heap* heap);
~GCCallbacksScope();
bool CheckReenter() const;
private:
Heap* const heap_;
};
class V8_NODISCARD AlwaysAllocateScopeForTesting {
public:
explicit inline AlwaysAllocateScopeForTesting(Heap* heap);
private:
AlwaysAllocateScope scope_;
};
// The CodePageHeaderModificationScope enables write access to Code
// space page headers. On most of the configurations it's a no-op because
// Code space page headers are configured as writable and
// permissions are never changed. However, on MacOS on ARM64 ("Apple M1"/Apple
// Silicon) the situation is different. In order to be able to use fast W^X
// permissions switching machinery (APRR/MAP_JIT) it's necessary to configure
// executable memory as readable writable executable (RWX). Also, on MacOS on
// ARM64 reconfiguration of RWX page permissions to anything else is prohibited.
// So, in order to be able to allocate large code pages over freed regular
// code pages and vice versa we have to allocate Code page headers
// as RWX too and switch them to writable mode when it's necessary to modify the
// code page header. The scope can be used from any thread and affects only
// current thread, see RwxMemoryWriteScope for details about semantics of the
// scope.
#if V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT
using CodePageHeaderModificationScope = RwxMemoryWriteScope;
#else
// When write protection of code page headers is not required the scope is
// a no-op.
using CodePageHeaderModificationScope = NopRwxMemoryWriteScope;
#endif // V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT
// The CodePageMemoryModificationScope does not check if transitions to
// writeable and back to executable are actually allowed, i.e. the MemoryChunk
// was registered to be executable. It can be used by concurrent threads.
class V8_NODISCARD CodePageMemoryModificationScope {
public:
explicit inline CodePageMemoryModificationScope(BasicMemoryChunk* chunk);
explicit inline CodePageMemoryModificationScope(
Tagged<InstructionStream> object);
inline ~CodePageMemoryModificationScope();
private:
#if V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT || V8_HEAP_USE_PKU_JIT_WRITE_PROTECT
base::Optional<RwxMemoryWriteScope> rwx_write_scope_;
#else
BasicMemoryChunk* chunk_;
bool scope_active_;
base::Optional<base::MutexGuard> guard_;
#endif
// Disallow any GCs inside this scope, as a relocation of the underlying
// object would change the {MemoryChunk} that this scope targets.
DISALLOW_GARBAGE_COLLECTION(no_heap_allocation_)
};
class CodePageMemoryModificationScopeForDebugging {
public:
// When we zap newly allocated MemoryChunks, the chunk is not initialized yet
// and we can't use the regular CodePageMemoryModificationScope since it will
// access the page header. Hence, use the VirtualMemory for tracking instead.
explicit CodePageMemoryModificationScopeForDebugging(
Heap* heap, VirtualMemory* reservation, base::AddressRegion region);
explicit CodePageMemoryModificationScopeForDebugging(BasicMemoryChunk* chunk);
~CodePageMemoryModificationScopeForDebugging();
private:
#if V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT || V8_HEAP_USE_PKU_JIT_WRITE_PROTECT
RwxMemoryWriteScope rwx_write_scope_;
#else
VirtualMemory* reservation_ = nullptr;
base::Optional<base::AddressRegion> region_;
base::Optional<CodePageMemoryModificationScope> memory_modification_scope_;
#endif
};
class V8_NODISCARD IgnoreLocalGCRequests {
public:
explicit inline IgnoreLocalGCRequests(Heap* heap);
inline ~IgnoreLocalGCRequests();
private:
Heap* heap_;
};
// Space iterator for iterating over all the paged spaces of the heap: Map
// space, old space and code space. Returns each space in turn, and null when it
// is done.
class V8_EXPORT_PRIVATE PagedSpaceIterator {
public:
explicit PagedSpaceIterator(const Heap* heap)
: heap_(heap), counter_(FIRST_GROWABLE_PAGED_SPACE) {}
PagedSpace* Next();
private:
const Heap* const heap_;
int counter_;
};
// A HeapObjectIterator provides iteration over the entire non-read-only heap.
// It aggregates the specific iterators for the different spaces as these can
// only iterate over one space only.
//
// HeapObjectIterator ensures there is no allocation during its lifetime (using
// an embedded DisallowGarbageCollection instance).
//
// HeapObjectIterator can skip free list nodes (that is, de-allocated heap
// objects that still remain in the heap).
//
// See ReadOnlyHeapObjectIterator if you need to iterate over read-only space
// objects, or CombinedHeapObjectIterator if you need to iterate over both
// heaps.
class V8_EXPORT_PRIVATE HeapObjectIterator {
public:
enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable };
explicit HeapObjectIterator(Heap* heap,
HeapObjectsFiltering filtering = kNoFiltering);
// .. when already in a SafepointScope:
HeapObjectIterator(Heap* heap, const SafepointScope& safepoint_scope,
HeapObjectsFiltering filtering = kNoFiltering);
~HeapObjectIterator();
Tagged<HeapObject> Next();
private:
HeapObjectIterator(Heap* heap, SafepointScope* safepoint_scope_or_nullptr,
HeapObjectsFiltering filtering);
Tagged<HeapObject> NextObject();
Heap* heap_;
DISALLOW_GARBAGE_COLLECTION(no_heap_allocation_)
// The safepoint scope pointer is null if a scope already existed when the
// iterator was created (i.e. when using the constructor that passes a
// safepoint_scope reference).
std::unique_ptr<SafepointScope> safepoint_scope_; // nullable
std::unique_ptr<HeapObjectsFilter> filter_;
// Space iterator for iterating all the spaces.
SpaceIterator space_iterator_;
// Object iterator for the space currently being iterated.
std::unique_ptr<ObjectIterator> object_iterator_;
};
// Abstract base class for checking whether a weak object should be retained.
class WeakObjectRetainer {
public:
virtual ~WeakObjectRetainer() = default;
// Return whether this object should be retained. If nullptr is returned the
// object has no references. Otherwise the address of the retained object
// should be returned as in some GC situations the object has been moved.
virtual Tagged<Object> RetainAs(Tagged<Object> object) = 0;
};
// -----------------------------------------------------------------------------
// Allows observation of heap object allocations.
class HeapObjectAllocationTracker {
public:
virtual void AllocationEvent(Address addr, int size) = 0;
virtual void MoveEvent(Address from, Address to, int size) {}
virtual void UpdateObjectSizeEvent(Address addr, int size) {}
virtual ~HeapObjectAllocationTracker() = default;
};
template <typename T>
inline T ForwardingAddress(T heap_obj);
// Address block allocator compatible with standard containers which registers
// its allocated range as strong roots.
class StrongRootBlockAllocator {
public:
using pointer = Address*;
using const_pointer = const Address*;
using reference = Address&;
using const_reference = const Address&;
using value_type = Address;
using size_type = size_t;
using difference_type = ptrdiff_t;
template <class U>
struct rebind;
explicit StrongRootBlockAllocator(Heap* heap) : heap_(heap) {}
V8_EXPORT_PRIVATE Address* allocate(size_t n);
V8_EXPORT_PRIVATE void deallocate(Address* p, size_t n) noexcept;
private:
Heap* heap_;
};
// Rebinding to Address gives another StrongRootBlockAllocator.
template <>
struct StrongRootBlockAllocator::rebind<Address> {
using other = StrongRootBlockAllocator;
};
// Rebinding to something other than Address gives a std::allocator that
// is copy-constructable from StrongRootBlockAllocator.
template <class U>
struct StrongRootBlockAllocator::rebind {
class other : public std::allocator<U> {
public:
// NOLINTNEXTLINE
other(const StrongRootBlockAllocator&) {}
};
};
class V8_EXPORT_PRIVATE V8_NODISCARD EmbedderStackStateScope final {
public:
enum Origin {
kImplicitThroughTask,
kExplicitInvocation,
};
// Only used for testing where the Origin is always an explicit invocation.
static EmbedderStackStateScope ExplicitScopeForTesting(
Heap* heap, StackState stack_state);
EmbedderStackStateScope(Heap* heap, Origin origin, StackState stack_state);
~EmbedderStackStateScope();
private:
Heap* const heap_;
const StackState old_stack_state_;
};
class V8_NODISCARD DisableConservativeStackScanningScopeForTesting {
public:
explicit inline DisableConservativeStackScanningScopeForTesting(Heap* heap)
: embedder_scope_(EmbedderStackStateScope::ExplicitScopeForTesting(
heap, cppgc::EmbedderStackState::kNoHeapPointers)) {}
private:
EmbedderStackStateScope embedder_scope_;
};
class V8_NODISCARD CppClassNamesAsHeapObjectNameScope final {
public:
explicit CppClassNamesAsHeapObjectNameScope(v8::CppHeap* heap);
~CppClassNamesAsHeapObjectNameScope();
private:
std::unique_ptr<cppgc::internal::ClassNameAsHeapObjectNameScope> scope_;
};
} // namespace internal
} // namespace v8
// Opt out from libc++ backing sanitization, since root iteration walks up to
// the capacity.
#ifdef _LIBCPP_HAS_ASAN_CONTAINER_ANNOTATIONS_FOR_ALL_ALLOCATORS
template <>
struct ::std::__asan_annotate_container_with_allocator<
v8::internal::StrongRootBlockAllocator> : ::std::false_type {};
#endif // _LIBCPP_HAS_ASAN_CONTAINER_ANNOTATIONS_FOR_ALL_ALLOCATORS
#endif // V8_HEAP_HEAP_H_