%PDF- %PDF-
| Direktori : /home2/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/heap/ |
| Current File : //home2/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/heap/factory.cc |
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/heap/factory.h"
#include <algorithm> // For copy
#include <memory> // For shared_ptr<>
#include <string>
#include <utility> // For move
#include "src/ast/ast-source-ranges.h"
#include "src/base/bits.h"
#include "src/builtins/accessors.h"
#include "src/builtins/constants-table-builder.h"
#include "src/codegen/compilation-cache.h"
#include "src/codegen/compiler.h"
#include "src/common/assert-scope.h"
#include "src/common/globals.h"
#include "src/diagnostics/basic-block-profiler.h"
#include "src/execution/isolate-inl.h"
#include "src/execution/protectors-inl.h"
#include "src/flags/flags.h"
#include "src/heap/basic-memory-chunk.h"
#include "src/heap/heap-allocator-inl.h"
#include "src/heap/heap-inl.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/mark-compact-inl.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/read-only-heap.h"
#include "src/ic/handler-configuration-inl.h"
#include "src/init/bootstrapper.h"
#include "src/interpreter/interpreter.h"
#include "src/logging/counters.h"
#include "src/logging/log.h"
#include "src/numbers/conversions.h"
#include "src/numbers/hash-seed-inl.h"
#include "src/objects/allocation-site-inl.h"
#include "src/objects/allocation-site-scopes.h"
#include "src/objects/api-callbacks.h"
#include "src/objects/arguments-inl.h"
#include "src/objects/bigint.h"
#include "src/objects/call-site-info-inl.h"
#include "src/objects/cell-inl.h"
#include "src/objects/debug-objects-inl.h"
#include "src/objects/embedder-data-array-inl.h"
#include "src/objects/feedback-cell-inl.h"
#include "src/objects/fixed-array-inl.h"
#include "src/objects/foreign-inl.h"
#include "src/objects/instance-type-inl.h"
#include "src/objects/instance-type.h"
#include "src/objects/js-array-buffer-inl.h"
#include "src/objects/js-array-buffer.h"
#include "src/objects/js-array-inl.h"
#include "src/objects/js-atomics-synchronization-inl.h"
#include "src/objects/js-collection-inl.h"
#include "src/objects/js-generator-inl.h"
#include "src/objects/js-objects.h"
#include "src/objects/js-regexp-inl.h"
#include "src/objects/js-shared-array-inl.h"
#include "src/objects/js-struct-inl.h"
#include "src/objects/js-weak-refs-inl.h"
#include "src/objects/literal-objects-inl.h"
#include "src/objects/megadom-handler-inl.h"
#include "src/objects/microtask-inl.h"
#include "src/objects/module-inl.h"
#include "src/objects/objects.h"
#include "src/objects/promise-inl.h"
#include "src/objects/property-descriptor-object-inl.h"
#include "src/objects/scope-info.h"
#include "src/objects/string-set-inl.h"
#include "src/objects/struct-inl.h"
#include "src/objects/synthetic-module-inl.h"
#include "src/objects/template-objects-inl.h"
#include "src/objects/transitions-inl.h"
#include "src/roots/roots.h"
#include "src/strings/unicode-inl.h"
#if V8_ENABLE_WEBASSEMBLY
#include "src/wasm/module-decoder-impl.h"
#include "src/wasm/module-instantiate.h"
#include "src/wasm/wasm-opcodes-inl.h"
#include "src/wasm/wasm-result.h"
#include "src/wasm/wasm-value.h"
#endif
#include "src/heap/local-factory-inl.h"
#include "src/heap/local-heap-inl.h"
namespace v8 {
namespace internal {
Factory::CodeBuilder::CodeBuilder(Isolate* isolate, const CodeDesc& desc,
CodeKind kind)
: isolate_(isolate),
local_isolate_(isolate_->main_thread_local_isolate()),
code_desc_(desc),
kind_(kind),
position_table_(isolate_->factory()->empty_byte_array()),
deoptimization_data_(DeoptimizationData::Empty(isolate_)) {}
Factory::CodeBuilder::CodeBuilder(LocalIsolate* local_isolate,
const CodeDesc& desc, CodeKind kind)
: isolate_(local_isolate->GetMainThreadIsolateUnsafe()),
local_isolate_(local_isolate),
code_desc_(desc),
kind_(kind),
position_table_(isolate_->factory()->empty_byte_array()),
deoptimization_data_(DeoptimizationData::Empty(isolate_)) {}
Handle<ByteArray> Factory::CodeBuilder::NewByteArray(
int length, AllocationType allocation) {
return local_isolate_->factory()->NewByteArray(length, allocation);
}
Handle<Code> Factory::CodeBuilder::NewCode(const NewCodeOptions& options) {
return local_isolate_->factory()->NewCode(options);
}
MaybeHandle<Code> Factory::CodeBuilder::BuildInternal(
bool retry_allocation_or_fail) {
Handle<ByteArray> reloc_info =
NewByteArray(code_desc_.reloc_size, AllocationType::kOld);
CodePageHeaderModificationScope memory_write_scope(
"Write barriers need to access the IStreams' page headers.");
// Basic block profiling data for builtins is stored in the JS heap rather
// than in separately-allocated C++ objects. Allocate that data now if
// appropriate.
Handle<OnHeapBasicBlockProfilerData> on_heap_profiler_data;
if (V8_UNLIKELY(profiler_data_ && isolate_->IsGeneratingEmbeddedBuiltins())) {
on_heap_profiler_data = profiler_data_->CopyToJSHeap(isolate_);
// Add the on-heap data to a global list, which keeps it alive and allows
// iteration.
Handle<ArrayList> list(isolate_->heap()->basic_block_profiling_data(),
isolate_);
Handle<ArrayList> new_list = ArrayList::Add(
isolate_, list, on_heap_profiler_data, AllocationType::kOld);
isolate_->heap()->SetBasicBlockProfilingData(new_list);
}
Tagged<HeapObject> istream_allocation =
AllocateUninitializedInstructionStream(retry_allocation_or_fail);
if (istream_allocation.is_null()) {
return {};
}
Handle<InstructionStream> istream;
{
// The InstructionStream object has not been fully initialized yet. We
// rely on the fact that no allocation will happen from this point on.
DisallowGarbageCollection no_gc;
Tagged<InstructionStream> raw_istream = InstructionStream::Initialize(
istream_allocation,
ReadOnlyRoots(local_isolate_).instruction_stream_map(),
code_desc_.body_size(), *reloc_info);
istream = handle(raw_istream, local_isolate_);
DCHECK(IsAligned(istream->instruction_start(), kCodeAlignment));
DCHECK_IMPLIES(
!V8_ENABLE_THIRD_PARTY_HEAP_BOOL &&
!local_isolate_->heap()->heap()->code_region().is_empty(),
local_isolate_->heap()->heap()->code_region().contains(
istream->address()));
}
Handle<Code> code;
{
static_assert(InstructionStream::kOnHeapBodyIsContiguous);
NewCodeOptions new_code_options = {
kind_,
builtin_,
is_turbofanned_,
stack_slots_,
code_desc_.instruction_size(),
code_desc_.metadata_size(),
inlined_bytecode_size_,
osr_offset_,
code_desc_.handler_table_offset_relative(),
code_desc_.constant_pool_offset_relative(),
code_desc_.code_comments_offset_relative(),
code_desc_.unwinding_info_offset_relative(),
/*bytecode_or_deoptimization_data=*/kind_ == CodeKind::BASELINE
? interpreter_data_
: deoptimization_data_,
/*bytecode_offsets_or_source_position_table=*/position_table_,
istream,
/*instruction_start=*/kNullAddress,
};
code = NewCode(new_code_options);
DCHECK_EQ(istream->body_size(), code->body_size());
{
DisallowGarbageCollection no_gc;
Tagged<InstructionStream> raw_istream = *istream;
// Allow self references to created code object by patching the handle to
// point to the newly allocated InstructionStream object.
Handle<Object> self_reference;
if (self_reference_.ToHandle(&self_reference)) {
DCHECK(IsOddball(*self_reference));
DCHECK_EQ(Oddball::cast(*self_reference)->kind(),
Oddball::kSelfReferenceMarker);
DCHECK_NE(kind_, CodeKind::BASELINE);
if (isolate_->IsGeneratingEmbeddedBuiltins()) {
isolate_->builtins_constants_table_builder()->PatchSelfReference(
self_reference, istream);
}
self_reference.PatchValue(raw_istream);
}
// Likewise, any references to the basic block counters marker need to be
// updated to point to the newly-allocated counters array.
if (V8_UNLIKELY(!on_heap_profiler_data.is_null())) {
isolate_->builtins_constants_table_builder()
->PatchBasicBlockCountersReference(
handle(on_heap_profiler_data->counts(), isolate_));
}
// Migrate generated code.
// The generated code can contain embedded objects (typically from
// handles) in a pointer-to-tagged-value format (i.e. with indirection
// like a handle) that are dereferenced during the copy to point
// directly to the actual heap objects. These pointers can include
// references to the code object itself, through the self_reference
// parameter.
istream->Finalize(*code, *reloc_info, code_desc_, isolate_->heap());
#ifdef VERIFY_HEAP
if (v8_flags.verify_heap) {
HeapObject::VerifyCodePointer(isolate_, raw_istream);
}
#endif
}
}
#ifdef ENABLE_DISASSEMBLER
if (V8_UNLIKELY(profiler_data_ && v8_flags.turbo_profiling_verbose)) {
std::ostringstream os;
code->Disassemble(nullptr, os, isolate_);
if (!on_heap_profiler_data.is_null()) {
Handle<String> disassembly =
local_isolate_->factory()->NewStringFromAsciiChecked(
os.str().c_str(), AllocationType::kOld);
on_heap_profiler_data->set_code(*disassembly);
} else {
profiler_data_->SetCode(os);
}
}
#endif // ENABLE_DISASSEMBLER
return code;
}
Tagged<HeapObject> Factory::CodeBuilder::AllocateUninitializedInstructionStream(
bool retry_allocation_or_fail) {
LocalHeap* heap = local_isolate_->heap();
Tagged<HeapObject> result;
const int object_size = InstructionStream::SizeFor(code_desc_.body_size());
if (retry_allocation_or_fail) {
// Only allowed to do `retry_allocation_or_fail` from the main thread.
// TODO(leszeks): Remove the retrying allocation, always use TryBuild in
// the code builder.
DCHECK(local_isolate_->is_main_thread());
result =
heap->heap()->allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
object_size, AllocationType::kCode, AllocationOrigin::kRuntime);
CHECK(!result.is_null());
return result;
} else {
// Return null if we cannot allocate the code object.
return heap->AllocateRawWith<LocalHeap::kLightRetry>(object_size,
AllocationType::kCode);
}
}
MaybeHandle<Code> Factory::CodeBuilder::TryBuild() {
return BuildInternal(false);
}
Handle<Code> Factory::CodeBuilder::Build() {
return BuildInternal(true).ToHandleChecked();
}
Tagged<HeapObject> Factory::AllocateRaw(int size, AllocationType allocation,
AllocationAlignment alignment) {
return allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
size, allocation, AllocationOrigin::kRuntime, alignment);
}
Tagged<HeapObject> Factory::AllocateRawWithAllocationSite(
Handle<Map> map, AllocationType allocation,
Handle<AllocationSite> allocation_site) {
DCHECK(map->instance_type() != MAP_TYPE);
int size = map->instance_size();
if (!allocation_site.is_null()) {
DCHECK(V8_ALLOCATION_SITE_TRACKING_BOOL);
size += ALIGN_TO_ALLOCATION_ALIGNMENT(AllocationMemento::kSize);
}
Tagged<HeapObject> result =
allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(size,
allocation);
WriteBarrierMode write_barrier_mode = allocation == AllocationType::kYoung
? SKIP_WRITE_BARRIER
: UPDATE_WRITE_BARRIER;
result->set_map_after_allocation(*map, write_barrier_mode);
if (!allocation_site.is_null()) {
int aligned_size = ALIGN_TO_ALLOCATION_ALIGNMENT(map->instance_size());
Tagged<AllocationMemento> alloc_memento =
Tagged<AllocationMemento>::unchecked_cast(
Tagged<Object>(result.ptr() + aligned_size));
InitializeAllocationMemento(alloc_memento, *allocation_site);
}
return result;
}
void Factory::InitializeAllocationMemento(
Tagged<AllocationMemento> memento, Tagged<AllocationSite> allocation_site) {
DCHECK(V8_ALLOCATION_SITE_TRACKING_BOOL);
memento->set_map_after_allocation(*allocation_memento_map(),
SKIP_WRITE_BARRIER);
memento->set_allocation_site(allocation_site, SKIP_WRITE_BARRIER);
if (v8_flags.allocation_site_pretenuring) {
allocation_site->IncrementMementoCreateCount();
}
}
Tagged<HeapObject> Factory::New(Handle<Map> map, AllocationType allocation) {
DCHECK(map->instance_type() != MAP_TYPE);
int size = map->instance_size();
Tagged<HeapObject> result =
allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(size,
allocation);
// New space objects are allocated white.
WriteBarrierMode write_barrier_mode = allocation == AllocationType::kYoung
? SKIP_WRITE_BARRIER
: UPDATE_WRITE_BARRIER;
result->set_map_after_allocation(*map, write_barrier_mode);
return result;
}
Handle<HeapObject> Factory::NewFillerObject(int size,
AllocationAlignment alignment,
AllocationType allocation,
AllocationOrigin origin) {
Heap* heap = isolate()->heap();
Tagged<HeapObject> result =
allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
size, allocation, origin, alignment);
heap->CreateFillerObjectAt(result.address(), size);
return Handle<HeapObject>(result, isolate());
}
Handle<PrototypeInfo> Factory::NewPrototypeInfo() {
auto result = NewStructInternal<PrototypeInfo>(PROTOTYPE_INFO_TYPE,
AllocationType::kOld);
DisallowGarbageCollection no_gc;
result->set_prototype_users(Smi::zero());
result->set_registry_slot(PrototypeInfo::UNREGISTERED);
result->set_bit_field(0);
result->set_module_namespace(*undefined_value(), SKIP_WRITE_BARRIER);
return handle(result, isolate());
}
Handle<EnumCache> Factory::NewEnumCache(Handle<FixedArray> keys,
Handle<FixedArray> indices,
AllocationType allocation) {
DCHECK(allocation == AllocationType::kOld ||
allocation == AllocationType::kSharedOld);
DCHECK_EQ(allocation == AllocationType::kSharedOld,
Object::InSharedHeap(*keys) && Object::InSharedHeap(*indices));
auto result = NewStructInternal<EnumCache>(ENUM_CACHE_TYPE, allocation);
DisallowGarbageCollection no_gc;
result->set_keys(*keys);
result->set_indices(*indices);
return handle(result, isolate());
}
Handle<Tuple2> Factory::NewTuple2Uninitialized(AllocationType allocation) {
auto result = NewStructInternal<Tuple2>(TUPLE2_TYPE, allocation);
return handle(result, isolate());
}
Handle<Tuple2> Factory::NewTuple2(Handle<Object> value1, Handle<Object> value2,
AllocationType allocation) {
auto result = NewStructInternal<Tuple2>(TUPLE2_TYPE, allocation);
DisallowGarbageCollection no_gc;
result->set_value1(*value1);
result->set_value2(*value2);
return handle(result, isolate());
}
Handle<Hole> Factory::NewHole() {
Handle<Hole> hole(Hole::cast(New(hole_map(), AllocationType::kReadOnly)),
isolate());
Hole::Initialize(isolate(), hole, hole_nan_value());
return hole;
}
Handle<Oddball> Factory::NewOddball(Handle<Map> map, const char* to_string,
Handle<Object> to_number,
const char* type_of, uint8_t kind) {
Handle<Oddball> oddball(Oddball::cast(New(map, AllocationType::kReadOnly)),
isolate());
Oddball::Initialize(isolate(), oddball, to_string, to_number, type_of, kind);
return oddball;
}
Handle<Oddball> Factory::NewSelfReferenceMarker() {
return NewOddball(self_reference_marker_map(), "self_reference_marker",
handle(Smi::FromInt(-1), isolate()), "undefined",
Oddball::kSelfReferenceMarker);
}
Handle<Oddball> Factory::NewBasicBlockCountersMarker() {
return NewOddball(basic_block_counters_marker_map(),
"basic_block_counters_marker",
handle(Smi::FromInt(-1), isolate()), "undefined",
Oddball::kBasicBlockCountersMarker);
}
Handle<PropertyArray> Factory::NewPropertyArray(int length,
AllocationType allocation) {
DCHECK_LE(0, length);
if (length == 0) return empty_property_array();
Tagged<HeapObject> result = AllocateRawFixedArray(length, allocation);
DisallowGarbageCollection no_gc;
result->set_map_after_allocation(*property_array_map(), SKIP_WRITE_BARRIER);
Tagged<PropertyArray> array = Tagged<PropertyArray>::cast(result);
array->initialize_length(length);
MemsetTagged(array->data_start(), read_only_roots().undefined_value(),
length);
return handle(array, isolate());
}
MaybeHandle<FixedArray> Factory::TryNewFixedArray(
int length, AllocationType allocation_type) {
DCHECK_LE(0, length);
if (length == 0) return empty_fixed_array();
int size = FixedArray::SizeFor(length);
Heap* heap = isolate()->heap();
AllocationResult allocation = heap->AllocateRaw(size, allocation_type);
Tagged<HeapObject> result;
if (!allocation.To(&result)) return MaybeHandle<FixedArray>();
if ((size > heap->MaxRegularHeapObjectSize(allocation_type)) &&
v8_flags.use_marking_progress_bar) {
LargePage::FromHeapObject(result)->ProgressBar().Enable();
}
DisallowGarbageCollection no_gc;
result->set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER);
Tagged<FixedArray> array = Tagged<FixedArray>::cast(result);
array->set_length(length);
MemsetTagged(array->data_start(), *undefined_value(), length);
return handle(array, isolate());
}
Handle<ClosureFeedbackCellArray> Factory::NewClosureFeedbackCellArray(
int length) {
if (length == 0) return empty_closure_feedback_cell_array();
Handle<ClosureFeedbackCellArray> feedback_cell_array =
Handle<ClosureFeedbackCellArray>::cast(NewFixedArrayWithMap(
read_only_roots().closure_feedback_cell_array_map_handle(), length,
AllocationType::kOld));
return feedback_cell_array;
}
Handle<FeedbackVector> Factory::NewFeedbackVector(
Handle<SharedFunctionInfo> shared,
Handle<ClosureFeedbackCellArray> closure_feedback_cell_array,
Handle<FeedbackCell> parent_feedback_cell) {
int length = shared->feedback_metadata()->slot_count();
DCHECK_LE(0, length);
int size = FeedbackVector::SizeFor(length);
Tagged<FeedbackVector> vector =
Tagged<FeedbackVector>::cast(AllocateRawWithImmortalMap(
size, AllocationType::kOld, *feedback_vector_map()));
DisallowGarbageCollection no_gc;
vector->set_shared_function_info(*shared);
vector->set_maybe_optimized_code(
HeapObjectReference::ClearedValue(isolate()));
vector->set_length(length);
vector->set_invocation_count(0);
vector->set_placeholder0(0);
vector->reset_osr_state();
vector->reset_flags();
vector->set_log_next_execution(v8_flags.log_function_events);
vector->set_closure_feedback_cell_array(*closure_feedback_cell_array);
vector->set_parent_feedback_cell(*parent_feedback_cell);
// TODO(leszeks): Initialize based on the feedback metadata.
MemsetTagged(ObjectSlot(vector->slots_start()), *undefined_value(), length);
return handle(vector, isolate());
}
Handle<EmbedderDataArray> Factory::NewEmbedderDataArray(int length) {
DCHECK_LE(0, length);
int size = EmbedderDataArray::SizeFor(length);
Tagged<EmbedderDataArray> array =
Tagged<EmbedderDataArray>::cast(AllocateRawWithImmortalMap(
size, AllocationType::kYoung, *embedder_data_array_map()));
DisallowGarbageCollection no_gc;
array->set_length(length);
if (length > 0) {
for (int i = 0; i < length; i++) {
// TODO(v8): consider initializing embedded data array with Smi::zero().
EmbedderDataSlot(array, i).Initialize(*undefined_value());
}
}
return handle(array, isolate());
}
Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(int length) {
DCHECK_LE(0, length);
Handle<FixedArrayBase> array = NewFixedDoubleArray(length);
if (length > 0) {
Handle<FixedDoubleArray>::cast(array)->FillWithHoles(0, length);
}
return array;
}
template <typename T>
Handle<T> Factory::AllocateSmallOrderedHashTable(Handle<Map> map, int capacity,
AllocationType allocation) {
// Capacity must be a power of two, since we depend on being able
// to divide and multiple by 2 (kLoadFactor) to derive capacity
// from number of buckets. If we decide to change kLoadFactor
// to something other than 2, capacity should be stored as another
// field of this object.
DCHECK_EQ(T::kLoadFactor, 2);
capacity =
base::bits::RoundUpToPowerOfTwo32(std::max({T::kMinCapacity, capacity}));
capacity = std::min({capacity, T::kMaxCapacity});
DCHECK_LT(0, capacity);
DCHECK_EQ(0, capacity % T::kLoadFactor);
int size = T::SizeFor(capacity);
Tagged<HeapObject> result =
AllocateRawWithImmortalMap(size, allocation, *map);
Handle<T> table(T::cast(result), isolate());
table->Initialize(isolate(), capacity);
return table;
}
Handle<SmallOrderedHashSet> Factory::NewSmallOrderedHashSet(
int capacity, AllocationType allocation) {
return AllocateSmallOrderedHashTable<SmallOrderedHashSet>(
small_ordered_hash_set_map(), capacity, allocation);
}
Handle<SmallOrderedHashMap> Factory::NewSmallOrderedHashMap(
int capacity, AllocationType allocation) {
return AllocateSmallOrderedHashTable<SmallOrderedHashMap>(
small_ordered_hash_map_map(), capacity, allocation);
}
Handle<SmallOrderedNameDictionary> Factory::NewSmallOrderedNameDictionary(
int capacity, AllocationType allocation) {
Handle<SmallOrderedNameDictionary> dict =
AllocateSmallOrderedHashTable<SmallOrderedNameDictionary>(
small_ordered_name_dictionary_map(), capacity, allocation);
dict->SetHash(PropertyArray::kNoHashSentinel);
return dict;
}
Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kInitialCapacity,
AllocationType::kYoung)
.ToHandleChecked();
}
Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kInitialCapacity,
AllocationType::kYoung)
.ToHandleChecked();
}
Handle<NameDictionary> Factory::NewNameDictionary(int at_least_space_for) {
return NameDictionary::New(isolate(), at_least_space_for);
}
Handle<PropertyDescriptorObject> Factory::NewPropertyDescriptorObject() {
auto object = NewStructInternal<PropertyDescriptorObject>(
PROPERTY_DESCRIPTOR_OBJECT_TYPE, AllocationType::kYoung);
DisallowGarbageCollection no_gc;
object->set_flags(0);
Tagged<Hole> the_hole = read_only_roots().the_hole_value();
object->set_value(the_hole, SKIP_WRITE_BARRIER);
object->set_get(the_hole, SKIP_WRITE_BARRIER);
object->set_set(the_hole, SKIP_WRITE_BARRIER);
return handle(object, isolate());
}
Handle<SwissNameDictionary> Factory::CreateCanonicalEmptySwissNameDictionary() {
// This function is only supposed to be used to create the canonical empty
// version and should not be used afterwards.
DCHECK(!ReadOnlyRoots(isolate()).is_initialized(
RootIndex::kEmptySwissPropertyDictionary));
ReadOnlyRoots roots(isolate());
Handle<ByteArray> empty_meta_table =
NewByteArray(SwissNameDictionary::kMetaTableEnumerationDataStartIndex,
AllocationType::kReadOnly);
Tagged<Map> map = roots.swiss_name_dictionary_map();
int size = SwissNameDictionary::SizeFor(0);
Tagged<HeapObject> obj =
AllocateRawWithImmortalMap(size, AllocationType::kReadOnly, map);
Tagged<SwissNameDictionary> result = Tagged<SwissNameDictionary>::cast(obj);
result->Initialize(isolate(), *empty_meta_table, 0);
return handle(result, isolate());
}
// Internalized strings are created in the old generation (data space).
Handle<String> Factory::InternalizeUtf8String(base::Vector<const char> string) {
base::Vector<const uint8_t> utf8_data =
base::Vector<const uint8_t>::cast(string);
Utf8Decoder decoder(utf8_data);
if (decoder.is_ascii()) return InternalizeString(utf8_data);
if (decoder.is_one_byte()) {
std::unique_ptr<uint8_t[]> buffer(new uint8_t[decoder.utf16_length()]);
decoder.Decode(buffer.get(), utf8_data);
return InternalizeString(
base::Vector<const uint8_t>(buffer.get(), decoder.utf16_length()));
}
std::unique_ptr<uint16_t[]> buffer(new uint16_t[decoder.utf16_length()]);
decoder.Decode(buffer.get(), utf8_data);
return InternalizeString(
base::Vector<const base::uc16>(buffer.get(), decoder.utf16_length()));
}
template <typename SeqString>
Handle<String> Factory::InternalizeString(Handle<SeqString> string, int from,
int length, bool convert_encoding) {
SeqSubStringKey<SeqString> key(isolate(), string, from, length,
convert_encoding);
return InternalizeStringWithKey(&key);
}
template Handle<String> Factory::InternalizeString(
Handle<SeqOneByteString> string, int from, int length,
bool convert_encoding);
template Handle<String> Factory::InternalizeString(
Handle<SeqTwoByteString> string, int from, int length,
bool convert_encoding);
namespace {
void ThrowInvalidEncodedStringBytes(Isolate* isolate, MessageTemplate message) {
#if V8_ENABLE_WEBASSEMBLY
DCHECK(message == MessageTemplate::kWasmTrapStringInvalidWtf8 ||
message == MessageTemplate::kWasmTrapStringInvalidUtf8);
Handle<JSObject> error_obj = isolate->factory()->NewWasmRuntimeError(message);
JSObject::AddProperty(isolate, error_obj,
isolate->factory()->wasm_uncatchable_symbol(),
isolate->factory()->true_value(), NONE);
isolate->Throw(*error_obj);
#else
// The default in JS-land is to use Utf8Variant::kLossyUtf8, which never
// throws an error, so if there is no WebAssembly compiled in we'll never get
// here.
UNREACHABLE();
#endif // V8_ENABLE_WEBASSEMBLY
}
template <typename Decoder, typename PeekBytes>
MaybeHandle<String> NewStringFromBytes(Isolate* isolate, PeekBytes peek_bytes,
AllocationType allocation,
MessageTemplate message) {
Decoder decoder(peek_bytes());
if (decoder.is_invalid()) {
if (message != MessageTemplate::kNone) {
ThrowInvalidEncodedStringBytes(isolate, message);
}
return MaybeHandle<String>();
}
if (decoder.utf16_length() == 0) return isolate->factory()->empty_string();
if (decoder.is_one_byte()) {
if (decoder.utf16_length() == 1) {
uint8_t codepoint;
decoder.Decode(&codepoint, peek_bytes());
return isolate->factory()->LookupSingleCharacterStringFromCode(codepoint);
}
// Allocate string.
Handle<SeqOneByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
isolate->factory()->NewRawOneByteString(
decoder.utf16_length(), allocation),
String);
DisallowGarbageCollection no_gc;
decoder.Decode(result->GetChars(no_gc), peek_bytes());
return result;
}
// Allocate string.
Handle<SeqTwoByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
isolate->factory()->NewRawTwoByteString(
decoder.utf16_length(), allocation),
String);
DisallowGarbageCollection no_gc;
decoder.Decode(result->GetChars(no_gc), peek_bytes());
return result;
}
template <typename PeekBytes>
MaybeHandle<String> NewStringFromUtf8Variant(Isolate* isolate,
PeekBytes peek_bytes,
unibrow::Utf8Variant utf8_variant,
AllocationType allocation) {
switch (utf8_variant) {
case unibrow::Utf8Variant::kLossyUtf8:
return NewStringFromBytes<Utf8Decoder>(isolate, peek_bytes, allocation,
MessageTemplate::kNone);
#if V8_ENABLE_WEBASSEMBLY
case unibrow::Utf8Variant::kUtf8:
return NewStringFromBytes<StrictUtf8Decoder>(
isolate, peek_bytes, allocation,
MessageTemplate::kWasmTrapStringInvalidUtf8);
case unibrow::Utf8Variant::kUtf8NoTrap:
return NewStringFromBytes<StrictUtf8Decoder>(
isolate, peek_bytes, allocation, MessageTemplate::kNone);
case unibrow::Utf8Variant::kWtf8:
return NewStringFromBytes<Wtf8Decoder>(
isolate, peek_bytes, allocation,
MessageTemplate::kWasmTrapStringInvalidWtf8);
#endif
}
}
} // namespace
MaybeHandle<String> Factory::NewStringFromUtf8(
base::Vector<const uint8_t> string, unibrow::Utf8Variant utf8_variant,
AllocationType allocation) {
if (string.size() > kMaxInt) {
// The Utf8Decode can't handle longer inputs, and we couldn't create
// strings from them anyway.
THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
}
auto peek_bytes = [&]() -> base::Vector<const uint8_t> { return string; };
return NewStringFromUtf8Variant(isolate(), peek_bytes, utf8_variant,
allocation);
}
MaybeHandle<String> Factory::NewStringFromUtf8(base::Vector<const char> string,
AllocationType allocation) {
return NewStringFromUtf8(base::Vector<const uint8_t>::cast(string),
unibrow::Utf8Variant::kLossyUtf8, allocation);
}
#if V8_ENABLE_WEBASSEMBLY
MaybeHandle<String> Factory::NewStringFromUtf8(
Handle<WasmArray> array, uint32_t start, uint32_t end,
unibrow::Utf8Variant utf8_variant, AllocationType allocation) {
DCHECK_EQ(sizeof(uint8_t), array->type()->element_type().value_kind_size());
DCHECK_LE(start, end);
DCHECK_LE(end, array->length());
// {end - start} can never be more than what the Utf8Decoder can handle.
static_assert(WasmArray::MaxLength(sizeof(uint8_t)) <= kMaxInt);
auto peek_bytes = [&]() -> base::Vector<const uint8_t> {
const uint8_t* contents =
reinterpret_cast<const uint8_t*>(array->ElementAddress(0));
return {contents + start, end - start};
};
return NewStringFromUtf8Variant(isolate(), peek_bytes, utf8_variant,
allocation);
}
MaybeHandle<String> Factory::NewStringFromUtf8(
Handle<ByteArray> array, uint32_t start, uint32_t end,
unibrow::Utf8Variant utf8_variant, AllocationType allocation) {
DCHECK_LE(start, end);
DCHECK_LE(end, array->length());
// {end - start} can never be more than what the Utf8Decoder can handle.
static_assert(ByteArray::kMaxLength <= kMaxInt);
auto peek_bytes = [&]() -> base::Vector<const uint8_t> {
const uint8_t* contents =
reinterpret_cast<const uint8_t*>(array->GetDataStartAddress());
return {contents + start, end - start};
};
return NewStringFromUtf8Variant(isolate(), peek_bytes, utf8_variant,
allocation);
}
namespace {
struct Wtf16Decoder {
int length_;
bool is_one_byte_;
explicit Wtf16Decoder(base::Vector<const uint16_t> data)
: length_(data.length()),
is_one_byte_(String::IsOneByte(data.begin(), length_)) {}
bool is_invalid() const { return false; }
bool is_one_byte() const { return is_one_byte_; }
int utf16_length() const { return length_; }
template <typename Char>
void Decode(Char* out, base::Vector<const uint16_t> data) {
CopyChars(out, data.begin(), length_);
}
};
} // namespace
MaybeHandle<String> Factory::NewStringFromUtf16(Handle<WasmArray> array,
uint32_t start, uint32_t end,
AllocationType allocation) {
DCHECK_EQ(sizeof(uint16_t), array->type()->element_type().value_kind_size());
DCHECK_LE(start, end);
DCHECK_LE(end, array->length());
// {end - start} can never be more than what the Utf8Decoder can handle.
static_assert(WasmArray::MaxLength(sizeof(uint16_t)) <= kMaxInt);
auto peek_bytes = [&]() -> base::Vector<const uint16_t> {
const uint16_t* contents =
reinterpret_cast<const uint16_t*>(array->ElementAddress(0));
return {contents + start, end - start};
};
return NewStringFromBytes<Wtf16Decoder>(isolate(), peek_bytes, allocation,
MessageTemplate::kNone);
}
#endif // V8_ENABLE_WEBASSEMBLY
MaybeHandle<String> Factory::NewStringFromUtf8SubString(
Handle<SeqOneByteString> str, int begin, int length,
AllocationType allocation) {
base::Vector<const uint8_t> utf8_data;
{
DisallowGarbageCollection no_gc;
utf8_data =
base::Vector<const uint8_t>(str->GetChars(no_gc) + begin, length);
}
Utf8Decoder decoder(utf8_data);
if (length == 1) {
uint16_t t;
// Decode even in the case of length 1 since it can be a bad character.
decoder.Decode(&t, utf8_data);
return LookupSingleCharacterStringFromCode(t);
}
if (decoder.is_ascii()) {
// If the string is ASCII, we can just make a substring.
// TODO(v8): the allocation flag is ignored in this case.
return NewSubString(str, begin, begin + length);
}
DCHECK_GT(decoder.utf16_length(), 0);
if (decoder.is_one_byte()) {
// Allocate string.
Handle<SeqOneByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result,
NewRawOneByteString(decoder.utf16_length(), allocation), String);
DisallowGarbageCollection no_gc;
// Update pointer references, since the original string may have moved after
// allocation.
utf8_data =
base::Vector<const uint8_t>(str->GetChars(no_gc) + begin, length);
decoder.Decode(result->GetChars(no_gc), utf8_data);
return result;
}
// Allocate string.
Handle<SeqTwoByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result,
NewRawTwoByteString(decoder.utf16_length(), allocation), String);
DisallowGarbageCollection no_gc;
// Update pointer references, since the original string may have moved after
// allocation.
utf8_data = base::Vector<const uint8_t>(str->GetChars(no_gc) + begin, length);
decoder.Decode(result->GetChars(no_gc), utf8_data);
return result;
}
MaybeHandle<String> Factory::NewStringFromTwoByte(const base::uc16* string,
int length,
AllocationType allocation) {
DCHECK_NE(allocation, AllocationType::kReadOnly);
if (length == 0) return empty_string();
if (String::IsOneByte(string, length)) {
if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
Handle<SeqOneByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
NewRawOneByteString(length, allocation), String);
DisallowGarbageCollection no_gc;
CopyChars(result->GetChars(no_gc), string, length);
return result;
} else {
Handle<SeqTwoByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
NewRawTwoByteString(length, allocation), String);
DisallowGarbageCollection no_gc;
CopyChars(result->GetChars(no_gc), string, length);
return result;
}
}
MaybeHandle<String> Factory::NewStringFromTwoByte(
base::Vector<const base::uc16> string, AllocationType allocation) {
return NewStringFromTwoByte(string.begin(), string.length(), allocation);
}
MaybeHandle<String> Factory::NewStringFromTwoByte(
const ZoneVector<base::uc16>* string, AllocationType allocation) {
return NewStringFromTwoByte(string->data(), static_cast<int>(string->size()),
allocation);
}
#if V8_ENABLE_WEBASSEMBLY
MaybeHandle<String> Factory::NewStringFromTwoByteLittleEndian(
base::Vector<const base::uc16> str, AllocationType allocation) {
#if defined(V8_TARGET_LITTLE_ENDIAN)
return NewStringFromTwoByte(str, allocation);
#elif defined(V8_TARGET_BIG_ENDIAN)
// TODO(12868): Duplicate the guts of NewStringFromTwoByte, so that
// copying and transcoding the data can be done in a single pass.
UNIMPLEMENTED();
#else
#error Unknown endianness
#endif
}
#endif // V8_ENABLE_WEBASSEMBLY
Handle<String> Factory::NewInternalizedStringImpl(Handle<String> string,
int len,
uint32_t hash_field) {
if (string->IsOneByteRepresentation()) {
Handle<SeqOneByteString> result =
AllocateRawOneByteInternalizedString(len, hash_field);
DisallowGarbageCollection no_gc;
String::WriteToFlat(*string, result->GetChars(no_gc), 0, len);
return result;
}
Handle<SeqTwoByteString> result =
AllocateRawTwoByteInternalizedString(len, hash_field);
DisallowGarbageCollection no_gc;
String::WriteToFlat(*string, result->GetChars(no_gc), 0, len);
return result;
}
StringTransitionStrategy Factory::ComputeInternalizationStrategyForString(
Handle<String> string, MaybeHandle<Map>* internalized_map) {
// The serializer requires internalized strings to be in ReadOnlySpace s.t.
// other objects referencing the string can be allocated in RO space
// themselves.
if (isolate()->enable_ro_allocation_for_snapshot() &&
isolate()->serializer_enabled()) {
return StringTransitionStrategy::kCopy;
}
// Do not internalize young strings in-place: This allows us to ignore both
// string table and stub cache on scavenges.
if (Heap::InYoungGeneration(*string)) {
return StringTransitionStrategy::kCopy;
}
// If the string table is shared, we need to copy if the string is not already
// in the shared heap.
if (v8_flags.shared_string_table && !Object::InSharedHeap(*string)) {
return StringTransitionStrategy::kCopy;
}
DCHECK_NOT_NULL(internalized_map);
DisallowGarbageCollection no_gc;
// This method may be called concurrently, so snapshot the map from the input
// string instead of the calling IsType methods on HeapObject, which would
// reload the map each time.
Tagged<Map> map = string->map();
*internalized_map = GetInPlaceInternalizedStringMap(map);
if (!internalized_map->is_null()) {
return StringTransitionStrategy::kInPlace;
}
if (InstanceTypeChecker::IsInternalizedString(map)) {
return StringTransitionStrategy::kAlreadyTransitioned;
}
return StringTransitionStrategy::kCopy;
}
template <class StringClass>
Handle<StringClass> Factory::InternalizeExternalString(Handle<String> string) {
Handle<Map> map =
GetInPlaceInternalizedStringMap(string->map()).ToHandleChecked();
Tagged<StringClass> external_string =
Tagged<StringClass>::cast(New(map, AllocationType::kOld));
DisallowGarbageCollection no_gc;
external_string->InitExternalPointerFields(isolate());
Tagged<StringClass> cast_string = Tagged<StringClass>::cast(*string);
external_string->set_length(cast_string->length());
external_string->set_raw_hash_field(cast_string->raw_hash_field());
external_string->SetResource(isolate(), nullptr);
isolate()->heap()->RegisterExternalString(external_string);
return handle(external_string, isolate());
}
template Handle<ExternalOneByteString>
Factory::InternalizeExternalString<ExternalOneByteString>(Handle<String>);
template Handle<ExternalTwoByteString>
Factory::InternalizeExternalString<ExternalTwoByteString>(Handle<String>);
StringTransitionStrategy Factory::ComputeSharingStrategyForString(
Handle<String> string, MaybeHandle<Map>* shared_map) {
DCHECK(v8_flags.shared_string_table);
// TODO(pthier): Avoid copying LO-space strings. Update page flags instead.
if (!Object::InSharedHeap(*string)) {
return StringTransitionStrategy::kCopy;
}
DCHECK_NOT_NULL(shared_map);
DisallowGarbageCollection no_gc;
InstanceType instance_type = string->map()->instance_type();
if (StringShape(instance_type).IsShared()) {
return StringTransitionStrategy::kAlreadyTransitioned;
}
switch (instance_type) {
case SEQ_TWO_BYTE_STRING_TYPE:
*shared_map = read_only_roots().shared_seq_two_byte_string_map_handle();
return StringTransitionStrategy::kInPlace;
case SEQ_ONE_BYTE_STRING_TYPE:
*shared_map = read_only_roots().shared_seq_one_byte_string_map_handle();
return StringTransitionStrategy::kInPlace;
case EXTERNAL_TWO_BYTE_STRING_TYPE:
*shared_map =
read_only_roots().shared_external_two_byte_string_map_handle();
return StringTransitionStrategy::kInPlace;
case EXTERNAL_ONE_BYTE_STRING_TYPE:
*shared_map =
read_only_roots().shared_external_one_byte_string_map_handle();
return StringTransitionStrategy::kInPlace;
case UNCACHED_EXTERNAL_TWO_BYTE_STRING_TYPE:
*shared_map = read_only_roots()
.shared_uncached_external_two_byte_string_map_handle();
return StringTransitionStrategy::kInPlace;
case UNCACHED_EXTERNAL_ONE_BYTE_STRING_TYPE:
*shared_map = read_only_roots()
.shared_uncached_external_one_byte_string_map_handle();
return StringTransitionStrategy::kInPlace;
default:
return StringTransitionStrategy::kCopy;
}
}
Handle<String> Factory::NewSurrogatePairString(uint16_t lead, uint16_t trail) {
DCHECK_GE(lead, 0xD800);
DCHECK_LE(lead, 0xDBFF);
DCHECK_GE(trail, 0xDC00);
DCHECK_LE(trail, 0xDFFF);
Handle<SeqTwoByteString> str =
isolate()->factory()->NewRawTwoByteString(2).ToHandleChecked();
DisallowGarbageCollection no_gc;
base::uc16* dest = str->GetChars(no_gc);
dest[0] = lead;
dest[1] = trail;
return str;
}
Handle<String> Factory::NewCopiedSubstring(Handle<String> str, int begin,
int length) {
DCHECK(str->IsFlat()); // Callers must flatten.
DCHECK_GT(length, 0); // Callers must handle empty string.
bool one_byte;
if (str->IsOneByteRepresentation()) {
one_byte = true;
} else {
DisallowGarbageCollection no_gc;
const uint16_t* src = str->GetFlatContent(no_gc).ToUC16Vector().data();
one_byte = String::IsOneByte(src + begin, length);
}
if (one_byte) {
Handle<SeqOneByteString> result =
NewRawOneByteString(length).ToHandleChecked();
DisallowGarbageCollection no_gc;
uint8_t* dest = result->GetChars(no_gc);
String::WriteToFlat(*str, dest, begin, length);
return result;
} else {
Handle<SeqTwoByteString> result =
NewRawTwoByteString(length).ToHandleChecked();
DisallowGarbageCollection no_gc;
base::uc16* dest = result->GetChars(no_gc);
String::WriteToFlat(*str, dest, begin, length);
return result;
}
}
Handle<String> Factory::NewProperSubString(Handle<String> str, int begin,
int end) {
#if VERIFY_HEAP
if (v8_flags.verify_heap) str->StringVerify(isolate());
#endif
DCHECK(begin > 0 || end < str->length());
str = String::Flatten(isolate(), str);
int length = end - begin;
if (length <= 0) return empty_string();
if (length == 1) {
return LookupSingleCharacterStringFromCode(str->Get(begin));
}
if (length == 2) {
// Optimization for 2-byte strings often used as keys in a decompression
// dictionary. Check whether we already have the string in the string
// table to prevent creation of many unnecessary strings.
uint16_t c1 = str->Get(begin);
uint16_t c2 = str->Get(begin + 1);
return MakeOrFindTwoCharacterString(c1, c2);
}
if (!v8_flags.string_slices || length < SlicedString::kMinLength) {
return NewCopiedSubstring(str, begin, length);
}
int offset = begin;
if (IsSlicedString(*str)) {
Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
str = Handle<String>(slice->parent(), isolate());
offset += slice->offset();
}
if (IsThinString(*str)) {
Handle<ThinString> thin = Handle<ThinString>::cast(str);
str = handle(thin->actual(), isolate());
}
DCHECK(IsSeqString(*str) || IsExternalString(*str));
Handle<Map> map = str->IsOneByteRepresentation()
? sliced_one_byte_string_map()
: sliced_two_byte_string_map();
Tagged<SlicedString> slice =
Tagged<SlicedString>::cast(New(map, AllocationType::kYoung));
DisallowGarbageCollection no_gc;
slice->set_raw_hash_field(String::kEmptyHashField);
slice->set_length(length);
slice->set_parent(*str);
slice->set_offset(offset);
return handle(slice, isolate());
}
MaybeHandle<String> Factory::NewExternalStringFromOneByte(
const ExternalOneByteString::Resource* resource) {
size_t length = resource->length();
if (length > static_cast<size_t>(String::kMaxLength)) {
THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
}
if (length == 0) return empty_string();
Handle<Map> map = resource->IsCacheable()
? external_one_byte_string_map()
: uncached_external_one_byte_string_map();
Tagged<ExternalOneByteString> external_string =
Tagged<ExternalOneByteString>::cast(New(map, AllocationType::kOld));
DisallowGarbageCollection no_gc;
external_string->InitExternalPointerFields(isolate());
external_string->set_length(static_cast<int>(length));
external_string->set_raw_hash_field(String::kEmptyHashField);
external_string->SetResource(isolate(), resource);
isolate()->heap()->RegisterExternalString(external_string);
return Handle<String>(external_string, isolate());
}
MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
const ExternalTwoByteString::Resource* resource) {
size_t length = resource->length();
if (length > static_cast<size_t>(String::kMaxLength)) {
THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
}
if (length == 0) return empty_string();
Handle<Map> map = resource->IsCacheable()
? external_two_byte_string_map()
: uncached_external_two_byte_string_map();
Tagged<ExternalTwoByteString> string =
Tagged<ExternalTwoByteString>::cast(New(map, AllocationType::kOld));
DisallowGarbageCollection no_gc;
string->InitExternalPointerFields(isolate());
string->set_length(static_cast<int>(length));
string->set_raw_hash_field(String::kEmptyHashField);
string->SetResource(isolate(), resource);
isolate()->heap()->RegisterExternalString(string);
return Handle<ExternalTwoByteString>(string, isolate());
}
Handle<JSStringIterator> Factory::NewJSStringIterator(Handle<String> string) {
Handle<Map> map(isolate()->native_context()->initial_string_iterator_map(),
isolate());
Handle<String> flat_string = String::Flatten(isolate(), string);
Handle<JSStringIterator> iterator =
Handle<JSStringIterator>::cast(NewJSObjectFromMap(map));
DisallowGarbageCollection no_gc;
Tagged<JSStringIterator> raw = *iterator;
raw->set_string(*flat_string);
raw->set_index(0);
return iterator;
}
Tagged<Symbol> Factory::NewSymbolInternal(AllocationType allocation) {
DCHECK(allocation != AllocationType::kYoung);
// Statically ensure that it is safe to allocate symbols in paged spaces.
static_assert(Symbol::kSize <= kMaxRegularHeapObjectSize);
Tagged<Symbol> symbol = Tagged<Symbol>::cast(AllocateRawWithImmortalMap(
Symbol::kSize, allocation, read_only_roots().symbol_map()));
DisallowGarbageCollection no_gc;
// Generate a random hash value.
int hash = isolate()->GenerateIdentityHash(Name::HashBits::kMax);
symbol->set_raw_hash_field(
Name::CreateHashFieldValue(hash, Name::HashFieldType::kHash));
if (isolate()->read_only_heap()->roots_init_complete()) {
symbol->set_description(read_only_roots().undefined_value(),
SKIP_WRITE_BARRIER);
} else {
// Can't use setter during bootstrapping as its typecheck tries to access
// the roots table before it is initialized.
TaggedField<Object>::store(symbol, Symbol::kDescriptionOffset,
read_only_roots().undefined_value());
}
symbol->set_flags(0);
DCHECK(!symbol->is_private());
return symbol;
}
Handle<Symbol> Factory::NewSymbol(AllocationType allocation) {
return handle(NewSymbolInternal(allocation), isolate());
}
Handle<Symbol> Factory::NewPrivateSymbol(AllocationType allocation) {
DCHECK(allocation != AllocationType::kYoung);
Tagged<Symbol> symbol = NewSymbolInternal(allocation);
DisallowGarbageCollection no_gc;
symbol->set_is_private(true);
return handle(symbol, isolate());
}
Handle<Symbol> Factory::NewPrivateNameSymbol(Handle<String> name) {
Tagged<Symbol> symbol = NewSymbolInternal();
DisallowGarbageCollection no_gc;
symbol->set_is_private_name();
symbol->set_description(*name);
return handle(symbol, isolate());
}
Tagged<Context> Factory::NewContextInternal(Handle<Map> map, int size,
int variadic_part_length,
AllocationType allocation) {
DCHECK_LE(Context::kTodoHeaderSize, size);
DCHECK(IsAligned(size, kTaggedSize));
DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length);
DCHECK_LE(Context::SizeFor(variadic_part_length), size);
Tagged<HeapObject> result =
allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(size,
allocation);
result->set_map_after_allocation(*map);
DisallowGarbageCollection no_gc;
Tagged<Context> context = Tagged<Context>::cast(result);
context->set_length(variadic_part_length);
DCHECK_EQ(context->SizeFromMap(*map), size);
if (size > Context::kTodoHeaderSize) {
ObjectSlot start = context->RawField(Context::kTodoHeaderSize);
ObjectSlot end = context->RawField(size);
size_t slot_count = end - start;
MemsetTagged(start, *undefined_value(), slot_count);
}
return context;
}
Handle<NativeContext> Factory::NewNativeContext() {
Handle<Map> map = NewMap(NATIVE_CONTEXT_TYPE, kVariableSizeSentinel);
Tagged<NativeContext> context =
Tagged<NativeContext>::cast(NewContextInternal(
map, NativeContext::kSize, NativeContext::NATIVE_CONTEXT_SLOTS,
AllocationType::kOld));
DisallowGarbageCollection no_gc;
context->set_native_context_map(*map);
map->set_native_context(context);
// The ExternalPointerTable is a C++ object.
context->set_scope_info(*native_scope_info());
context->set_previous(Context());
context->set_extension(*undefined_value());
context->set_errors_thrown(Smi::zero());
context->set_is_wasm_js_installed(Smi::zero());
context->set_math_random_index(Smi::zero());
context->set_serialized_objects(*empty_fixed_array());
context->init_microtask_queue(isolate(), nullptr);
context->set_retained_maps(*empty_weak_array_list());
return handle(context, isolate());
}
Handle<Context> Factory::NewScriptContext(Handle<NativeContext> outer,
Handle<ScopeInfo> scope_info) {
DCHECK_EQ(scope_info->scope_type(), SCRIPT_SCOPE);
int variadic_part_length = scope_info->ContextLength();
Tagged<Context> context =
NewContextInternal(handle(outer->script_context_map(), isolate()),
Context::SizeFor(variadic_part_length),
variadic_part_length, AllocationType::kOld);
DisallowGarbageCollection no_gc;
context->set_scope_info(*scope_info);
context->set_previous(*outer);
DCHECK(context->IsScriptContext());
return handle(context, isolate());
}
Handle<ScriptContextTable> Factory::NewScriptContextTable() {
Handle<ScriptContextTable> context_table = Handle<ScriptContextTable>::cast(
NewFixedArrayWithMap(read_only_roots().script_context_table_map_handle(),
ScriptContextTable::kMinLength));
Handle<NameToIndexHashTable> names = NameToIndexHashTable::New(isolate(), 16);
context_table->set_used(0, kReleaseStore);
context_table->set_names_to_context_index(*names);
return context_table;
}
Handle<Context> Factory::NewModuleContext(Handle<SourceTextModule> module,
Handle<NativeContext> outer,
Handle<ScopeInfo> scope_info) {
DCHECK_EQ(scope_info->scope_type(), MODULE_SCOPE);
int variadic_part_length = scope_info->ContextLength();
Tagged<Context> context = NewContextInternal(
isolate()->module_context_map(), Context::SizeFor(variadic_part_length),
variadic_part_length, AllocationType::kOld);
DisallowGarbageCollection no_gc;
context->set_scope_info(*scope_info);
context->set_previous(*outer);
context->set_extension(*module);
DCHECK(context->IsModuleContext());
return handle(context, isolate());
}
Handle<Context> Factory::NewFunctionContext(Handle<Context> outer,
Handle<ScopeInfo> scope_info) {
Handle<Map> map;
switch (scope_info->scope_type()) {
case EVAL_SCOPE:
map = isolate()->eval_context_map();
break;
case FUNCTION_SCOPE:
map = isolate()->function_context_map();
break;
default:
UNREACHABLE();
}
int variadic_part_length = scope_info->ContextLength();
Tagged<Context> context =
NewContextInternal(map, Context::SizeFor(variadic_part_length),
variadic_part_length, AllocationType::kYoung);
DisallowGarbageCollection no_gc;
context->set_scope_info(*scope_info);
context->set_previous(*outer);
return handle(context, isolate());
}
Handle<Context> Factory::NewCatchContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<Object> thrown_object) {
DCHECK_EQ(scope_info->scope_type(), CATCH_SCOPE);
static_assert(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
// TODO(ishell): Take the details from CatchContext class.
int variadic_part_length = Context::MIN_CONTEXT_SLOTS + 1;
Tagged<Context> context = NewContextInternal(
isolate()->catch_context_map(), Context::SizeFor(variadic_part_length),
variadic_part_length, AllocationType::kYoung);
DisallowGarbageCollection no_gc;
DCHECK_IMPLIES(!v8_flags.single_generation, Heap::InYoungGeneration(context));
context->set_scope_info(*scope_info, SKIP_WRITE_BARRIER);
context->set_previous(*previous, SKIP_WRITE_BARRIER);
context->set(Context::THROWN_OBJECT_INDEX, *thrown_object,
SKIP_WRITE_BARRIER);
return handle(context, isolate());
}
Handle<Context> Factory::NewDebugEvaluateContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<JSReceiver> extension,
Handle<Context> wrapped) {
DCHECK(scope_info->IsDebugEvaluateScope());
Handle<HeapObject> ext = extension.is_null()
? Handle<HeapObject>::cast(undefined_value())
: Handle<HeapObject>::cast(extension);
// TODO(ishell): Take the details from DebugEvaluateContextContext class.
int variadic_part_length = Context::MIN_CONTEXT_EXTENDED_SLOTS + 1;
Tagged<Context> context =
NewContextInternal(isolate()->debug_evaluate_context_map(),
Context::SizeFor(variadic_part_length),
variadic_part_length, AllocationType::kYoung);
DisallowGarbageCollection no_gc;
DCHECK_IMPLIES(!v8_flags.single_generation, Heap::InYoungGeneration(context));
context->set_scope_info(*scope_info, SKIP_WRITE_BARRIER);
context->set_previous(*previous, SKIP_WRITE_BARRIER);
context->set_extension(*ext, SKIP_WRITE_BARRIER);
if (!wrapped.is_null()) {
context->set(Context::WRAPPED_CONTEXT_INDEX, *wrapped, SKIP_WRITE_BARRIER);
}
return handle(context, isolate());
}
Handle<Context> Factory::NewWithContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<JSReceiver> extension) {
DCHECK_EQ(scope_info->scope_type(), WITH_SCOPE);
// TODO(ishell): Take the details from WithContext class.
int variadic_part_length = Context::MIN_CONTEXT_EXTENDED_SLOTS;
Tagged<Context> context = NewContextInternal(
isolate()->with_context_map(), Context::SizeFor(variadic_part_length),
variadic_part_length, AllocationType::kYoung);
DisallowGarbageCollection no_gc;
DCHECK_IMPLIES(!v8_flags.single_generation, Heap::InYoungGeneration(context));
context->set_scope_info(*scope_info, SKIP_WRITE_BARRIER);
context->set_previous(*previous, SKIP_WRITE_BARRIER);
context->set_extension(*extension, SKIP_WRITE_BARRIER);
return handle(context, isolate());
}
Handle<Context> Factory::NewBlockContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info) {
DCHECK_IMPLIES(scope_info->scope_type() != BLOCK_SCOPE,
scope_info->scope_type() == CLASS_SCOPE);
int variadic_part_length = scope_info->ContextLength();
Tagged<Context> context = NewContextInternal(
isolate()->block_context_map(), Context::SizeFor(variadic_part_length),
variadic_part_length, AllocationType::kYoung);
DisallowGarbageCollection no_gc;
DCHECK_IMPLIES(!v8_flags.single_generation, Heap::InYoungGeneration(context));
context->set_scope_info(*scope_info, SKIP_WRITE_BARRIER);
context->set_previous(*previous, SKIP_WRITE_BARRIER);
return handle(context, isolate());
}
Handle<Context> Factory::NewBuiltinContext(Handle<NativeContext> native_context,
int variadic_part_length) {
DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length);
Tagged<Context> context = NewContextInternal(
isolate()->function_context_map(), Context::SizeFor(variadic_part_length),
variadic_part_length, AllocationType::kYoung);
DisallowGarbageCollection no_gc;
DCHECK_IMPLIES(!v8_flags.single_generation, Heap::InYoungGeneration(context));
context->set_scope_info(read_only_roots().empty_scope_info(),
SKIP_WRITE_BARRIER);
context->set_previous(*native_context, SKIP_WRITE_BARRIER);
return handle(context, isolate());
}
Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
int aliased_context_slot) {
auto entry = NewStructInternal<AliasedArgumentsEntry>(
ALIASED_ARGUMENTS_ENTRY_TYPE, AllocationType::kYoung);
entry->set_aliased_context_slot(aliased_context_slot);
return handle(entry, isolate());
}
Handle<AccessorInfo> Factory::NewAccessorInfo() {
Tagged<AccessorInfo> info = Tagged<AccessorInfo>::cast(
New(accessor_info_map(), AllocationType::kOld));
DisallowGarbageCollection no_gc;
info->set_name(*empty_string(), SKIP_WRITE_BARRIER);
info->set_data(*undefined_value(), SKIP_WRITE_BARRIER);
info->set_flags(0); // Must clear the flags, it was initialized as undefined.
info->set_is_sloppy(true);
info->set_initial_property_attributes(NONE);
info->init_getter(isolate(), kNullAddress);
info->init_setter(isolate(), kNullAddress);
info->clear_padding();
return handle(info, isolate());
}
Handle<ErrorStackData> Factory::NewErrorStackData(
Handle<Object> call_site_infos_or_formatted_stack,
Handle<Object> limit_or_stack_frame_infos) {
Tagged<ErrorStackData> error_stack_data = NewStructInternal<ErrorStackData>(
ERROR_STACK_DATA_TYPE, AllocationType::kYoung);
DisallowGarbageCollection no_gc;
error_stack_data->set_call_site_infos_or_formatted_stack(
*call_site_infos_or_formatted_stack, SKIP_WRITE_BARRIER);
error_stack_data->set_limit_or_stack_frame_infos(*limit_or_stack_frame_infos,
SKIP_WRITE_BARRIER);
return handle(error_stack_data, isolate());
}
void Factory::ProcessNewScript(Handle<Script> script,
ScriptEventType script_event_type) {
int script_id = script->id();
if (script_id != Script::kTemporaryScriptId) {
Handle<WeakArrayList> scripts = script_list();
scripts = WeakArrayList::Append(isolate(), scripts,
MaybeObjectHandle::Weak(script),
AllocationType::kOld);
isolate()->heap()->set_script_list(*scripts);
}
if (IsString(script->source()) && isolate()->NeedsSourcePositions()) {
Script::InitLineEnds(isolate(), script);
}
LOG(isolate(), ScriptEvent(script_event_type, script_id));
}
Handle<Script> Factory::CloneScript(Handle<Script> script,
Handle<String> source) {
int script_id = isolate()->GetNextScriptId();
#ifdef V8_SCRIPTORMODULE_LEGACY_LIFETIME
Handle<ArrayList> list = ArrayList::New(isolate(), 0);
#endif
Handle<Script> new_script_handle =
Handle<Script>::cast(NewStruct(SCRIPT_TYPE, AllocationType::kOld));
{
DisallowGarbageCollection no_gc;
Tagged<Script> new_script = *new_script_handle;
const Tagged<Script> old_script = *script;
new_script->set_source(*source);
new_script->set_name(old_script->name());
new_script->set_id(script_id);
new_script->set_line_offset(old_script->line_offset());
new_script->set_column_offset(old_script->column_offset());
new_script->set_context_data(old_script->context_data());
new_script->set_type(old_script->type());
new_script->set_line_ends(Smi::zero());
new_script->set_eval_from_shared_or_wrapped_arguments(
script->eval_from_shared_or_wrapped_arguments());
new_script->set_shared_function_infos(*empty_weak_fixed_array(),
SKIP_WRITE_BARRIER);
new_script->set_eval_from_position(old_script->eval_from_position());
new_script->set_flags(old_script->flags());
new_script->set_host_defined_options(old_script->host_defined_options());
new_script->set_source_hash(*undefined_value(), SKIP_WRITE_BARRIER);
new_script->set_compiled_lazy_function_positions(*undefined_value(),
SKIP_WRITE_BARRIER);
#ifdef V8_SCRIPTORMODULE_LEGACY_LIFETIME
new_script->set_script_or_modules(*list);
#endif
}
ProcessNewScript(new_script_handle, ScriptEventType::kCreate);
return new_script_handle;
}
Handle<CallableTask> Factory::NewCallableTask(Handle<JSReceiver> callable,
Handle<Context> context) {
DCHECK(IsCallable(*callable));
auto microtask = NewStructInternal<CallableTask>(CALLABLE_TASK_TYPE,
AllocationType::kYoung);
DisallowGarbageCollection no_gc;
microtask->set_callable(*callable, SKIP_WRITE_BARRIER);
microtask->set_context(*context, SKIP_WRITE_BARRIER);
return handle(microtask, isolate());
}
Handle<CallbackTask> Factory::NewCallbackTask(Handle<Foreign> callback,
Handle<Foreign> data) {
auto microtask = NewStructInternal<CallbackTask>(CALLBACK_TASK_TYPE,
AllocationType::kYoung);
DisallowGarbageCollection no_gc;
microtask->set_callback(*callback, SKIP_WRITE_BARRIER);
microtask->set_data(*data, SKIP_WRITE_BARRIER);
return handle(microtask, isolate());
}
Handle<PromiseResolveThenableJobTask> Factory::NewPromiseResolveThenableJobTask(
Handle<JSPromise> promise_to_resolve, Handle<JSReceiver> thenable,
Handle<JSReceiver> then, Handle<Context> context) {
DCHECK(IsCallable(*then));
auto microtask = NewStructInternal<PromiseResolveThenableJobTask>(
PROMISE_RESOLVE_THENABLE_JOB_TASK_TYPE, AllocationType::kYoung);
DisallowGarbageCollection no_gc;
microtask->set_promise_to_resolve(*promise_to_resolve, SKIP_WRITE_BARRIER);
microtask->set_thenable(*thenable, SKIP_WRITE_BARRIER);
microtask->set_then(*then, SKIP_WRITE_BARRIER);
microtask->set_context(*context, SKIP_WRITE_BARRIER);
return handle(microtask, isolate());
}
Handle<Foreign> Factory::NewForeign(Address addr,
AllocationType allocation_type) {
// Statically ensure that it is safe to allocate foreigns in paged spaces.
static_assert(Foreign::kSize <= kMaxRegularHeapObjectSize);
Tagged<Map> map = *foreign_map();
Tagged<Foreign> foreign = Tagged<Foreign>::cast(
AllocateRawWithImmortalMap(map->instance_size(), allocation_type, map));
DisallowGarbageCollection no_gc;
foreign->init_foreign_address(isolate(), addr);
return handle(foreign, isolate());
}
#if V8_ENABLE_WEBASSEMBLY
Handle<WasmTypeInfo> Factory::NewWasmTypeInfo(
Address type_address, Handle<Map> opt_parent, int instance_size_bytes,
Handle<WasmInstanceObject> opt_instance, uint32_t type_index) {
// We pretenure WasmTypeInfo objects for two reasons:
// (1) They are referenced by Maps, which are assumed to be long-lived,
// so pretenuring the WTI is a bit more efficient.
// (2) The object visitors need to read the WasmTypeInfo to find tagged
// fields in Wasm structs; in the middle of a GC cycle that's only
// safe to do if the WTI is in old space.
std::vector<Handle<Object>> supertypes;
if (opt_parent.is_null()) {
supertypes.resize(wasm::kMinimumSupertypeArraySize, undefined_value());
} else {
Handle<WasmTypeInfo> parent_type_info =
handle(opt_parent->wasm_type_info(), isolate());
int first_undefined_index = -1;
for (int i = 0; i < parent_type_info->supertypes_length(); i++) {
Handle<Object> supertype =
handle(parent_type_info->supertypes(i), isolate());
if (IsUndefined(*supertype) && first_undefined_index == -1) {
first_undefined_index = i;
}
supertypes.emplace_back(supertype);
}
if (first_undefined_index >= 0) {
supertypes[first_undefined_index] = opt_parent;
} else {
supertypes.emplace_back(opt_parent);
}
}
Tagged<Map> map = *wasm_type_info_map();
Tagged<WasmTypeInfo> result =
Tagged<WasmTypeInfo>::cast(AllocateRawWithImmortalMap(
WasmTypeInfo::SizeFor(static_cast<int>(supertypes.size())),
AllocationType::kOld, map));
DisallowGarbageCollection no_gc;
result->set_supertypes_length(static_cast<int>(supertypes.size()));
for (size_t i = 0; i < supertypes.size(); i++) {
result->set_supertypes(static_cast<int>(i), *supertypes[i]);
}
result->init_native_type(isolate(), type_address);
result->set_instance(opt_instance.is_null()
? HeapObject::cast(*undefined_value())
: HeapObject::cast(*opt_instance));
result->set_type_index(type_index);
return handle(result, isolate());
}
Handle<WasmApiFunctionRef> Factory::NewWasmApiFunctionRef(
Handle<HeapObject> callable, wasm::Suspend suspend,
Handle<HeapObject> instance,
Handle<PodArray<wasm::ValueType>> serialized_sig) {
Tagged<Map> map = *wasm_api_function_ref_map();
auto result = Tagged<WasmApiFunctionRef>::cast(AllocateRawWithImmortalMap(
map->instance_size(), AllocationType::kOld, map));
DisallowGarbageCollection no_gc;
result->set_native_context(*isolate()->native_context());
if (!callable.is_null() && *callable != *undefined_value()) {
result->set_callable(*callable);
} else {
result->set_callable(*undefined_value());
}
result->set_suspend(suspend);
if (!instance.is_null() && *instance != *undefined_value()) {
result->set_instance(*instance);
} else {
result->set_instance(*undefined_value());
}
result->set_wrapper_budget(v8_flags.wasm_wrapper_tiering_budget);
result->set_call_origin(Smi::FromInt(WasmApiFunctionRef::kInvalidCallOrigin));
result->set_sig(*serialized_sig);
return handle(result, isolate());
}
Handle<WasmApiFunctionRef> Factory::NewWasmApiFunctionRef(
Handle<WasmApiFunctionRef> ref) {
return NewWasmApiFunctionRef(handle(ref->callable(), isolate()),
static_cast<wasm::Suspend>(ref->suspend()),
handle(ref->instance(), isolate()),
handle(ref->sig(), isolate()));
}
Handle<WasmInternalFunction> Factory::NewWasmInternalFunction(
Address opt_call_target, Handle<HeapObject> ref, Handle<Map> rtt,
int function_index) {
Tagged<HeapObject> raw =
AllocateRaw(rtt->instance_size(), AllocationType::kOld);
raw->set_map_after_allocation(*rtt);
Tagged<WasmInternalFunction> result = Tagged<WasmInternalFunction>::cast(raw);
DisallowGarbageCollection no_gc;
result->init_call_target(isolate(), opt_call_target);
DCHECK(IsWasmInstanceObject(*ref) || IsWasmApiFunctionRef(*ref));
result->set_ref(*ref);
// Default values, will be overwritten by the caller.
result->set_code(*BUILTIN_CODE(isolate(), Abort));
result->set_function_index(function_index);
result->set_external(*undefined_value());
return handle(result, isolate());
}
Handle<WasmJSFunctionData> Factory::NewWasmJSFunctionData(
Address opt_call_target, Handle<JSReceiver> callable,
Handle<PodArray<wasm::ValueType>> serialized_sig, Handle<Code> wrapper_code,
Handle<Map> rtt, wasm::Suspend suspend, wasm::Promise promise) {
Handle<WasmApiFunctionRef> ref = NewWasmApiFunctionRef(
callable, suspend, Handle<WasmInstanceObject>(), serialized_sig);
Handle<WasmInternalFunction> internal =
NewWasmInternalFunction(opt_call_target, ref, rtt, -1);
WasmApiFunctionRef::SetInternalFunctionAsCallOrigin(ref, internal);
Tagged<Map> map = *wasm_js_function_data_map();
Tagged<WasmJSFunctionData> result =
Tagged<WasmJSFunctionData>::cast(AllocateRawWithImmortalMap(
map->instance_size(), AllocationType::kOld, map));
DisallowGarbageCollection no_gc;
result->set_internal(*internal);
result->set_wrapper_code(*wrapper_code);
result->set_serialized_signature(*serialized_sig);
result->set_js_promise_flags(WasmFunctionData::SuspendField::encode(suspend) |
WasmFunctionData::PromiseField::encode(promise));
return handle(result, isolate());
}
Handle<WasmResumeData> Factory::NewWasmResumeData(
Handle<WasmSuspenderObject> suspender, wasm::OnResume on_resume) {
Tagged<Map> map = *wasm_resume_data_map();
Tagged<WasmResumeData> result =
Tagged<WasmResumeData>::cast(AllocateRawWithImmortalMap(
map->instance_size(), AllocationType::kOld, map));
DisallowGarbageCollection no_gc;
result->set_suspender(*suspender);
result->set_on_resume(static_cast<int>(on_resume));
return handle(result, isolate());
}
Handle<WasmExportedFunctionData> Factory::NewWasmExportedFunctionData(
Handle<Code> export_wrapper, Handle<WasmInstanceObject> instance,
Handle<WasmInternalFunction> internal, int func_index,
const wasm::FunctionSig* sig, uint32_t canonical_type_index,
int wrapper_budget, wasm::Promise promise) {
Tagged<Map> map = *wasm_exported_function_data_map();
Tagged<WasmExportedFunctionData> result =
Tagged<WasmExportedFunctionData>::cast(AllocateRawWithImmortalMap(
map->instance_size(), AllocationType::kOld, map));
DisallowGarbageCollection no_gc;
result->set_internal(*internal);
result->set_wrapper_code(*export_wrapper);
result->set_instance(*instance);
result->set_function_index(func_index);
result->init_sig(isolate(), sig);
result->set_canonical_type_index(canonical_type_index);
result->set_wrapper_budget(wrapper_budget);
// We can't skip the write barrier because Code objects are not immovable.
result->set_c_wrapper_code(*BUILTIN_CODE(isolate(), Illegal),
UPDATE_WRITE_BARRIER);
result->set_packed_args_size(0);
result->set_js_promise_flags(
WasmFunctionData::SuspendField::encode(wasm::kNoSuspend) |
WasmFunctionData::PromiseField::encode(promise));
return handle(result, isolate());
}
Handle<WasmCapiFunctionData> Factory::NewWasmCapiFunctionData(
Address call_target, Handle<Foreign> embedder_data,
Handle<Code> wrapper_code, Handle<Map> rtt,
Handle<PodArray<wasm::ValueType>> serialized_sig) {
Handle<WasmApiFunctionRef> ref =
NewWasmApiFunctionRef(Handle<JSReceiver>(), wasm::kNoSuspend,
Handle<WasmInstanceObject>(), serialized_sig);
Handle<WasmInternalFunction> internal =
NewWasmInternalFunction(call_target, ref, rtt, -1);
WasmApiFunctionRef::SetInternalFunctionAsCallOrigin(ref, internal);
Tagged<Map> map = *wasm_capi_function_data_map();
Tagged<WasmCapiFunctionData> result =
Tagged<WasmCapiFunctionData>::cast(AllocateRawWithImmortalMap(
map->instance_size(), AllocationType::kOld, map));
DisallowGarbageCollection no_gc;
result->set_internal(*internal);
result->set_wrapper_code(*wrapper_code);
result->set_embedder_data(*embedder_data);
result->set_serialized_signature(*serialized_sig);
result->set_js_promise_flags(
WasmFunctionData::SuspendField::encode(wasm::kNoSuspend) |
WasmFunctionData::PromiseField::encode(wasm::kNoPromise));
return handle(result, isolate());
}
Tagged<WasmArray> Factory::NewWasmArrayUninitialized(uint32_t length,
Handle<Map> map) {
Tagged<HeapObject> raw =
AllocateRaw(WasmArray::SizeFor(*map, length), AllocationType::kYoung);
DisallowGarbageCollection no_gc;
raw->set_map_after_allocation(*map);
Tagged<WasmArray> result = Tagged<WasmArray>::cast(raw);
result->set_raw_properties_or_hash(*empty_fixed_array(), kRelaxedStore);
result->set_length(length);
return result;
}
Handle<WasmArray> Factory::NewWasmArray(const wasm::ArrayType* type,
uint32_t length,
wasm::WasmValue initial_value,
Handle<Map> map) {
Tagged<WasmArray> result = NewWasmArrayUninitialized(length, map);
DisallowGarbageCollection no_gc;
if (type->element_type().is_numeric()) {
if (initial_value.zero_byte_representation()) {
memset(reinterpret_cast<void*>(result->ElementAddress(0)), 0,
length * type->element_type().value_kind_size());
} else {
wasm::WasmValue packed = initial_value.Packed(type->element_type());
for (uint32_t i = 0; i < length; i++) {
Address address = result->ElementAddress(i);
packed.CopyTo(reinterpret_cast<uint8_t*>(address));
}
}
} else {
for (uint32_t i = 0; i < length; i++) {
result->SetTaggedElement(i, initial_value.to_ref());
}
}
return handle(result, isolate());
}
Handle<WasmArray> Factory::NewWasmArrayFromElements(
const wasm::ArrayType* type, const std::vector<wasm::WasmValue>& elements,
Handle<Map> map) {
uint32_t length = static_cast<uint32_t>(elements.size());
Tagged<WasmArray> result = NewWasmArrayUninitialized(length, map);
DisallowGarbageCollection no_gc;
if (type->element_type().is_numeric()) {
for (uint32_t i = 0; i < length; i++) {
Address address = result->ElementAddress(i);
elements[i]
.Packed(type->element_type())
.CopyTo(reinterpret_cast<uint8_t*>(address));
}
} else {
for (uint32_t i = 0; i < length; i++) {
result->SetTaggedElement(i, elements[i].to_ref());
}
}
return handle(result, isolate());
}
Handle<WasmArray> Factory::NewWasmArrayFromMemory(uint32_t length,
Handle<Map> map,
Address source) {
wasm::ValueType element_type =
reinterpret_cast<wasm::ArrayType*>(map->wasm_type_info()->native_type())
->element_type();
DCHECK(element_type.is_numeric());
Tagged<WasmArray> result = NewWasmArrayUninitialized(length, map);
DisallowGarbageCollection no_gc;
#if V8_TARGET_BIG_ENDIAN
MemCopyAndSwitchEndianness(reinterpret_cast<void*>(result->ElementAddress(0)),
reinterpret_cast<void*>(source), length,
element_type.value_kind_size());
#else
MemCopy(reinterpret_cast<void*>(result->ElementAddress(0)),
reinterpret_cast<void*>(source),
length * element_type.value_kind_size());
#endif
return handle(result, isolate());
}
Handle<Object> Factory::NewWasmArrayFromElementSegment(
Handle<WasmInstanceObject> instance, uint32_t segment_index,
uint32_t start_offset, uint32_t length, Handle<Map> map) {
DCHECK(WasmArray::type(*map)->element_type().is_reference());
// If the element segment has not been initialized yet, lazily initialize it
// now.
AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
base::Optional<MessageTemplate> opt_error =
wasm::InitializeElementSegment(&zone, isolate(), instance, segment_index);
if (opt_error.has_value()) {
return handle(Smi::FromEnum(opt_error.value()), isolate());
}
Handle<FixedArray> elements =
handle(FixedArray::cast(instance->element_segments()->get(segment_index)),
isolate());
Tagged<WasmArray> result = NewWasmArrayUninitialized(length, map);
DisallowGarbageCollection no_gc;
if (length > 0) {
isolate()->heap()->CopyRange(result, result->ElementSlot(0),
elements->RawFieldOfElementAt(start_offset),
length, SKIP_WRITE_BARRIER);
}
return handle(result, isolate());
}
Handle<WasmStruct> Factory::NewWasmStruct(const wasm::StructType* type,
wasm::WasmValue* args,
Handle<Map> map) {
Tagged<HeapObject> raw =
AllocateRaw(WasmStruct::Size(type), AllocationType::kYoung);
raw->set_map_after_allocation(*map);
Tagged<WasmStruct> result = WasmStruct::cast(raw);
result->set_raw_properties_or_hash(*empty_fixed_array(), kRelaxedStore);
for (uint32_t i = 0; i < type->field_count(); i++) {
int offset = type->field_offset(i);
if (type->field(i).is_numeric()) {
Address address = result->RawFieldAddress(offset);
args[i]
.Packed(type->field(i))
.CopyTo(reinterpret_cast<uint8_t*>(address));
} else {
offset += WasmStruct::kHeaderSize;
TaggedField<Object>::store(result, offset, *args[i].to_ref());
}
}
return handle(result, isolate());
}
Handle<WasmContinuationObject> Factory::NewWasmContinuationObject(
Address jmpbuf, Handle<Foreign> managed_stack, Handle<HeapObject> parent,
AllocationType allocation) {
Tagged<Map> map = *wasm_continuation_object_map();
auto result = Tagged<WasmContinuationObject>::cast(
AllocateRawWithImmortalMap(map->instance_size(), allocation, map));
result->init_jmpbuf(isolate(), jmpbuf);
result->set_stack(*managed_stack);
result->set_parent(*parent);
return handle(result, isolate());
}
Handle<SharedFunctionInfo>
Factory::NewSharedFunctionInfoForWasmExportedFunction(
Handle<String> name, Handle<WasmExportedFunctionData> data) {
return NewSharedFunctionInfo(name, data, Builtin::kNoBuiltinId);
}
Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForWasmJSFunction(
Handle<String> name, Handle<WasmJSFunctionData> data) {
return NewSharedFunctionInfo(name, data, Builtin::kNoBuiltinId);
}
Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForWasmResume(
Handle<WasmResumeData> data) {
return NewSharedFunctionInfo({}, data, Builtin::kNoBuiltinId);
}
Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForWasmCapiFunction(
Handle<WasmCapiFunctionData> data) {
return NewSharedFunctionInfo(MaybeHandle<String>(), data,
Builtin::kNoBuiltinId,
FunctionKind::kConciseMethod);
}
#endif // V8_ENABLE_WEBASSEMBLY
Handle<Cell> Factory::NewCell(Tagged<Smi> value) {
static_assert(Cell::kSize <= kMaxRegularHeapObjectSize);
Tagged<Cell> result = Tagged<Cell>::cast(AllocateRawWithImmortalMap(
Cell::kSize, AllocationType::kOld, *cell_map()));
DisallowGarbageCollection no_gc;
result->set_value(value, WriteBarrierMode::SKIP_WRITE_BARRIER);
return handle(result, isolate());
}
Handle<Cell> Factory::NewCell() {
static_assert(Cell::kSize <= kMaxRegularHeapObjectSize);
Tagged<Cell> result = Tagged<Cell>::cast(AllocateRawWithImmortalMap(
Cell::kSize, AllocationType::kOld, *cell_map()));
result->set_value(read_only_roots().undefined_value(),
WriteBarrierMode::SKIP_WRITE_BARRIER);
return handle(result, isolate());
}
Handle<FeedbackCell> Factory::NewNoClosuresCell(Handle<HeapObject> value) {
Tagged<FeedbackCell> result =
Tagged<FeedbackCell>::cast(AllocateRawWithImmortalMap(
FeedbackCell::kAlignedSize, AllocationType::kOld,
*no_closures_cell_map()));
DisallowGarbageCollection no_gc;
result->set_value(*value);
result->clear_interrupt_budget();
result->clear_padding();
return handle(result, isolate());
}
Handle<FeedbackCell> Factory::NewOneClosureCell(Handle<HeapObject> value) {
Tagged<FeedbackCell> result =
Tagged<FeedbackCell>::cast(AllocateRawWithImmortalMap(
FeedbackCell::kAlignedSize, AllocationType::kOld,
*one_closure_cell_map()));
DisallowGarbageCollection no_gc;
result->set_value(*value);
result->clear_interrupt_budget();
result->clear_padding();
return handle(result, isolate());
}
Handle<FeedbackCell> Factory::NewManyClosuresCell(Handle<HeapObject> value) {
Tagged<FeedbackCell> result =
Tagged<FeedbackCell>::cast(AllocateRawWithImmortalMap(
FeedbackCell::kAlignedSize, AllocationType::kOld,
*many_closures_cell_map()));
DisallowGarbageCollection no_gc;
result->set_value(*value);
result->clear_interrupt_budget();
result->clear_padding();
return handle(result, isolate());
}
Handle<PropertyCell> Factory::NewPropertyCell(Handle<Name> name,
PropertyDetails details,
Handle<Object> value,
AllocationType allocation) {
DCHECK(IsUniqueName(*name));
static_assert(PropertyCell::kSize <= kMaxRegularHeapObjectSize);
Tagged<PropertyCell> cell =
Tagged<PropertyCell>::cast(AllocateRawWithImmortalMap(
PropertyCell::kSize, allocation, *global_property_cell_map()));
DisallowGarbageCollection no_gc;
cell->set_dependent_code(
DependentCode::empty_dependent_code(ReadOnlyRoots(isolate())),
SKIP_WRITE_BARRIER);
WriteBarrierMode mode = allocation == AllocationType::kYoung
? SKIP_WRITE_BARRIER
: UPDATE_WRITE_BARRIER;
cell->set_name(*name, mode);
cell->set_value(*value, mode);
cell->set_property_details_raw(details.AsSmi(), SKIP_WRITE_BARRIER);
return handle(cell, isolate());
}
Handle<PropertyCell> Factory::NewProtector() {
return NewPropertyCell(
empty_string(), PropertyDetails::Empty(PropertyCellType::kConstantType),
handle(Smi::FromInt(Protectors::kProtectorValid), isolate()));
}
Handle<TransitionArray> Factory::NewTransitionArray(int number_of_transitions,
int slack) {
int capacity = TransitionArray::LengthFor(number_of_transitions + slack);
Handle<TransitionArray> array = Handle<TransitionArray>::cast(
NewWeakFixedArrayWithMap(read_only_roots().transition_array_map(),
capacity, AllocationType::kOld));
// Transition arrays are AllocationType::kOld. When black allocation is on we
// have to add the transition array to the list of
// encountered_transition_arrays.
Heap* heap = isolate()->heap();
if (heap->incremental_marking()->black_allocation()) {
heap->mark_compact_collector()->AddTransitionArray(*array);
}
array->WeakFixedArray::Set(TransitionArray::kPrototypeTransitionsIndex,
MaybeObject::FromObject(Smi::zero()));
array->WeakFixedArray::Set(
TransitionArray::kTransitionLengthIndex,
MaybeObject::FromObject(Smi::FromInt(number_of_transitions)));
return array;
}
Handle<AllocationSite> Factory::NewAllocationSite(bool with_weak_next) {
Handle<Map> map = with_weak_next ? allocation_site_map()
: allocation_site_without_weaknext_map();
Handle<AllocationSite> site(
AllocationSite::cast(New(map, AllocationType::kOld)), isolate());
site->Initialize();
if (with_weak_next) {
// Link the site
site->set_weak_next(isolate()->heap()->allocation_sites_list());
isolate()->heap()->set_allocation_sites_list(*site);
}
return site;
}
Handle<Map> Factory::NewMap(InstanceType type, int instance_size,
ElementsKind elements_kind, int inobject_properties,
AllocationType allocation_type) {
static_assert(LAST_JS_OBJECT_TYPE == LAST_TYPE);
DCHECK(!InstanceTypeChecker::MayHaveMapCheckFastCase(type));
DCHECK_IMPLIES(InstanceTypeChecker::IsJSObject(type) &&
!Map::CanHaveFastTransitionableElementsKind(type),
IsDictionaryElementsKind(elements_kind) ||
IsTerminalElementsKind(elements_kind) ||
IsSharedArrayElementsKind(elements_kind));
DCHECK(allocation_type == AllocationType::kMap ||
allocation_type == AllocationType::kSharedMap);
Tagged<HeapObject> result =
allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
Map::kSize, allocation_type);
DisallowGarbageCollection no_gc;
Heap* roots = allocation_type == AllocationType::kMap
? isolate()->heap()
: isolate()->shared_space_isolate()->heap();
result->set_map_after_allocation(ReadOnlyRoots(roots).meta_map(),
SKIP_WRITE_BARRIER);
#if V8_STATIC_ROOTS_BOOL
CHECK_IMPLIES(InstanceTypeChecker::IsJSReceiver(type),
V8HeapCompressionScheme::CompressObject(result.ptr()) >
InstanceTypeChecker::kNonJsReceiverMapLimit);
#endif
isolate()->counters()->maps_created()->Increment();
return handle(InitializeMap(Map::cast(result), type, instance_size,
elements_kind, inobject_properties, roots),
isolate());
}
Tagged<Map> Factory::InitializeMap(Tagged<Map> map, InstanceType type,
int instance_size,
ElementsKind elements_kind,
int inobject_properties, Heap* roots) {
DisallowGarbageCollection no_gc;
map->set_bit_field(0);
map->set_bit_field2(Map::Bits2::NewTargetIsBaseBit::encode(true));
int bit_field3 =
Map::Bits3::EnumLengthBits::encode(kInvalidEnumCacheSentinel) |
Map::Bits3::OwnsDescriptorsBit::encode(true) |
Map::Bits3::ConstructionCounterBits::encode(Map::kNoSlackTracking) |
Map::Bits3::IsExtensibleBit::encode(true);
map->set_bit_field3(bit_field3);
map->set_instance_type(type);
ReadOnlyRoots ro_roots(roots);
map->init_prototype_and_constructor_or_back_pointer(ro_roots);
map->set_instance_size(instance_size);
if (IsJSObjectMap(*map)) {
// Shared space JS objects have fixed layout and can have RO maps. No other
// JS objects have RO maps.
DCHECK_IMPLIES(!IsAlwaysSharedSpaceJSObjectMap(*map),
!ReadOnlyHeap::Contains(map));
map->SetInObjectPropertiesStartInWords(instance_size / kTaggedSize -
inobject_properties);
DCHECK_EQ(map->GetInObjectProperties(), inobject_properties);
map->set_prototype_validity_cell(ro_roots.invalid_prototype_validity_cell(),
kRelaxedStore);
} else {
DCHECK_EQ(inobject_properties, 0);
map->set_inobject_properties_start_or_constructor_function_index(0);
map->set_prototype_validity_cell(Smi::FromInt(Map::kPrototypeChainValid),
kRelaxedStore, SKIP_WRITE_BARRIER);
}
map->set_dependent_code(DependentCode::empty_dependent_code(ro_roots),
SKIP_WRITE_BARRIER);
map->set_raw_transitions(MaybeObject::FromSmi(Smi::zero()),
SKIP_WRITE_BARRIER);
map->SetInObjectUnusedPropertyFields(inobject_properties);
map->SetInstanceDescriptors(isolate(), ro_roots.empty_descriptor_array(), 0);
// Must be called only after |instance_type| and |instance_size| are set.
map->set_visitor_id(Map::GetVisitorId(map));
DCHECK(!map->is_in_retained_map_list());
map->clear_padding();
map->set_elements_kind(elements_kind);
if (v8_flags.log_maps) LOG(isolate(), MapCreate(map));
return map;
}
Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> source) {
return CopyJSObjectWithAllocationSite(source, Handle<AllocationSite>());
}
Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
Handle<JSObject> source, Handle<AllocationSite> site) {
Handle<Map> map(source->map(), isolate());
// We can only clone regexps, normal objects, api objects, errors or arrays.
// Copying anything else will break invariants.
InstanceType instance_type = map->instance_type();
bool is_clonable_js_type =
instance_type == JS_REG_EXP_TYPE || instance_type == JS_OBJECT_TYPE ||
instance_type == JS_ERROR_TYPE || instance_type == JS_ARRAY_TYPE ||
instance_type == JS_SPECIAL_API_OBJECT_TYPE ||
InstanceTypeChecker::IsJSApiObject(instance_type);
bool is_clonable_wasm_type = false;
#if V8_ENABLE_WEBASSEMBLY
is_clonable_wasm_type = instance_type == WASM_GLOBAL_OBJECT_TYPE ||
instance_type == WASM_INSTANCE_OBJECT_TYPE ||
instance_type == WASM_MEMORY_OBJECT_TYPE ||
instance_type == WASM_MODULE_OBJECT_TYPE ||
instance_type == WASM_TABLE_OBJECT_TYPE;
#endif // V8_ENABLE_WEBASSEMBLY
CHECK(is_clonable_js_type || is_clonable_wasm_type);
DCHECK(site.is_null() || AllocationSite::CanTrack(instance_type));
int object_size = map->instance_size();
int aligned_object_size = ALIGN_TO_ALLOCATION_ALIGNMENT(object_size);
int adjusted_object_size = aligned_object_size;
if (!site.is_null()) {
DCHECK(V8_ALLOCATION_SITE_TRACKING_BOOL);
adjusted_object_size +=
ALIGN_TO_ALLOCATION_ALIGNMENT(AllocationMemento::kSize);
}
Tagged<HeapObject> raw_clone =
allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
adjusted_object_size, AllocationType::kYoung);
DCHECK(Heap::InYoungGeneration(raw_clone) || v8_flags.single_generation);
Heap::CopyBlock(raw_clone.address(), source->address(), object_size);
Handle<JSObject> clone(JSObject::cast(raw_clone), isolate());
if (v8_flags.enable_unconditional_write_barriers) {
// By default, we shouldn't need to update the write barrier here, as the
// clone will be allocated in new space.
const ObjectSlot start(raw_clone.address());
const ObjectSlot end(raw_clone.address() + object_size);
isolate()->heap()->WriteBarrierForRange(raw_clone, start, end);
}
if (!site.is_null()) {
Tagged<AllocationMemento> alloc_memento =
Tagged<AllocationMemento>::unchecked_cast(
Tagged<Object>(raw_clone.ptr() + aligned_object_size));
InitializeAllocationMemento(alloc_memento, *site);
}
SLOW_DCHECK(clone->GetElementsKind() == source->GetElementsKind());
Tagged<FixedArrayBase> elements = source->elements();
// Update elements if necessary.
if (elements->length() > 0) {
Tagged<FixedArrayBase> elem;
if (elements->map() == *fixed_cow_array_map()) {
elem = elements;
} else if (source->HasDoubleElements()) {
elem = *CopyFixedDoubleArray(
handle(FixedDoubleArray::cast(elements), isolate()));
} else {
elem = *CopyFixedArray(
handle(Tagged<FixedArray>::cast(elements), isolate()));
}
clone->set_elements(elem);
}
// Update properties if necessary.
if (source->HasFastProperties()) {
Tagged<PropertyArray> properties = source->property_array();
if (properties->length() > 0) {
// TODO(gsathya): Do not copy hash code.
Handle<PropertyArray> prop = CopyArrayWithMap(
handle(properties, isolate()), handle(properties->map(), isolate()));
clone->set_raw_properties_or_hash(*prop, kRelaxedStore);
}
} else {
Handle<Object> copied_properties;
if (V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL) {
copied_properties = SwissNameDictionary::ShallowCopy(
isolate(), handle(source->property_dictionary_swiss(), isolate()));
} else {
copied_properties =
CopyFixedArray(handle(source->property_dictionary(), isolate()));
}
clone->set_raw_properties_or_hash(*copied_properties, kRelaxedStore);
}
return clone;
}
namespace {
template <typename T>
void initialize_length(Tagged<T> array, int length) {
array->set_length(length);
}
template <>
void initialize_length<PropertyArray>(Tagged<PropertyArray> array, int length) {
array->initialize_length(length);
}
inline void InitEmbedderFields(Tagged<JSObject> obj,
Tagged<Object> initial_value) {
for (int i = 0; i < obj->GetEmbedderFieldCount(); i++) {
EmbedderDataSlot(obj, i).Initialize(initial_value);
}
}
} // namespace
template <typename T>
Handle<T> Factory::CopyArrayWithMap(Handle<T> src, Handle<Map> map,
AllocationType allocation) {
int len = src->length();
Tagged<HeapObject> new_object = AllocateRawFixedArray(len, allocation);
DisallowGarbageCollection no_gc;
new_object->set_map_after_allocation(*map, SKIP_WRITE_BARRIER);
Tagged<T> result = Tagged<T>::cast(new_object);
initialize_length(result, len);
// Copy the content.
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
result->CopyElements(isolate(), 0, *src, 0, len, mode);
return handle(result, isolate());
}
template <typename T>
Handle<T> Factory::CopyArrayAndGrow(Handle<T> src, int grow_by,
AllocationType allocation) {
DCHECK_LT(0, grow_by);
DCHECK_LE(grow_by, kMaxInt - src->length());
int old_len = src->length();
int new_len = old_len + grow_by;
Tagged<HeapObject> new_object = AllocateRawFixedArray(new_len, allocation);
DisallowGarbageCollection no_gc;
new_object->set_map_after_allocation(src->map(), SKIP_WRITE_BARRIER);
Tagged<T> result = Tagged<T>::cast(new_object);
initialize_length(result, new_len);
// Copy the content.
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
result->CopyElements(isolate(), 0, *src, 0, old_len, mode);
MemsetTagged(ObjectSlot(result->data_start() + old_len),
read_only_roots().undefined_value(), grow_by);
return handle(result, isolate());
}
Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
Handle<Map> map,
AllocationType allocation) {
return CopyArrayWithMap(array, map, allocation);
}
Handle<WeakArrayList> Factory::NewUninitializedWeakArrayList(
int capacity, AllocationType allocation) {
DCHECK_LE(0, capacity);
if (capacity == 0) return empty_weak_array_list();
Tagged<HeapObject> heap_object =
AllocateRawWeakArrayList(capacity, allocation);
DisallowGarbageCollection no_gc;
heap_object->set_map_after_allocation(*weak_array_list_map(),
SKIP_WRITE_BARRIER);
Tagged<WeakArrayList> result = Tagged<WeakArrayList>::cast(heap_object);
result->set_length(0);
result->set_capacity(capacity);
return handle(result, isolate());
}
Handle<WeakArrayList> Factory::NewWeakArrayList(int capacity,
AllocationType allocation) {
Handle<WeakArrayList> result =
NewUninitializedWeakArrayList(capacity, allocation);
MemsetTagged(ObjectSlot(result->data_start()),
read_only_roots().undefined_value(), capacity);
return result;
}
Handle<FixedArray> Factory::CopyFixedArrayAndGrow(Handle<FixedArray> array,
int grow_by,
AllocationType allocation) {
return CopyArrayAndGrow(array, grow_by, allocation);
}
Handle<WeakFixedArray> Factory::CopyWeakFixedArrayAndGrow(
Handle<WeakFixedArray> src, int grow_by) {
DCHECK(!IsTransitionArray(*src)); // Compacted by GC, this code doesn't work
return CopyArrayAndGrow(src, grow_by, AllocationType::kOld);
}
Handle<WeakArrayList> Factory::CopyWeakArrayListAndGrow(
Handle<WeakArrayList> src, int grow_by, AllocationType allocation) {
int old_capacity = src->capacity();
int new_capacity = old_capacity + grow_by;
DCHECK_GE(new_capacity, old_capacity);
Handle<WeakArrayList> result =
NewUninitializedWeakArrayList(new_capacity, allocation);
DisallowGarbageCollection no_gc;
Tagged<WeakArrayList> raw = *result;
int old_len = src->length();
raw->set_length(old_len);
// Copy the content.
WriteBarrierMode mode = raw->GetWriteBarrierMode(no_gc);
raw->CopyElements(isolate(), 0, *src, 0, old_len, mode);
MemsetTagged(ObjectSlot(raw->data_start() + old_len),
read_only_roots().undefined_value(), new_capacity - old_len);
return result;
}
Handle<WeakArrayList> Factory::CompactWeakArrayList(Handle<WeakArrayList> src,
int new_capacity,
AllocationType allocation) {
Handle<WeakArrayList> result =
NewUninitializedWeakArrayList(new_capacity, allocation);
// Copy the content.
DisallowGarbageCollection no_gc;
Tagged<WeakArrayList> raw_src = *src;
Tagged<WeakArrayList> raw_result = *result;
WriteBarrierMode mode = raw_result->GetWriteBarrierMode(no_gc);
int copy_to = 0, length = raw_src->length();
for (int i = 0; i < length; i++) {
MaybeObject element = raw_src->Get(i);
if (element->IsCleared()) continue;
raw_result->Set(copy_to++, element, mode);
}
raw_result->set_length(copy_to);
MemsetTagged(ObjectSlot(raw_result->data_start() + copy_to),
read_only_roots().undefined_value(), new_capacity - copy_to);
return result;
}
Handle<PropertyArray> Factory::CopyPropertyArrayAndGrow(
Handle<PropertyArray> array, int grow_by) {
return CopyArrayAndGrow(array, grow_by, AllocationType::kYoung);
}
Handle<FixedArray> Factory::CopyFixedArrayUpTo(Handle<FixedArray> array,
int new_len,
AllocationType allocation) {
DCHECK_LE(0, new_len);
DCHECK_LE(new_len, array->length());
if (new_len == 0) return empty_fixed_array();
Tagged<HeapObject> heap_object = AllocateRawFixedArray(new_len, allocation);
DisallowGarbageCollection no_gc;
heap_object->set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER);
Tagged<FixedArray> result = Tagged<FixedArray>::cast(heap_object);
result->set_length(new_len);
// Copy the content.
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
result->CopyElements(isolate(), 0, *array, 0, new_len, mode);
return handle(result, isolate());
}
Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
if (array->length() == 0) return array;
return CopyArrayWithMap(array, handle(array->map(), isolate()));
}
Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
Handle<FixedDoubleArray> array) {
int len = array->length();
if (len == 0) return array;
Handle<FixedDoubleArray> result =
Handle<FixedDoubleArray>::cast(NewFixedDoubleArray(len));
Heap::CopyBlock(
result->address() + FixedDoubleArray::kLengthOffset,
array->address() + FixedDoubleArray::kLengthOffset,
FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset);
return result;
}
Handle<HeapNumber> Factory::NewHeapNumberForCodeAssembler(double value) {
ReadOnlyRoots roots(isolate());
auto num = roots.FindHeapNumber(value);
if (!num.is_null()) return num;
// Add known HeapNumber constants to the read only roots. This ensures
// r/o snapshots to be deterministic.
DCHECK(!CanAllocateInReadOnlySpace());
return NewHeapNumber<AllocationType::kOld>(value);
}
Handle<JSObject> Factory::NewError(Handle<JSFunction> constructor,
MessageTemplate template_index,
Handle<Object> arg0, Handle<Object> arg1,
Handle<Object> arg2) {
HandleScope scope(isolate());
if (arg0.is_null()) arg0 = undefined_value();
if (arg1.is_null()) arg1 = undefined_value();
if (arg2.is_null()) arg2 = undefined_value();
return scope.CloseAndEscape(ErrorUtils::MakeGenericError(
isolate(), constructor, template_index, arg0, arg1, arg2, SKIP_NONE));
}
Handle<JSObject> Factory::NewError(Handle<JSFunction> constructor,
Handle<String> message,
Handle<Object> options) {
// Construct a new error object. If an exception is thrown, use the exception
// as the result.
Handle<Object> no_caller;
if (options.is_null()) options = undefined_value();
return ErrorUtils::Construct(isolate(), constructor, constructor, message,
options, SKIP_NONE, no_caller,
ErrorUtils::StackTraceCollection::kEnabled)
.ToHandleChecked();
}
Handle<Object> Factory::NewInvalidStringLengthError() {
if (v8_flags.correctness_fuzzer_suppressions) {
FATAL("Aborting on invalid string length");
}
// Invalidate the "string length" protector.
if (Protectors::IsStringLengthOverflowLookupChainIntact(isolate())) {
Protectors::InvalidateStringLengthOverflowLookupChain(isolate());
}
return NewRangeError(MessageTemplate::kInvalidStringLength);
}
#define DEFINE_ERROR(NAME, name) \
Handle<JSObject> Factory::New##NAME( \
MessageTemplate template_index, Handle<Object> arg0, \
Handle<Object> arg1, Handle<Object> arg2) { \
return NewError(isolate()->name##_function(), template_index, arg0, arg1, \
arg2); \
}
DEFINE_ERROR(Error, error)
DEFINE_ERROR(EvalError, eval_error)
DEFINE_ERROR(RangeError, range_error)
DEFINE_ERROR(ReferenceError, reference_error)
DEFINE_ERROR(SyntaxError, syntax_error)
DEFINE_ERROR(TypeError, type_error)
DEFINE_ERROR(WasmCompileError, wasm_compile_error)
DEFINE_ERROR(WasmLinkError, wasm_link_error)
DEFINE_ERROR(WasmRuntimeError, wasm_runtime_error)
#undef DEFINE_ERROR
Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
// Make sure to use globals from the function's context, since the function
// can be from a different context.
Handle<NativeContext> native_context(function->native_context(), isolate());
Handle<Map> new_map;
if (V8_UNLIKELY(IsAsyncGeneratorFunction(function->shared()->kind()))) {
new_map = handle(native_context->async_generator_object_prototype_map(),
isolate());
} else if (IsResumableFunction(function->shared()->kind())) {
// Generator and async function prototypes can share maps since they
// don't have "constructor" properties.
new_map =
handle(native_context->generator_object_prototype_map(), isolate());
} else {
// Each function prototype gets a fresh map to avoid unwanted sharing of
// maps between prototypes of different constructors.
Handle<JSFunction> object_function(native_context->object_function(),
isolate());
DCHECK(object_function->has_initial_map());
new_map = handle(object_function->initial_map(), isolate());
}
DCHECK(!new_map->is_prototype_map());
Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
if (!IsResumableFunction(function->shared()->kind())) {
JSObject::AddProperty(isolate(), prototype, constructor_string(), function,
DONT_ENUM);
}
return prototype;
}
Handle<JSObject> Factory::NewExternal(void* value) {
auto external =
Handle<JSExternalObject>::cast(NewJSObjectFromMap(external_map()));
external->init_value(isolate(), value);
return external;
}
Handle<Code> Factory::NewCodeObjectForEmbeddedBuiltin(Handle<Code> code,
Address off_heap_entry) {
CHECK_NOT_NULL(isolate()->embedded_blob_code());
CHECK_NE(0, isolate()->embedded_blob_code_size());
CHECK(Builtins::IsIsolateIndependentBuiltin(*code));
DCHECK(code->has_instruction_stream()); // Just generated as on-heap code.
DCHECK(Builtins::IsBuiltinId(code->builtin_id()));
DCHECK_EQ(code->inlined_bytecode_size(), 0);
DCHECK_EQ(code->osr_offset(), BytecodeOffset::None());
DCHECK_EQ(code->raw_deoptimization_data_or_interpreter_data(),
read_only_roots().empty_fixed_array());
// .. because we don't explicitly initialize these flags:
DCHECK(!code->marked_for_deoptimization());
DCHECK(!code->can_have_weak_objects());
DCHECK(!code->embedded_objects_cleared());
// This check would fail. We explicitly replace any existing position tables
// with the empty byte array below. Note this isn't strictly necessary - we
// could keep the position tables if we'd properly allocate them into RO
// space when needed.
// DCHECK_EQ(code->raw_position_table(), *empty_byte_array());
NewCodeOptions new_code_options = {
code->kind(),
code->builtin_id(),
code->is_turbofanned(),
code->stack_slots(),
code->instruction_size(),
code->metadata_size(),
code->inlined_bytecode_size(),
code->osr_offset(),
code->handler_table_offset(),
code->constant_pool_offset(),
code->code_comments_offset(),
code->unwinding_info_offset(),
handle(code->raw_deoptimization_data_or_interpreter_data(), isolate()),
/*bytecode_offsets_or_source_position_table=*/empty_byte_array(),
/*instruction_stream=*/MaybeHandle<InstructionStream>{},
off_heap_entry,
};
return NewCode(new_code_options);
}
Handle<BytecodeArray> Factory::CopyBytecodeArray(Handle<BytecodeArray> source) {
int size = BytecodeArray::SizeFor(source->length());
Tagged<BytecodeArray> copy = BytecodeArray::cast(AllocateRawWithImmortalMap(
size, AllocationType::kOld, *bytecode_array_map()));
DisallowGarbageCollection no_gc;
Tagged<BytecodeArray> raw_source = *source;
copy->set_length(raw_source->length());
copy->set_frame_size(raw_source->frame_size());
copy->set_parameter_count(raw_source->parameter_count());
copy->set_incoming_new_target_or_generator_register(
raw_source->incoming_new_target_or_generator_register());
copy->set_constant_pool(raw_source->constant_pool());
copy->set_handler_table(raw_source->handler_table());
copy->set_source_position_table(
raw_source->source_position_table(kAcquireLoad), kReleaseStore);
raw_source->CopyBytecodesTo(copy);
return handle(copy, isolate());
}
Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
AllocationType allocation) {
JSFunction::EnsureHasInitialMap(constructor);
Handle<Map> map(constructor->initial_map(), isolate());
// NewJSObjectFromMap does not support creating dictionary mode objects. Need
// to use NewSlowJSObjectFromMap instead.
DCHECK(!map->is_dictionary_map());
return NewJSObjectFromMap(map, allocation);
}
Handle<JSObject> Factory::NewSlowJSObjectWithNullProto() {
Handle<JSObject> result =
NewSlowJSObjectFromMap(isolate()->slow_object_with_null_prototype_map());
return result;
}
Handle<JSObject> Factory::NewJSObjectWithNullProto() {
Handle<Map> map(isolate()->object_function()->initial_map(), isolate());
Handle<Map> map_with_null_proto =
Map::TransitionToPrototype(isolate(), map, null_value());
return NewJSObjectFromMap(map_with_null_proto);
}
Handle<JSGlobalObject> Factory::NewJSGlobalObject(
Handle<JSFunction> constructor) {
DCHECK(constructor->has_initial_map());
Handle<Map> map(constructor->initial_map(), isolate());
DCHECK(map->is_dictionary_map());
// Make sure no field properties are described in the initial map.
// This guarantees us that normalizing the properties does not
// require us to change property values to PropertyCells.
DCHECK_EQ(map->NextFreePropertyIndex(), 0);
// Make sure we don't have a ton of pre-allocated slots in the
// global objects. They will be unused once we normalize the object.
DCHECK_EQ(map->UnusedPropertyFields(), 0);
DCHECK_EQ(map->GetInObjectProperties(), 0);
// Initial size of the backing store to avoid resize of the storage during
// bootstrapping. The size differs between the JS global object ad the
// builtins object.
int initial_size = 64;
// Allocate a dictionary object for backing storage.
int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
Handle<GlobalDictionary> dictionary =
GlobalDictionary::New(isolate(), at_least_space_for);
// The global object might be created from an object template with accessors.
// Fill these accessors into the dictionary.
Handle<DescriptorArray> descs(map->instance_descriptors(isolate()),
isolate());
for (InternalIndex i : map->IterateOwnDescriptors()) {
PropertyDetails details = descs->GetDetails(i);
// Only accessors are expected.
DCHECK_EQ(PropertyKind::kAccessor, details.kind());
PropertyDetails d(PropertyKind::kAccessor, details.attributes(),
PropertyCellType::kMutable);
Handle<Name> name(descs->GetKey(i), isolate());
Handle<Object> value(descs->GetStrongValue(i), isolate());
Handle<PropertyCell> cell = NewPropertyCell(name, d, value);
// |dictionary| already contains enough space for all properties.
USE(GlobalDictionary::Add(isolate(), dictionary, name, cell, d));
}
// Allocate the global object and initialize it with the backing store.
Handle<JSGlobalObject> global(
JSGlobalObject::cast(New(map, AllocationType::kOld)), isolate());
InitializeJSObjectFromMap(*global, *dictionary, *map);
// Create a new map for the global object.
Handle<Map> new_map = Map::CopyDropDescriptors(isolate(), map);
Tagged<Map> raw_map = *new_map;
raw_map->set_may_have_interesting_properties(true);
raw_map->set_is_dictionary_map(true);
LOG(isolate(), MapDetails(raw_map));
// Set up the global object as a normalized object.
global->set_global_dictionary(*dictionary, kReleaseStore);
global->set_map(raw_map, kReleaseStore);
// Make sure result is a global object with properties in dictionary.
DCHECK(IsJSGlobalObject(*global) && !global->HasFastProperties());
return global;
}
void Factory::InitializeJSObjectFromMap(Tagged<JSObject> obj,
Tagged<Object> properties,
Tagged<Map> map) {
DisallowGarbageCollection no_gc;
obj->set_raw_properties_or_hash(properties, kRelaxedStore);
obj->initialize_elements();
// TODO(1240798): Initialize the object's body using valid initial values
// according to the object's initial map. For example, if the map's
// instance type is JS_ARRAY_TYPE, the length field should be initialized
// to a number (e.g. Smi::zero()) and the elements initialized to a
// fixed array (e.g. Heap::empty_fixed_array()). Currently, the object
// verification code has to cope with (temporarily) invalid objects. See
// for example, JSArray::JSArrayVerify).
InitializeJSObjectBody(obj, map, JSObject::kHeaderSize);
}
void Factory::InitializeJSObjectBody(Tagged<JSObject> obj, Tagged<Map> map,
int start_offset) {
DisallowGarbageCollection no_gc;
if (start_offset == map->instance_size()) return;
DCHECK_LT(start_offset, map->instance_size());
// We cannot always fill with one_pointer_filler_map because objects
// created from API functions expect their embedder fields to be initialized
// with undefined_value.
// Pre-allocated fields need to be initialized with undefined_value as well
// so that object accesses before the constructor completes (e.g. in the
// debugger) will not cause a crash.
// In case of Array subclassing the |map| could already be transitioned
// to different elements kind from the initial map on which we track slack.
bool in_progress = map->IsInobjectSlackTrackingInProgress();
obj->InitializeBody(map, start_offset, in_progress,
ReadOnlyRoots(isolate()).one_pointer_filler_map_word(),
*undefined_value());
if (in_progress) {
map->FindRootMap(isolate())->InobjectSlackTrackingStep(isolate());
}
}
Handle<JSObject> Factory::NewJSObjectFromMap(
Handle<Map> map, AllocationType allocation,
Handle<AllocationSite> allocation_site) {
// JSFunctions should be allocated using AllocateFunction to be
// properly initialized.
DCHECK(!InstanceTypeChecker::IsJSFunction(*map));
// Both types of global objects should be allocated using
// AllocateGlobalObject to be properly initialized.
DCHECK(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
Tagged<JSObject> js_obj = Tagged<JSObject>::cast(
AllocateRawWithAllocationSite(map, allocation, allocation_site));
InitializeJSObjectFromMap(js_obj, *empty_fixed_array(), *map);
DCHECK(js_obj->HasFastElements() ||
(isolate()->bootstrapper()->IsActive() ||
*map == isolate()
->raw_native_context()
->js_array_template_literal_object_map()) ||
js_obj->HasTypedArrayOrRabGsabTypedArrayElements() ||
js_obj->HasFastStringWrapperElements() ||
js_obj->HasFastArgumentsElements() ||
js_obj->HasDictionaryElements() || js_obj->HasSharedArrayElements());
return handle(js_obj, isolate());
}
Handle<JSObject> Factory::NewSlowJSObjectFromMap(
Handle<Map> map, int capacity, AllocationType allocation,
Handle<AllocationSite> allocation_site) {
DCHECK(map->is_dictionary_map());
Handle<HeapObject> object_properties;
if (V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL) {
object_properties = NewSwissNameDictionary(capacity, allocation);
} else {
object_properties = NameDictionary::New(isolate(), capacity);
}
Handle<JSObject> js_object =
NewJSObjectFromMap(map, allocation, allocation_site);
js_object->set_raw_properties_or_hash(*object_properties, kRelaxedStore);
return js_object;
}
Handle<JSObject> Factory::NewSlowJSObjectFromMap(Handle<Map> map) {
return NewSlowJSObjectFromMap(map, V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL
? SwissNameDictionary::kInitialCapacity
: NameDictionary::kInitialCapacity);
}
Handle<JSObject> Factory::NewSlowJSObjectWithPropertiesAndElements(
Handle<HeapObject> prototype, Handle<HeapObject> properties,
Handle<FixedArrayBase> elements) {
DCHECK_IMPLIES(V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL,
IsSwissNameDictionary(*properties));
DCHECK_IMPLIES(!V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL,
IsNameDictionary(*properties));
Handle<Map> object_map = isolate()->slow_object_with_object_prototype_map();
if (object_map->prototype() != *prototype) {
object_map = Map::TransitionToPrototype(isolate(), object_map, prototype);
}
DCHECK(object_map->is_dictionary_map());
Handle<JSObject> object =
NewJSObjectFromMap(object_map, AllocationType::kYoung);
object->set_raw_properties_or_hash(*properties);
if (*elements != read_only_roots().empty_fixed_array()) {
DCHECK(IsNumberDictionary(*elements));
object_map =
JSObject::GetElementsTransitionMap(object, DICTIONARY_ELEMENTS);
JSObject::MigrateToMap(isolate(), object, object_map);
object->set_elements(*elements);
}
return object;
}
Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, int length,
int capacity,
ArrayStorageAllocationMode mode,
AllocationType allocation) {
DCHECK(capacity >= length);
if (capacity == 0) {
return NewJSArrayWithElements(empty_fixed_array(), elements_kind, length,
allocation);
}
HandleScope inner_scope(isolate());
Handle<FixedArrayBase> elms =
NewJSArrayStorage(elements_kind, capacity, mode);
return inner_scope.CloseAndEscape(NewJSArrayWithUnverifiedElements(
elms, elements_kind, length, allocation));
}
Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
ElementsKind elements_kind,
int length,
AllocationType allocation) {
Handle<JSArray> array = NewJSArrayWithUnverifiedElements(
elements, elements_kind, length, allocation);
#ifdef ENABLE_SLOW_DCHECKS
JSObject::ValidateElements(*array);
#endif
return array;
}
Handle<JSArray> Factory::NewJSArrayWithUnverifiedElements(
Handle<FixedArrayBase> elements, ElementsKind elements_kind, int length,
AllocationType allocation) {
DCHECK(length <= elements->length());
Tagged<NativeContext> native_context = isolate()->raw_native_context();
Tagged<Map> map = native_context->GetInitialJSArrayMap(elements_kind);
if (map.is_null()) {
Tagged<JSFunction> array_function = native_context->array_function();
map = array_function->initial_map();
}
return NewJSArrayWithUnverifiedElements(handle(map, isolate()), elements,
length, allocation);
}
Handle<JSArray> Factory::NewJSArrayWithUnverifiedElements(
Handle<Map> map, Handle<FixedArrayBase> elements, int length,
AllocationType allocation) {
auto array = Handle<JSArray>::cast(NewJSObjectFromMap(map, allocation));
DisallowGarbageCollection no_gc;
Tagged<JSArray> raw = *array;
raw->set_elements(*elements);
raw->set_length(Smi::FromInt(length));
return array;
}
Handle<JSArray> Factory::NewJSArrayForTemplateLiteralArray(
Handle<FixedArray> cooked_strings, Handle<FixedArray> raw_strings,
int function_literal_id, int slot_id) {
Handle<JSArray> raw_object =
NewJSArrayWithElements(raw_strings, PACKED_ELEMENTS,
raw_strings->length(), AllocationType::kOld);
JSObject::SetIntegrityLevel(isolate(), raw_object, FROZEN, kThrowOnError)
.ToChecked();
Handle<NativeContext> native_context = isolate()->native_context();
Handle<TemplateLiteralObject> template_object =
Handle<TemplateLiteralObject>::cast(NewJSArrayWithUnverifiedElements(
handle(native_context->js_array_template_literal_object_map(),
isolate()),
cooked_strings, cooked_strings->length(), AllocationType::kOld));
DisallowGarbageCollection no_gc;
Tagged<TemplateLiteralObject> raw_template_object = *template_object;
DCHECK_EQ(raw_template_object->map(),
native_context->js_array_template_literal_object_map());
raw_template_object->set_raw(*raw_object);
raw_template_object->set_function_literal_id(function_literal_id);
raw_template_object->set_slot_id(slot_id);
return template_object;
}
void Factory::NewJSArrayStorage(Handle<JSArray> array, int length, int capacity,
ArrayStorageAllocationMode mode) {
DCHECK(capacity >= length);
if (capacity == 0) {
Tagged<JSArray> raw = *array;
DisallowGarbageCollection no_gc;
raw->set_length(Smi::zero());
raw->set_elements(*empty_fixed_array());
return;
}
HandleScope inner_scope(isolate());
Handle<FixedArrayBase> elms =
NewJSArrayStorage(array->GetElementsKind(), capacity, mode);
DisallowGarbageCollection no_gc;
Tagged<JSArray> raw = *array;
raw->set_elements(*elms);
raw->set_length(Smi::FromInt(length));
}
Handle<FixedArrayBase> Factory::NewJSArrayStorage(
ElementsKind elements_kind, int capacity, ArrayStorageAllocationMode mode) {
DCHECK_GT(capacity, 0);
Handle<FixedArrayBase> elms;
if (IsDoubleElementsKind(elements_kind)) {
if (mode == ArrayStorageAllocationMode::DONT_INITIALIZE_ARRAY_ELEMENTS) {
elms = NewFixedDoubleArray(capacity);
} else {
DCHECK_EQ(
mode,
ArrayStorageAllocationMode::INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
elms = NewFixedDoubleArrayWithHoles(capacity);
}
} else {
DCHECK(IsSmiOrObjectElementsKind(elements_kind));
if (mode == ArrayStorageAllocationMode::DONT_INITIALIZE_ARRAY_ELEMENTS) {
elms = NewFixedArray(capacity);
} else {
DCHECK_EQ(
mode,
ArrayStorageAllocationMode::INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
elms = NewFixedArrayWithHoles(capacity);
}
}
return elms;
}
Handle<JSWeakMap> Factory::NewJSWeakMap() {
Tagged<NativeContext> native_context = isolate()->raw_native_context();
Handle<Map> map(native_context->js_weak_map_fun()->initial_map(), isolate());
Handle<JSWeakMap> weakmap(JSWeakMap::cast(*NewJSObjectFromMap(map)),
isolate());
{
// Do not leak handles for the hash table, it would make entries strong.
HandleScope scope(isolate());
JSWeakCollection::Initialize(weakmap, isolate());
}
return weakmap;
}
Handle<JSModuleNamespace> Factory::NewJSModuleNamespace() {
Handle<Map> map = isolate()->js_module_namespace_map();
Handle<JSModuleNamespace> module_namespace(
Handle<JSModuleNamespace>::cast(NewJSObjectFromMap(map)));
FieldIndex index = FieldIndex::ForDescriptor(
*map, InternalIndex(JSModuleNamespace::kToStringTagFieldIndex));
module_namespace->FastPropertyAtPut(index, read_only_roots().Module_string(),
SKIP_WRITE_BARRIER);
return module_namespace;
}
Handle<JSWrappedFunction> Factory::NewJSWrappedFunction(
Handle<NativeContext> creation_context, Handle<Object> target) {
DCHECK(IsCallable(*target));
Handle<Map> map(
Map::cast(creation_context->get(Context::WRAPPED_FUNCTION_MAP_INDEX)),
isolate());
// 2. Let wrapped be ! MakeBasicObject(internalSlotsList).
// 3. Set wrapped.[[Prototype]] to
// callerRealm.[[Intrinsics]].[[%Function->prototype%]].
// 4. Set wrapped.[[Call]] as described in 2.1.
Handle<JSWrappedFunction> wrapped = Handle<JSWrappedFunction>::cast(
isolate()->factory()->NewJSObjectFromMap(map));
// 5. Set wrapped.[[WrappedTargetFunction]] to Target.
wrapped->set_wrapped_target_function(JSReceiver::cast(*target));
// 6. Set wrapped.[[Realm]] to callerRealm.
wrapped->set_context(*creation_context);
// TODO(v8:11989): https://github.com/tc39/proposal-shadowrealm/pull/348
return wrapped;
}
Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
Handle<JSFunction> function) {
DCHECK(IsResumableFunction(function->shared()->kind()));
JSFunction::EnsureHasInitialMap(function);
Handle<Map> map(function->initial_map(), isolate());
DCHECK(map->instance_type() == JS_GENERATOR_OBJECT_TYPE ||
map->instance_type() == JS_ASYNC_GENERATOR_OBJECT_TYPE);
return Handle<JSGeneratorObject>::cast(NewJSObjectFromMap(map));
}
Handle<SourceTextModule> Factory::NewSourceTextModule(
Handle<SharedFunctionInfo> sfi) {
Handle<SourceTextModuleInfo> module_info(
sfi->scope_info()->ModuleDescriptorInfo(), isolate());
Handle<ObjectHashTable> exports =
ObjectHashTable::New(isolate(), module_info->RegularExportCount());
Handle<FixedArray> regular_exports =
NewFixedArray(module_info->RegularExportCount());
Handle<FixedArray> regular_imports =
NewFixedArray(module_info->regular_imports()->length());
int requested_modules_length = module_info->module_requests()->length();
Handle<FixedArray> requested_modules =
requested_modules_length > 0 ? NewFixedArray(requested_modules_length)
: empty_fixed_array();
ReadOnlyRoots roots(isolate());
Tagged<SourceTextModule> module = Tagged<SourceTextModule>::cast(
New(source_text_module_map(), AllocationType::kOld));
DisallowGarbageCollection no_gc;
module->set_code(*sfi);
module->set_exports(*exports);
module->set_regular_exports(*regular_exports);
module->set_regular_imports(*regular_imports);
module->set_hash(isolate()->GenerateIdentityHash(Smi::kMaxValue));
module->set_module_namespace(roots.undefined_value(), SKIP_WRITE_BARRIER);
module->set_requested_modules(*requested_modules);
module->set_status(Module::kUnlinked);
module->set_exception(roots.the_hole_value(), SKIP_WRITE_BARRIER);
module->set_top_level_capability(roots.undefined_value(), SKIP_WRITE_BARRIER);
module->set_import_meta(roots.the_hole_value(), kReleaseStore,
SKIP_WRITE_BARRIER);
module->set_dfs_index(-1);
module->set_dfs_ancestor_index(-1);
module->set_flags(0);
module->set_async(IsAsyncModule(sfi->kind()));
module->set_async_evaluating_ordinal(SourceTextModule::kNotAsyncEvaluated);
module->set_cycle_root(roots.the_hole_value(), SKIP_WRITE_BARRIER);
module->set_async_parent_modules(roots.empty_array_list());
module->set_pending_async_dependencies(0);
return handle(module, isolate());
}
Handle<SyntheticModule> Factory::NewSyntheticModule(
Handle<String> module_name, Handle<FixedArray> export_names,
v8::Module::SyntheticModuleEvaluationSteps evaluation_steps) {
ReadOnlyRoots roots(isolate());
Handle<ObjectHashTable> exports =
ObjectHashTable::New(isolate(), static_cast<int>(export_names->length()));
Handle<Foreign> evaluation_steps_foreign =
NewForeign(reinterpret_cast<i::Address>(evaluation_steps));
Tagged<SyntheticModule> module = Tagged<SyntheticModule>::cast(
New(synthetic_module_map(), AllocationType::kOld));
DisallowGarbageCollection no_gc;
module->set_hash(isolate()->GenerateIdentityHash(Smi::kMaxValue));
module->set_module_namespace(roots.undefined_value(), SKIP_WRITE_BARRIER);
module->set_status(Module::kUnlinked);
module->set_exception(roots.the_hole_value(), SKIP_WRITE_BARRIER);
module->set_top_level_capability(roots.undefined_value(), SKIP_WRITE_BARRIER);
module->set_name(*module_name);
module->set_export_names(*export_names);
module->set_exports(*exports);
module->set_evaluation_steps(*evaluation_steps_foreign);
return handle(module, isolate());
}
Handle<JSArrayBuffer> Factory::NewJSArrayBuffer(
std::shared_ptr<BackingStore> backing_store, AllocationType allocation) {
Handle<Map> map(
isolate()->native_context()->array_buffer_fun()->initial_map(),
isolate());
ResizableFlag resizable_by_js = ResizableFlag::kNotResizable;
if (v8_flags.harmony_rab_gsab && backing_store->is_resizable_by_js()) {
resizable_by_js = ResizableFlag::kResizable;
}
auto result =
Handle<JSArrayBuffer>::cast(NewJSObjectFromMap(map, allocation));
result->Setup(SharedFlag::kNotShared, resizable_by_js,
std::move(backing_store), isolate());
return result;
}
MaybeHandle<JSArrayBuffer> Factory::NewJSArrayBufferAndBackingStore(
size_t byte_length, InitializedFlag initialized,
AllocationType allocation) {
return NewJSArrayBufferAndBackingStore(byte_length, byte_length, initialized,
ResizableFlag::kNotResizable,
allocation);
}
MaybeHandle<JSArrayBuffer> Factory::NewJSArrayBufferAndBackingStore(
size_t byte_length, size_t max_byte_length, InitializedFlag initialized,
ResizableFlag resizable, AllocationType allocation) {
DCHECK_LE(byte_length, max_byte_length);
std::unique_ptr<BackingStore> backing_store = nullptr;
if (resizable == ResizableFlag::kResizable) {
size_t page_size, initial_pages, max_pages;
if (JSArrayBuffer::GetResizableBackingStorePageConfiguration(
isolate(), byte_length, max_byte_length, kDontThrow, &page_size,
&initial_pages, &max_pages)
.IsNothing()) {
return MaybeHandle<JSArrayBuffer>();
}
backing_store = BackingStore::TryAllocateAndPartiallyCommitMemory(
isolate(), byte_length, max_byte_length, page_size, initial_pages,
max_pages, WasmMemoryFlag::kNotWasm, SharedFlag::kNotShared);
if (!backing_store) return MaybeHandle<JSArrayBuffer>();
} else {
if (byte_length > 0) {
backing_store = BackingStore::Allocate(
isolate(), byte_length, SharedFlag::kNotShared, initialized);
if (!backing_store) return MaybeHandle<JSArrayBuffer>();
}
}
Handle<Map> map(
isolate()->native_context()->array_buffer_fun()->initial_map(),
isolate());
auto array_buffer =
Handle<JSArrayBuffer>::cast(NewJSObjectFromMap(map, allocation));
array_buffer->Setup(SharedFlag::kNotShared, resizable,
std::move(backing_store), isolate());
return array_buffer;
}
Handle<JSArrayBuffer> Factory::NewJSSharedArrayBuffer(
std::shared_ptr<BackingStore> backing_store) {
DCHECK_IMPLIES(backing_store->is_resizable_by_js(),
v8_flags.harmony_rab_gsab);
Handle<Map> map(
isolate()->native_context()->shared_array_buffer_fun()->initial_map(),
isolate());
auto result = Handle<JSArrayBuffer>::cast(
NewJSObjectFromMap(map, AllocationType::kYoung));
ResizableFlag resizable = backing_store->is_resizable_by_js()
? ResizableFlag::kResizable
: ResizableFlag::kNotResizable;
result->Setup(SharedFlag::kShared, resizable, std::move(backing_store),
isolate());
return result;
}
Handle<JSIteratorResult> Factory::NewJSIteratorResult(Handle<Object> value,
bool done) {
Handle<Map> map(isolate()->native_context()->iterator_result_map(),
isolate());
Handle<JSIteratorResult> js_iter_result = Handle<JSIteratorResult>::cast(
NewJSObjectFromMap(map, AllocationType::kYoung));
DisallowGarbageCollection no_gc;
Tagged<JSIteratorResult> raw = *js_iter_result;
raw->set_value(*value, SKIP_WRITE_BARRIER);
raw->set_done(*ToBoolean(done), SKIP_WRITE_BARRIER);
return js_iter_result;
}
Handle<JSAsyncFromSyncIterator> Factory::NewJSAsyncFromSyncIterator(
Handle<JSReceiver> sync_iterator, Handle<Object> next) {
Handle<Map> map(isolate()->native_context()->async_from_sync_iterator_map(),
isolate());
Handle<JSAsyncFromSyncIterator> iterator =
Handle<JSAsyncFromSyncIterator>::cast(
NewJSObjectFromMap(map, AllocationType::kYoung));
DisallowGarbageCollection no_gc;
Tagged<JSAsyncFromSyncIterator> raw = *iterator;
raw->set_sync_iterator(*sync_iterator, SKIP_WRITE_BARRIER);
raw->set_next(*next, SKIP_WRITE_BARRIER);
return iterator;
}
Handle<JSMap> Factory::NewJSMap() {
Handle<Map> map(isolate()->native_context()->js_map_map(), isolate());
Handle<JSMap> js_map = Handle<JSMap>::cast(NewJSObjectFromMap(map));
JSMap::Initialize(js_map, isolate());
return js_map;
}
Handle<JSSet> Factory::NewJSSet() {
Handle<Map> map(isolate()->native_context()->js_set_map(), isolate());
Handle<JSSet> js_set = Handle<JSSet>::cast(NewJSObjectFromMap(map));
JSSet::Initialize(js_set, isolate());
return js_set;
}
void Factory::TypeAndSizeForElementsKind(ElementsKind kind,
ExternalArrayType* array_type,
size_t* element_size) {
switch (kind) {
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
case TYPE##_ELEMENTS: \
*array_type = kExternal##Type##Array; \
*element_size = sizeof(ctype); \
break;
TYPED_ARRAYS(TYPED_ARRAY_CASE)
RAB_GSAB_TYPED_ARRAYS_WITH_TYPED_ARRAY_TYPE(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
default:
UNREACHABLE();
}
}
Handle<JSArrayBufferView> Factory::NewJSArrayBufferView(
Handle<Map> map, Handle<FixedArrayBase> elements,
Handle<JSArrayBuffer> buffer, size_t byte_offset, size_t byte_length) {
if (!IsRabGsabTypedArrayElementsKind(map->elements_kind())) {
CHECK_LE(byte_length, buffer->GetByteLength());
CHECK_LE(byte_offset, buffer->GetByteLength());
CHECK_LE(byte_offset + byte_length, buffer->GetByteLength());
}
Handle<JSArrayBufferView> array_buffer_view = Handle<JSArrayBufferView>::cast(
NewJSObjectFromMap(map, AllocationType::kYoung));
DisallowGarbageCollection no_gc;
Tagged<JSArrayBufferView> raw = *array_buffer_view;
raw->set_elements(*elements, SKIP_WRITE_BARRIER);
raw->set_buffer(*buffer, SKIP_WRITE_BARRIER);
raw->set_byte_offset(byte_offset);
raw->set_byte_length(byte_length);
raw->set_bit_field(0);
// TODO(v8) remove once embedder data slots are always zero-initialized.
InitEmbedderFields(raw, Smi::zero());
DCHECK_EQ(raw->GetEmbedderFieldCount(),
v8::ArrayBufferView::kEmbedderFieldCount);
return array_buffer_view;
}
Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
Handle<JSArrayBuffer> buffer,
size_t byte_offset, size_t length,
bool is_length_tracking) {
size_t element_size;
ElementsKind elements_kind;
JSTypedArray::ForFixedTypedArray(type, &element_size, &elements_kind);
CHECK_IMPLIES(is_length_tracking, v8_flags.harmony_rab_gsab);
const bool is_backed_by_rab =
buffer->is_resizable_by_js() && !buffer->is_shared();
Handle<Map> map;
if (is_backed_by_rab || is_length_tracking) {
map = handle(
isolate()->raw_native_context()->TypedArrayElementsKindToRabGsabCtorMap(
elements_kind),
isolate());
} else {
map =
handle(isolate()->raw_native_context()->TypedArrayElementsKindToCtorMap(
elements_kind),
isolate());
}
if (is_length_tracking) {
// Security: enforce the invariant that length-tracking TypedArrays have
// their length and byte_length set to 0.
length = 0;
}
CHECK_LE(length, JSTypedArray::kMaxByteLength / element_size);
CHECK_EQ(0, byte_offset % element_size);
size_t byte_length = length * element_size;
Handle<JSTypedArray> typed_array =
Handle<JSTypedArray>::cast(NewJSArrayBufferView(
map, empty_byte_array(), buffer, byte_offset, byte_length));
Tagged<JSTypedArray> raw = *typed_array;
DisallowGarbageCollection no_gc;
raw->set_length(length);
raw->SetOffHeapDataPtr(isolate(), buffer->backing_store(), byte_offset);
raw->set_is_length_tracking(is_length_tracking);
raw->set_is_backed_by_rab(is_backed_by_rab);
return typed_array;
}
Handle<JSDataViewOrRabGsabDataView> Factory::NewJSDataViewOrRabGsabDataView(
Handle<JSArrayBuffer> buffer, size_t byte_offset, size_t byte_length,
bool is_length_tracking) {
CHECK_IMPLIES(is_length_tracking, v8_flags.harmony_rab_gsab);
if (is_length_tracking) {
// Security: enforce the invariant that length-tracking DataViews have their
// byte_length set to 0.
byte_length = 0;
}
bool is_backed_by_rab = !buffer->is_shared() && buffer->is_resizable_by_js();
Handle<Map> map;
if (is_backed_by_rab || is_length_tracking) {
map = handle(isolate()->native_context()->js_rab_gsab_data_view_map(),
isolate());
} else {
map = handle(isolate()->native_context()->data_view_fun()->initial_map(),
isolate());
}
Handle<JSDataViewOrRabGsabDataView> obj =
Handle<JSDataViewOrRabGsabDataView>::cast(NewJSArrayBufferView(
map, empty_fixed_array(), buffer, byte_offset, byte_length));
obj->set_data_pointer(
isolate(), static_cast<uint8_t*>(buffer->backing_store()) + byte_offset);
obj->set_is_length_tracking(is_length_tracking);
obj->set_is_backed_by_rab(is_backed_by_rab);
return obj;
}
MaybeHandle<JSBoundFunction> Factory::NewJSBoundFunction(
Handle<JSReceiver> target_function, Handle<Object> bound_this,
base::Vector<Handle<Object>> bound_args) {
DCHECK(IsCallable(*target_function));
static_assert(Code::kMaxArguments <= FixedArray::kMaxLength);
if (bound_args.length() >= Code::kMaxArguments) {
THROW_NEW_ERROR(isolate(),
NewRangeError(MessageTemplate::kTooManyArguments),
JSBoundFunction);
}
// Determine the prototype of the {target_function}.
Handle<HeapObject> prototype;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), prototype,
JSReceiver::GetPrototype(isolate(), target_function), JSBoundFunction);
SaveAndSwitchContext save(
isolate(), *target_function->GetCreationContext().ToHandleChecked());
// Create the [[BoundArguments]] for the result.
Handle<FixedArray> bound_arguments;
if (bound_args.length() == 0) {
bound_arguments = empty_fixed_array();
} else {
bound_arguments = NewFixedArray(bound_args.length());
for (int i = 0; i < bound_args.length(); ++i) {
bound_arguments->set(i, *bound_args[i]);
}
}
// Setup the map for the JSBoundFunction instance.
Handle<Map> map = IsConstructor(*target_function)
? isolate()->bound_function_with_constructor_map()
: isolate()->bound_function_without_constructor_map();
if (map->prototype() != *prototype) {
map = Map::TransitionToPrototype(isolate(), map, prototype);
}
DCHECK_EQ(IsConstructor(*target_function), map->is_constructor());
// Setup the JSBoundFunction instance.
Handle<JSBoundFunction> result = Handle<JSBoundFunction>::cast(
NewJSObjectFromMap(map, AllocationType::kYoung));
DisallowGarbageCollection no_gc;
Tagged<JSBoundFunction> raw = *result;
raw->set_bound_target_function(*target_function, SKIP_WRITE_BARRIER);
raw->set_bound_this(*bound_this, SKIP_WRITE_BARRIER);
raw->set_bound_arguments(*bound_arguments, SKIP_WRITE_BARRIER);
return result;
}
// ES6 section 9.5.15 ProxyCreate (target, handler)
Handle<JSProxy> Factory::NewJSProxy(Handle<JSReceiver> target,
Handle<JSReceiver> handler) {
// Allocate the proxy object.
Handle<Map> map = IsCallable(*target)
? IsConstructor(*target)
? isolate()->proxy_constructor_map()
: isolate()->proxy_callable_map()
: isolate()->proxy_map();
DCHECK(IsNull(map->prototype(), isolate()));
Tagged<JSProxy> result =
Tagged<JSProxy>::cast(New(map, AllocationType::kYoung));
DisallowGarbageCollection no_gc;
result->initialize_properties(isolate());
result->set_target(*target, SKIP_WRITE_BARRIER);
result->set_handler(*handler, SKIP_WRITE_BARRIER);
return handle(result, isolate());
}
Handle<JSGlobalProxy> Factory::NewUninitializedJSGlobalProxy(int size) {
// Create an empty shell of a JSGlobalProxy that needs to be reinitialized
// via ReinitializeJSGlobalProxy later.
Handle<Map> map = NewMap(JS_GLOBAL_PROXY_TYPE, size);
// Maintain invariant expected from any JSGlobalProxy.
{
DisallowGarbageCollection no_gc;
Tagged<Map> raw = *map;
raw->set_is_access_check_needed(true);
raw->set_may_have_interesting_properties(true);
LOG(isolate(), MapDetails(raw));
}
Handle<JSGlobalProxy> proxy = Handle<JSGlobalProxy>::cast(
NewJSObjectFromMap(map, AllocationType::kOld));
// Create identity hash early in case there is any JS collection containing
// a global proxy key and needs to be rehashed after deserialization.
proxy->GetOrCreateIdentityHash(isolate());
return proxy;
}
void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
Handle<JSFunction> constructor) {
DCHECK(constructor->has_initial_map());
Handle<Map> map(constructor->initial_map(), isolate());
Handle<Map> old_map(object->map(), isolate());
// The proxy's hash should be retained across reinitialization.
Handle<Object> raw_properties_or_hash(object->raw_properties_or_hash(),
isolate());
if (old_map->is_prototype_map()) {
map = Map::Copy(isolate(), map, "CopyAsPrototypeForJSGlobalProxy");
map->set_is_prototype_map(true);
}
JSObject::NotifyMapChange(old_map, map, isolate());
old_map->NotifyLeafMapLayoutChange(isolate());
// Check that the already allocated object has the same size and type as
// objects allocated using the constructor.
DCHECK(map->instance_size() == old_map->instance_size());
DCHECK(map->instance_type() == old_map->instance_type());
// In order to keep heap in consistent state there must be no allocations
// before object re-initialization is finished.
DisallowGarbageCollection no_gc;
// Reset the map for the object.
Tagged<JSGlobalProxy> raw = *object;
raw->set_map(*map, kReleaseStore);
// Reinitialize the object from the constructor map.
InitializeJSObjectFromMap(raw, *raw_properties_or_hash, *map);
}
Handle<JSMessageObject> Factory::NewJSMessageObject(
MessageTemplate message, Handle<Object> argument, int start_position,
int end_position, Handle<SharedFunctionInfo> shared_info,
int bytecode_offset, Handle<Script> script, Handle<Object> stack_frames) {
Handle<Map> map = message_object_map();
Tagged<JSMessageObject> message_obj =
Tagged<JSMessageObject>::cast(New(map, AllocationType::kYoung));
DisallowGarbageCollection no_gc;
message_obj->set_raw_properties_or_hash(*empty_fixed_array(),
SKIP_WRITE_BARRIER);
message_obj->initialize_elements();
message_obj->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
message_obj->set_type(message);
message_obj->set_argument(*argument, SKIP_WRITE_BARRIER);
message_obj->set_start_position(start_position);
message_obj->set_end_position(end_position);
message_obj->set_script(*script, SKIP_WRITE_BARRIER);
if (start_position >= 0) {
// If there's a start_position, then there's no need to store the
// SharedFunctionInfo as it will never be necessary to regenerate the
// position.
message_obj->set_shared_info(Smi::FromInt(-1));
message_obj->set_bytecode_offset(Smi::FromInt(0));
} else {
message_obj->set_bytecode_offset(Smi::FromInt(bytecode_offset));
if (shared_info.is_null()) {
message_obj->set_shared_info(Smi::FromInt(-1));
DCHECK_EQ(bytecode_offset, -1);
} else {
message_obj->set_shared_info(*shared_info, SKIP_WRITE_BARRIER);
DCHECK_GE(bytecode_offset, kFunctionEntryBytecodeOffset);
}
}
message_obj->set_stack_frames(*stack_frames, SKIP_WRITE_BARRIER);
message_obj->set_error_level(v8::Isolate::kMessageError);
return handle(message_obj, isolate());
}
Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForApiFunction(
MaybeHandle<String> maybe_name,
Handle<FunctionTemplateInfo> function_template_info, FunctionKind kind) {
return NewSharedFunctionInfo(maybe_name, function_template_info,
Builtin::kNoBuiltinId, kind);
}
Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForBuiltin(
MaybeHandle<String> maybe_name, Builtin builtin, FunctionKind kind) {
return NewSharedFunctionInfo(maybe_name, MaybeHandle<HeapObject>(), builtin,
kind);
}
int Factory::NumberToStringCacheHash(Tagged<Smi> number) {
int mask = (number_string_cache()->length() >> 1) - 1;
return number.value() & mask;
}
int Factory::NumberToStringCacheHash(double number) {
int mask = (number_string_cache()->length() >> 1) - 1;
int64_t bits = base::bit_cast<int64_t>(number);
return (static_cast<int>(bits) ^ static_cast<int>(bits >> 32)) & mask;
}
Handle<String> Factory::SizeToString(size_t value, bool check_cache) {
Handle<String> result;
NumberCacheMode cache_mode =
check_cache ? NumberCacheMode::kBoth : NumberCacheMode::kIgnore;
if (value <= Smi::kMaxValue) {
int32_t int32v = static_cast<int32_t>(static_cast<uint32_t>(value));
// SmiToString sets the hash when needed, we can return immediately.
return SmiToString(Smi::FromInt(int32v), cache_mode);
} else if (value <= kMaxSafeInteger) {
// TODO(jkummerow): Refactor the cache to not require Objects as keys.
double double_value = static_cast<double>(value);
result = HeapNumberToString(NewHeapNumber(double_value), value, cache_mode);
} else {
char arr[kNumberToStringBufferSize];
base::Vector<char> buffer(arr, arraysize(arr));
// Build the string backwards from the least significant digit.
int i = buffer.length();
size_t value_copy = value;
buffer[--i] = '\0';
do {
buffer[--i] = '0' + (value_copy % 10);
value_copy /= 10;
} while (value_copy > 0);
char* string = buffer.begin() + i;
// No way to cache this; we'd need an {Object} to use as key.
result = NewStringFromAsciiChecked(string);
}
{
DisallowGarbageCollection no_gc;
Tagged<String> raw = *result;
if (value <= JSArray::kMaxArrayIndex &&
raw->raw_hash_field() == String::kEmptyHashField) {
uint32_t raw_hash_field = StringHasher::MakeArrayIndexHash(
static_cast<uint32_t>(value), raw->length());
raw->set_raw_hash_field(raw_hash_field);
}
}
return result;
}
Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
DCHECK(!shared->HasDebugInfo(isolate()));
auto debug_info =
NewStructInternal<DebugInfo>(DEBUG_INFO_TYPE, AllocationType::kOld);
DisallowGarbageCollection no_gc;
Tagged<SharedFunctionInfo> raw_shared = *shared;
debug_info->set_flags(DebugInfo::kNone, kRelaxedStore);
debug_info->set_shared(raw_shared);
debug_info->set_debugger_hints(0);
DCHECK_EQ(DebugInfo::kNoDebuggingId, debug_info->debugging_id());
Tagged<HeapObject> undefined = *undefined_value();
debug_info->set_original_bytecode_array(undefined, kReleaseStore,
SKIP_WRITE_BARRIER);
debug_info->set_debug_bytecode_array(undefined, kReleaseStore,
SKIP_WRITE_BARRIER);
debug_info->set_break_points(*empty_fixed_array(), SKIP_WRITE_BARRIER);
return handle(debug_info, isolate());
}
Handle<BreakPointInfo> Factory::NewBreakPointInfo(int source_position) {
auto new_break_point_info = NewStructInternal<BreakPointInfo>(
BREAK_POINT_INFO_TYPE, AllocationType::kOld);
DisallowGarbageCollection no_gc;
new_break_point_info->set_source_position(source_position);
new_break_point_info->set_break_points(*undefined_value(),
SKIP_WRITE_BARRIER);
return handle(new_break_point_info, isolate());
}
Handle<BreakPoint> Factory::NewBreakPoint(int id, Handle<String> condition) {
auto new_break_point =
NewStructInternal<BreakPoint>(BREAK_POINT_TYPE, AllocationType::kOld);
DisallowGarbageCollection no_gc;
new_break_point->set_id(id);
new_break_point->set_condition(*condition);
return handle(new_break_point, isolate());
}
Handle<CallSiteInfo> Factory::NewCallSiteInfo(
Handle<Object> receiver_or_instance, Handle<Object> function,
Handle<HeapObject> code_object, int code_offset_or_source_position,
int flags, Handle<FixedArray> parameters) {
auto info = NewStructInternal<CallSiteInfo>(CALL_SITE_INFO_TYPE,
AllocationType::kYoung);
DisallowGarbageCollection no_gc;
info->set_receiver_or_instance(*receiver_or_instance, SKIP_WRITE_BARRIER);
info->set_function(*function, SKIP_WRITE_BARRIER);
info->set_code_object(*code_object, SKIP_WRITE_BARRIER);
info->set_code_offset_or_source_position(code_offset_or_source_position);
info->set_flags(flags);
info->set_parameters(*parameters, SKIP_WRITE_BARRIER);
return handle(info, isolate());
}
Handle<StackFrameInfo> Factory::NewStackFrameInfo(
Handle<HeapObject> shared_or_script, int bytecode_offset_or_source_position,
Handle<String> function_name, bool is_constructor) {
DCHECK_GE(bytecode_offset_or_source_position, 0);
Tagged<StackFrameInfo> info = NewStructInternal<StackFrameInfo>(
STACK_FRAME_INFO_TYPE, AllocationType::kYoung);
DisallowGarbageCollection no_gc;
info->set_flags(0);
info->set_shared_or_script(*shared_or_script, SKIP_WRITE_BARRIER);
info->set_bytecode_offset_or_source_position(
bytecode_offset_or_source_position);
info->set_function_name(*function_name, SKIP_WRITE_BARRIER);
info->set_is_constructor(is_constructor);
return handle(info, isolate());
}
Handle<PromiseOnStack> Factory::NewPromiseOnStack(Handle<Object> prev,
Handle<JSObject> promise) {
Tagged<PromiseOnStack> promise_on_stack = NewStructInternal<PromiseOnStack>(
PROMISE_ON_STACK_TYPE, AllocationType::kYoung);
DisallowGarbageCollection no_gc;
promise_on_stack->set_prev(*prev, SKIP_WRITE_BARRIER);
promise_on_stack->set_promise(*MaybeObjectHandle::Weak(promise));
return handle(promise_on_stack, isolate());
}
Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee,
int length) {
bool strict_mode_callee = is_strict(callee->shared()->language_mode()) ||
!callee->shared()->has_simple_parameters();
Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map()
: isolate()->sloppy_arguments_map();
AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(),
false);
DCHECK(!isolate()->has_pending_exception());
Handle<JSObject> result = NewJSObjectFromMap(map);
Handle<Smi> value(Smi::FromInt(length), isolate());
Object::SetProperty(isolate(), result, length_string(), value,
StoreOrigin::kMaybeKeyed,
Just(ShouldThrow::kThrowOnError))
.Assert();
if (!strict_mode_callee) {
Object::SetProperty(isolate(), result, callee_string(), callee,
StoreOrigin::kMaybeKeyed,
Just(ShouldThrow::kThrowOnError))
.Assert();
}
return result;
}
Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<NativeContext> context,
int number_of_properties) {
// Use initial slow object proto map for too many properties.
if (number_of_properties >= JSObject::kMapCacheSize) {
return handle(context->slow_object_with_object_prototype_map(), isolate());
}
Handle<WeakFixedArray> cache(WeakFixedArray::cast(context->map_cache()),
isolate());
// Check to see whether there is a matching element in the cache.
MaybeObject result = cache->Get(number_of_properties);
Tagged<HeapObject> heap_object;
if (result.GetHeapObjectIfWeak(&heap_object)) {
Tagged<Map> map = Tagged<Map>::cast(heap_object);
DCHECK(!map->is_dictionary_map());
return handle(map, isolate());
}
// Create a new map and add it to the cache.
Handle<Map> map = Map::Create(isolate(), number_of_properties);
DCHECK(!map->is_dictionary_map());
cache->Set(number_of_properties, HeapObjectReference::Weak(*map));
return map;
}
Handle<MegaDomHandler> Factory::NewMegaDomHandler(MaybeObjectHandle accessor,
MaybeObjectHandle context) {
Handle<Map> map = read_only_roots().mega_dom_handler_map_handle();
Tagged<MegaDomHandler> handler =
Tagged<MegaDomHandler>::cast(New(map, AllocationType::kOld));
DisallowGarbageCollection no_gc;
handler->set_accessor(*accessor, kReleaseStore);
handler->set_context(*context);
return handle(handler, isolate());
}
Handle<LoadHandler> Factory::NewLoadHandler(int data_count,
AllocationType allocation) {
Handle<Map> map;
switch (data_count) {
case 1:
map = load_handler1_map();
break;
case 2:
map = load_handler2_map();
break;
case 3:
map = load_handler3_map();
break;
default:
UNREACHABLE();
}
return handle(LoadHandler::cast(New(map, allocation)), isolate());
}
Handle<StoreHandler> Factory::NewStoreHandler(int data_count) {
Handle<Map> map;
switch (data_count) {
case 0:
map = store_handler0_map();
break;
case 1:
map = store_handler1_map();
break;
case 2:
map = store_handler2_map();
break;
case 3:
map = store_handler3_map();
break;
default:
UNREACHABLE();
}
return handle(StoreHandler::cast(New(map, AllocationType::kOld)), isolate());
}
void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp, Handle<String> source,
JSRegExp::Flags flags, Handle<Object> data) {
Tagged<FixedArray> store =
*NewFixedArray(JSRegExp::kAtomDataSize, AllocationType::kYoung);
DisallowGarbageCollection no_gc;
store->set(JSRegExp::kTagIndex, Smi::FromInt(JSRegExp::ATOM));
store->set(JSRegExp::kSourceIndex, *source, SKIP_WRITE_BARRIER);
store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
store->set(JSRegExp::kAtomPatternIndex, *data, SKIP_WRITE_BARRIER);
regexp->set_data(store);
}
void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
Handle<String> source,
JSRegExp::Flags flags, int capture_count,
uint32_t backtrack_limit) {
DCHECK(Smi::IsValid(backtrack_limit));
Tagged<FixedArray> store =
*NewFixedArray(JSRegExp::kIrregexpDataSize, AllocationType::kYoung);
DisallowGarbageCollection no_gc;
Tagged<Smi> uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
Tagged<Smi> ticks_until_tier_up =
v8_flags.regexp_tier_up ? Smi::FromInt(v8_flags.regexp_tier_up_ticks)
: uninitialized;
store->set(JSRegExp::kTagIndex, Smi::FromInt(JSRegExp::IRREGEXP));
store->set(JSRegExp::kSourceIndex, *source, SKIP_WRITE_BARRIER);
store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
store->set(JSRegExp::kIrregexpLatin1BytecodeIndex, uninitialized);
store->set(JSRegExp::kIrregexpUC16BytecodeIndex, uninitialized);
store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::zero());
store->set(JSRegExp::kIrregexpCaptureCountIndex, Smi::FromInt(capture_count));
store->set(JSRegExp::kIrregexpCaptureNameMapIndex, uninitialized);
store->set(JSRegExp::kIrregexpTicksUntilTierUpIndex, ticks_until_tier_up);
store->set(JSRegExp::kIrregexpBacktrackLimit, Smi::FromInt(backtrack_limit));
regexp->set_data(store);
}
void Factory::SetRegExpExperimentalData(Handle<JSRegExp> regexp,
Handle<String> source,
JSRegExp::Flags flags,
int capture_count) {
Tagged<FixedArray> store =
*NewFixedArray(JSRegExp::kExperimentalDataSize, AllocationType::kYoung);
DisallowGarbageCollection no_gc;
Tagged<Smi> uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
store->set(JSRegExp::kTagIndex, Smi::FromInt(JSRegExp::EXPERIMENTAL));
store->set(JSRegExp::kSourceIndex, *source, SKIP_WRITE_BARRIER);
store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
store->set(JSRegExp::kIrregexpLatin1BytecodeIndex, uninitialized);
store->set(JSRegExp::kIrregexpUC16BytecodeIndex, uninitialized);
store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, uninitialized);
store->set(JSRegExp::kIrregexpCaptureCountIndex, Smi::FromInt(capture_count));
store->set(JSRegExp::kIrregexpCaptureNameMapIndex, uninitialized);
store->set(JSRegExp::kIrregexpTicksUntilTierUpIndex, uninitialized);
store->set(JSRegExp::kIrregexpBacktrackLimit, uninitialized);
regexp->set_data(store);
}
Handle<RegExpMatchInfo> Factory::NewRegExpMatchInfo() {
// Initially, the last match info consists of all fixed fields plus space for
// the match itself (i.e., 2 capture indices).
static const int kInitialSize = RegExpMatchInfo::kFirstCaptureIndex +
RegExpMatchInfo::kInitialCaptureIndices;
Handle<FixedArray> elems =
NewFixedArray(kInitialSize, AllocationType::kYoung);
Handle<RegExpMatchInfo> result = Handle<RegExpMatchInfo>::cast(elems);
{
DisallowGarbageCollection no_gc;
Tagged<RegExpMatchInfo> raw = *result;
raw->SetNumberOfCaptureRegisters(RegExpMatchInfo::kInitialCaptureIndices);
raw->SetLastSubject(*empty_string(), SKIP_WRITE_BARRIER);
raw->SetLastInput(*undefined_value(), SKIP_WRITE_BARRIER);
raw->SetCapture(0, 0);
raw->SetCapture(1, 0);
}
return result;
}
Handle<Object> Factory::GlobalConstantFor(Handle<Name> name) {
if (Name::Equals(isolate(), name, undefined_string())) {
return undefined_value();
}
if (Name::Equals(isolate(), name, NaN_string())) return nan_value();
if (Name::Equals(isolate(), name, Infinity_string())) return infinity_value();
return Handle<Object>::null();
}
Handle<String> Factory::ToPrimitiveHintString(ToPrimitiveHint hint) {
switch (hint) {
case ToPrimitiveHint::kDefault:
return default_string();
case ToPrimitiveHint::kNumber:
return number_string();
case ToPrimitiveHint::kString:
return string_string();
}
UNREACHABLE();
}
Handle<Map> Factory::CreateSloppyFunctionMap(
FunctionMode function_mode, MaybeHandle<JSFunction> maybe_empty_function) {
bool has_prototype = IsFunctionModeWithPrototype(function_mode);
int header_size = has_prototype ? JSFunction::kSizeWithPrototype
: JSFunction::kSizeWithoutPrototype;
int descriptors_count = has_prototype ? 5 : 4;
int inobject_properties_count = 0;
if (IsFunctionModeWithName(function_mode)) ++inobject_properties_count;
Handle<Map> map = NewMap(
JS_FUNCTION_TYPE, header_size + inobject_properties_count * kTaggedSize,
TERMINAL_FAST_ELEMENTS_KIND, inobject_properties_count);
{
DisallowGarbageCollection no_gc;
Tagged<Map> raw_map = *map;
raw_map->set_has_prototype_slot(has_prototype);
raw_map->set_is_constructor(has_prototype);
raw_map->set_is_callable(true);
}
Handle<JSFunction> empty_function;
if (maybe_empty_function.ToHandle(&empty_function)) {
// Temporarily set constructor to empty function to calm down map verifier.
map->SetConstructor(*empty_function);
Map::SetPrototype(isolate(), map, empty_function);
} else {
// |maybe_empty_function| is allowed to be empty only during empty function
// creation.
DCHECK(IsUndefined(
isolate()->raw_native_context()->get(Context::EMPTY_FUNCTION_INDEX)));
}
//
// Setup descriptors array.
//
Map::EnsureDescriptorSlack(isolate(), map, descriptors_count);
PropertyAttributes ro_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
PropertyAttributes rw_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
PropertyAttributes roc_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
int field_index = 0;
static_assert(
JSFunctionOrBoundFunctionOrWrappedFunction::kLengthDescriptorIndex == 0);
{ // Add length accessor.
Descriptor d = Descriptor::AccessorConstant(
length_string(), function_length_accessor(), roc_attribs);
map->AppendDescriptor(isolate(), &d);
}
static_assert(
JSFunctionOrBoundFunctionOrWrappedFunction::kNameDescriptorIndex == 1);
if (IsFunctionModeWithName(function_mode)) {
// Add name field.
Handle<Name> name = isolate()->factory()->name_string();
Descriptor d = Descriptor::DataField(isolate(), name, field_index++,
roc_attribs, Representation::Tagged());
map->AppendDescriptor(isolate(), &d);
} else {
// Add name accessor.
Descriptor d = Descriptor::AccessorConstant(
name_string(), function_name_accessor(), roc_attribs);
map->AppendDescriptor(isolate(), &d);
}
{ // Add arguments accessor.
Descriptor d = Descriptor::AccessorConstant(
arguments_string(), function_arguments_accessor(), ro_attribs);
map->AppendDescriptor(isolate(), &d);
}
{ // Add caller accessor.
Descriptor d = Descriptor::AccessorConstant(
caller_string(), function_caller_accessor(), ro_attribs);
map->AppendDescriptor(isolate(), &d);
}
if (IsFunctionModeWithPrototype(function_mode)) {
// Add prototype accessor.
PropertyAttributes attribs =
IsFunctionModeWithWritablePrototype(function_mode) ? rw_attribs
: ro_attribs;
Descriptor d = Descriptor::AccessorConstant(
prototype_string(), function_prototype_accessor(), attribs);
map->AppendDescriptor(isolate(), &d);
}
DCHECK_EQ(inobject_properties_count, field_index);
DCHECK_EQ(
0, map->instance_descriptors(isolate())->number_of_slack_descriptors());
LOG(isolate(), MapDetails(*map));
return map;
}
Handle<Map> Factory::CreateStrictFunctionMap(
FunctionMode function_mode, Handle<JSFunction> empty_function) {
bool has_prototype = IsFunctionModeWithPrototype(function_mode);
int header_size = has_prototype ? JSFunction::kSizeWithPrototype
: JSFunction::kSizeWithoutPrototype;
int inobject_properties_count = 0;
// length and prototype accessors or just length accessor.
int descriptors_count = IsFunctionModeWithPrototype(function_mode) ? 2 : 1;
if (IsFunctionModeWithName(function_mode)) {
++inobject_properties_count; // name property.
} else {
++descriptors_count; // name accessor.
}
descriptors_count += inobject_properties_count;
Handle<Map> map = NewMap(
JS_FUNCTION_TYPE, header_size + inobject_properties_count * kTaggedSize,
TERMINAL_FAST_ELEMENTS_KIND, inobject_properties_count);
{
DisallowGarbageCollection no_gc;
Tagged<Map> raw_map = *map;
raw_map->set_has_prototype_slot(has_prototype);
raw_map->set_is_constructor(has_prototype);
raw_map->set_is_callable(true);
// Temporarily set constructor to empty function to calm down map verifier.
raw_map->SetConstructor(*empty_function);
}
Map::SetPrototype(isolate(), map, empty_function);
//
// Setup descriptors array.
//
Map::EnsureDescriptorSlack(isolate(), map, descriptors_count);
PropertyAttributes rw_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
PropertyAttributes ro_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
PropertyAttributes roc_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
int field_index = 0;
static_assert(JSFunction::kLengthDescriptorIndex == 0);
{ // Add length accessor.
Descriptor d = Descriptor::AccessorConstant(
length_string(), function_length_accessor(), roc_attribs);
map->AppendDescriptor(isolate(), &d);
}
static_assert(JSFunction::kNameDescriptorIndex == 1);
if (IsFunctionModeWithName(function_mode)) {
// Add name field.
Handle<Name> name = isolate()->factory()->name_string();
Descriptor d = Descriptor::DataField(isolate(), name, field_index++,
roc_attribs, Representation::Tagged());
map->AppendDescriptor(isolate(), &d);
} else {
// Add name accessor.
Descriptor d = Descriptor::AccessorConstant(
name_string(), function_name_accessor(), roc_attribs);
map->AppendDescriptor(isolate(), &d);
}
if (IsFunctionModeWithPrototype(function_mode)) {
// Add prototype accessor.
PropertyAttributes attribs =
IsFunctionModeWithWritablePrototype(function_mode) ? rw_attribs
: ro_attribs;
Descriptor d = Descriptor::AccessorConstant(
prototype_string(), function_prototype_accessor(), attribs);
map->AppendDescriptor(isolate(), &d);
}
DCHECK_EQ(inobject_properties_count, field_index);
DCHECK_EQ(
0, map->instance_descriptors(isolate())->number_of_slack_descriptors());
LOG(isolate(), MapDetails(*map));
return map;
}
Handle<Map> Factory::CreateClassFunctionMap(Handle<JSFunction> empty_function) {
Handle<Map> map =
NewMap(JS_CLASS_CONSTRUCTOR_TYPE, JSFunction::kSizeWithPrototype);
{
DisallowGarbageCollection no_gc;
Tagged<Map> raw_map = *map;
raw_map->set_has_prototype_slot(true);
raw_map->set_is_constructor(true);
raw_map->set_is_prototype_map(true);
raw_map->set_is_callable(true);
// Temporarily set constructor to empty function to calm down map verifier.
raw_map->SetConstructor(*empty_function);
}
Map::SetPrototype(isolate(), map, empty_function);
//
// Setup descriptors array.
//
Map::EnsureDescriptorSlack(isolate(), map, 2);
PropertyAttributes ro_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
PropertyAttributes roc_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
static_assert(JSFunction::kLengthDescriptorIndex == 0);
{ // Add length accessor.
Descriptor d = Descriptor::AccessorConstant(
length_string(), function_length_accessor(), roc_attribs);
map->AppendDescriptor(isolate(), &d);
}
{
// Add prototype accessor.
Descriptor d = Descriptor::AccessorConstant(
prototype_string(), function_prototype_accessor(), ro_attribs);
map->AppendDescriptor(isolate(), &d);
}
LOG(isolate(), MapDetails(*map));
return map;
}
Handle<JSPromise> Factory::NewJSPromiseWithoutHook() {
Handle<JSPromise> promise =
Handle<JSPromise>::cast(NewJSObject(isolate()->promise_function()));
DisallowGarbageCollection no_gc;
Tagged<JSPromise> raw = *promise;
raw->set_reactions_or_result(Smi::zero(), SKIP_WRITE_BARRIER);
raw->set_flags(0);
// TODO(v8) remove once embedder data slots are always zero-initialized.
InitEmbedderFields(*promise, Smi::zero());
DCHECK_EQ(raw->GetEmbedderFieldCount(), v8::Promise::kEmbedderFieldCount);
return promise;
}
Handle<JSPromise> Factory::NewJSPromise() {
Handle<JSPromise> promise = NewJSPromiseWithoutHook();
isolate()->RunAllPromiseHooks(PromiseHookType::kInit, promise,
undefined_value());
return promise;
}
Handle<CallHandlerInfo> Factory::NewCallHandlerInfo(bool has_no_side_effect) {
Handle<Map> map = has_no_side_effect
? side_effect_free_call_handler_info_map()
: side_effect_call_handler_info_map();
Tagged<CallHandlerInfo> info =
Tagged<CallHandlerInfo>::cast(New(map, AllocationType::kOld));
DisallowGarbageCollection no_gc;
info->set_data(*undefined_value(), SKIP_WRITE_BARRIER);
info->init_callback(isolate(), kNullAddress);
return handle(info, isolate());
}
bool Factory::CanAllocateInReadOnlySpace() {
return allocator()->CanAllocateInReadOnlySpace();
}
bool Factory::EmptyStringRootIsInitialized() {
return isolate()->roots_table()[RootIndex::kempty_string] != kNullAddress;
}
AllocationType Factory::AllocationTypeForInPlaceInternalizableString() {
return isolate()
->heap()
->allocation_type_for_in_place_internalizable_strings();
}
Handle<JSFunction> Factory::NewFunctionForTesting(Handle<String> name) {
Handle<SharedFunctionInfo> info =
NewSharedFunctionInfoForBuiltin(name, Builtin::kIllegal);
info->set_language_mode(LanguageMode::kSloppy);
return JSFunctionBuilder{isolate(), info, isolate()->native_context()}
.Build();
}
Handle<JSSharedStruct> Factory::NewJSSharedStruct(
Handle<JSFunction> constructor, Handle<Object> maybe_elements_template) {
SharedObjectSafePublishGuard publish_guard;
Handle<Map> instance_map(constructor->initial_map(), isolate());
Handle<PropertyArray> property_array;
const int num_oob_fields =
instance_map->NumberOfFields(ConcurrencyMode::kSynchronous) -
instance_map->GetInObjectProperties();
if (num_oob_fields > 0) {
property_array =
NewPropertyArray(num_oob_fields, AllocationType::kSharedOld);
}
Handle<NumberDictionary> elements_dictionary;
if (!IsUndefined(*maybe_elements_template)) {
elements_dictionary = NumberDictionary::ShallowCopy(
isolate(), Handle<NumberDictionary>::cast(maybe_elements_template),
AllocationType::kSharedOld);
}
Handle<JSSharedStruct> instance = Handle<JSSharedStruct>::cast(
NewJSObject(constructor, AllocationType::kSharedOld));
// The struct object has not been fully initialized yet. Disallow allocation
// from this point on.
DisallowGarbageCollection no_gc;
if (!property_array.is_null()) instance->SetProperties(*property_array);
if (!elements_dictionary.is_null()) {
instance->set_elements(*elements_dictionary);
}
return instance;
}
Handle<JSSharedArray> Factory::NewJSSharedArray(Handle<JSFunction> constructor,
int length) {
SharedObjectSafePublishGuard publish_guard;
Handle<FixedArrayBase> storage =
NewFixedArray(length, AllocationType::kSharedOld);
Handle<JSSharedArray> instance = Handle<JSSharedArray>::cast(
NewJSObject(constructor, AllocationType::kSharedOld));
instance->set_elements(*storage);
FieldIndex index = FieldIndex::ForDescriptor(
constructor->initial_map(),
InternalIndex(JSSharedArray::kLengthFieldIndex));
instance->FastPropertyAtPut(index, Smi::FromInt(length), SKIP_WRITE_BARRIER);
return instance;
}
Handle<JSAtomicsMutex> Factory::NewJSAtomicsMutex() {
SharedObjectSafePublishGuard publish_guard;
Handle<Map> map = read_only_roots().js_atomics_mutex_map_handle();
Handle<JSAtomicsMutex> mutex = Handle<JSAtomicsMutex>::cast(
NewJSObjectFromMap(map, AllocationType::kSharedOld));
mutex->set_state(JSAtomicsMutex::kUnlocked);
mutex->set_owner_thread_id(ThreadId::Invalid().ToInteger());
return mutex;
}
Handle<JSAtomicsCondition> Factory::NewJSAtomicsCondition() {
SharedObjectSafePublishGuard publish_guard;
Handle<Map> map = read_only_roots().js_atomics_condition_map_handle();
Handle<JSAtomicsCondition> cond = Handle<JSAtomicsCondition>::cast(
NewJSObjectFromMap(map, AllocationType::kSharedOld));
cond->set_state(JSAtomicsCondition::kEmptyState);
return cond;
}
Factory::JSFunctionBuilder::JSFunctionBuilder(Isolate* isolate,
Handle<SharedFunctionInfo> sfi,
Handle<Context> context)
: isolate_(isolate), sfi_(sfi), context_(context) {}
Handle<JSFunction> Factory::JSFunctionBuilder::Build() {
PrepareMap();
PrepareFeedbackCell();
Handle<Code> code = handle(sfi_->GetCode(isolate_), isolate_);
// Retain the code across the call to BuildRaw, because it allocates and can
// trigger code to be flushed. Otherwise the SFI's compiled state and the
// function's compiled state can diverge, and the call to PostInstantiation
// below can fail to initialize the feedback vector.
IsCompiledScope is_compiled_scope(sfi_->is_compiled_scope(isolate_));
Handle<JSFunction> result = BuildRaw(code);
if (code->kind() == CodeKind::BASELINE) {
JSFunction::EnsureFeedbackVector(isolate_, result, &is_compiled_scope);
}
Compiler::PostInstantiation(result, &is_compiled_scope);
return result;
}
Handle<JSFunction> Factory::JSFunctionBuilder::BuildRaw(Handle<Code> code) {
Isolate* isolate = isolate_;
Factory* factory = isolate_->factory();
Handle<Map> map = maybe_map_.ToHandleChecked();
Handle<FeedbackCell> feedback_cell = maybe_feedback_cell_.ToHandleChecked();
DCHECK(InstanceTypeChecker::IsJSFunction(*map));
// Allocation.
Tagged<JSFunction> function =
Tagged<JSFunction>::cast(factory->New(map, allocation_type_));
DisallowGarbageCollection no_gc;
WriteBarrierMode mode = allocation_type_ == AllocationType::kYoung
? SKIP_WRITE_BARRIER
: UPDATE_WRITE_BARRIER;
// Header initialization.
function->initialize_properties(isolate);
function->initialize_elements();
function->set_shared(*sfi_, mode);
function->set_context(*context_, kReleaseStore, mode);
function->set_raw_feedback_cell(*feedback_cell, mode);
function->set_code(*code, kReleaseStore, mode);
if (function->has_prototype_slot()) {
function->set_prototype_or_initial_map(
ReadOnlyRoots(isolate).the_hole_value(), kReleaseStore,
SKIP_WRITE_BARRIER);
}
// Potentially body initialization.
factory->InitializeJSObjectBody(
function, *map, JSFunction::GetHeaderSize(map->has_prototype_slot()));
return handle(function, isolate_);
}
void Factory::JSFunctionBuilder::PrepareMap() {
if (maybe_map_.is_null()) {
// No specific map requested, use the default.
maybe_map_ = handle(
Map::cast(context_->native_context()->get(sfi_->function_map_index())),
isolate_);
}
}
void Factory::JSFunctionBuilder::PrepareFeedbackCell() {
Handle<FeedbackCell> feedback_cell;
if (maybe_feedback_cell_.ToHandle(&feedback_cell)) {
// Track the newly-created closure.
feedback_cell->IncrementClosureCount(isolate_);
} else {
// Fall back to the many_closures_cell.
maybe_feedback_cell_ = isolate_->factory()->many_closures_cell();
}
}
} // namespace internal
} // namespace v8