%PDF- %PDF-
| Direktori : /home2/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/d8/ |
| Current File : //home2/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/d8/d8.cc |
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <algorithm>
#include <fstream>
#include <iomanip>
#include <iterator>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <utility>
#include <vector>
#ifdef ENABLE_VTUNE_JIT_INTERFACE
#include "src/third_party/vtune/v8-vtune.h"
#endif
#include "include/libplatform/libplatform.h"
#include "include/libplatform/v8-tracing.h"
#include "include/v8-function.h"
#include "include/v8-initialization.h"
#include "include/v8-inspector.h"
#include "include/v8-isolate.h"
#include "include/v8-json.h"
#include "include/v8-locker.h"
#include "include/v8-profiler.h"
#include "include/v8-wasm.h"
#include "src/api/api-inl.h"
#include "src/base/cpu.h"
#include "src/base/logging.h"
#include "src/base/platform/memory.h"
#include "src/base/platform/platform.h"
#include "src/base/platform/time.h"
#include "src/base/platform/wrappers.h"
#include "src/base/sanitizer/msan.h"
#include "src/base/sys-info.h"
#include "src/base/utils/random-number-generator.h"
#include "src/compiler-dispatcher/optimizing-compile-dispatcher.h"
#include "src/d8/d8-console.h"
#include "src/d8/d8-platforms.h"
#include "src/d8/d8.h"
#include "src/debug/debug-interface.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/diagnostics/basic-block-profiler.h"
#include "src/execution/microtask-queue.h"
#include "src/execution/v8threads.h"
#include "src/execution/vm-state-inl.h"
#include "src/flags/flags.h"
#include "src/handles/maybe-handles.h"
#include "src/heap/parked-scope-inl.h"
#include "src/init/v8.h"
#include "src/interpreter/interpreter.h"
#include "src/logging/counters.h"
#include "src/logging/log-file.h"
#include "src/objects/managed-inl.h"
#include "src/objects/objects-inl.h"
#include "src/objects/objects.h"
#include "src/parsing/parse-info.h"
#include "src/parsing/parsing.h"
#include "src/parsing/scanner-character-streams.h"
#include "src/profiler/profile-generator.h"
#include "src/sandbox/testing.h"
#include "src/snapshot/snapshot.h"
#include "src/tasks/cancelable-task.h"
#include "src/utils/ostreams.h"
#include "src/utils/utils.h"
#ifdef V8_OS_DARWIN
#include <mach/mach.h>
#include <mach/task_policy.h>
#endif
#ifdef V8_ENABLE_MAGLEV
#include "src/maglev/maglev-concurrent-dispatcher.h"
#endif // V8_ENABLE_MAGLEV
#if V8_OS_POSIX
#include <signal.h>
#endif // V8_OS_POSIX
#ifdef V8_FUZZILLI
#include "src/d8/cov.h"
#endif // V8_FUZZILLI
#ifdef V8_USE_PERFETTO
#include "perfetto/tracing/track_event.h"
#include "perfetto/tracing/track_event_legacy.h"
#endif // V8_USE_PERFETTO
#ifdef V8_INTL_SUPPORT
#include "unicode/locid.h"
#endif // V8_INTL_SUPPORT
#ifdef V8_OS_LINUX
#include <sys/mman.h> // For MultiMappedAllocator.
#endif
#if !defined(_WIN32) && !defined(_WIN64)
#include <unistd.h>
#else
#include <windows.h>
#endif // !defined(_WIN32) && !defined(_WIN64)
#if V8_ENABLE_WEBASSEMBLY
#include "src/trap-handler/trap-handler.h"
#endif // V8_ENABLE_WEBASSEMBLY
#ifndef DCHECK
#define DCHECK(condition) assert(condition)
#endif
#ifndef CHECK
#define CHECK(condition) assert(condition)
#endif
namespace v8 {
namespace {
// Set on worker threads to the current Worker instance.
thread_local Worker* current_worker_ = nullptr;
#ifdef V8_FUZZILLI
// REPRL = read-eval-print-reset-loop
// These file descriptors are being opened when Fuzzilli uses fork & execve to
// run V8.
#define REPRL_CRFD 100 // Control read file decriptor
#define REPRL_CWFD 101 // Control write file decriptor
#define REPRL_DRFD 102 // Data read file decriptor
#define REPRL_DWFD 103 // Data write file decriptor
bool fuzzilli_reprl = true;
#else
bool fuzzilli_reprl = false;
#endif // V8_FUZZILLI
// Base class for shell ArrayBuffer allocators. It forwards all opertions to
// the default v8 allocator.
class ArrayBufferAllocatorBase : public v8::ArrayBuffer::Allocator {
public:
void* Allocate(size_t length) override {
return allocator_->Allocate(length);
}
void* AllocateUninitialized(size_t length) override {
return allocator_->AllocateUninitialized(length);
}
void Free(void* data, size_t length) override {
allocator_->Free(data, length);
}
private:
std::unique_ptr<Allocator> allocator_ =
std::unique_ptr<Allocator>(NewDefaultAllocator());
};
// ArrayBuffer allocator that can use virtual memory to improve performance.
class ShellArrayBufferAllocator : public ArrayBufferAllocatorBase {
public:
void* Allocate(size_t length) override {
if (length >= kVMThreshold) return AllocateVM(length);
return ArrayBufferAllocatorBase::Allocate(length);
}
void* AllocateUninitialized(size_t length) override {
if (length >= kVMThreshold) return AllocateVM(length);
return ArrayBufferAllocatorBase::AllocateUninitialized(length);
}
void Free(void* data, size_t length) override {
if (length >= kVMThreshold) {
FreeVM(data, length);
} else {
ArrayBufferAllocatorBase::Free(data, length);
}
}
private:
static constexpr size_t kVMThreshold = 65536;
void* AllocateVM(size_t length) {
DCHECK_LE(kVMThreshold, length);
v8::PageAllocator* page_allocator = i::GetArrayBufferPageAllocator();
size_t page_size = page_allocator->AllocatePageSize();
size_t allocated = RoundUp(length, page_size);
return i::AllocatePages(page_allocator, nullptr, allocated, page_size,
PageAllocator::kReadWrite);
}
void FreeVM(void* data, size_t length) {
v8::PageAllocator* page_allocator = i::GetArrayBufferPageAllocator();
size_t page_size = page_allocator->AllocatePageSize();
size_t allocated = RoundUp(length, page_size);
i::FreePages(page_allocator, data, allocated);
}
};
// ArrayBuffer allocator that never allocates over 10MB.
class MockArrayBufferAllocator : public ArrayBufferAllocatorBase {
protected:
void* Allocate(size_t length) override {
return ArrayBufferAllocatorBase::Allocate(Adjust(length));
}
void* AllocateUninitialized(size_t length) override {
return ArrayBufferAllocatorBase::AllocateUninitialized(Adjust(length));
}
void Free(void* data, size_t length) override {
return ArrayBufferAllocatorBase::Free(data, Adjust(length));
}
private:
size_t Adjust(size_t length) {
const size_t kAllocationLimit = 10 * i::MB;
return length > kAllocationLimit ? i::AllocatePageSize() : length;
}
};
// ArrayBuffer allocator that can be equipped with a limit to simulate system
// OOM.
class MockArrayBufferAllocatiorWithLimit : public MockArrayBufferAllocator {
public:
explicit MockArrayBufferAllocatiorWithLimit(size_t allocation_limit)
: space_left_(allocation_limit) {}
protected:
void* Allocate(size_t length) override {
if (length > space_left_) {
return nullptr;
}
space_left_ -= length;
return MockArrayBufferAllocator::Allocate(length);
}
void* AllocateUninitialized(size_t length) override {
if (length > space_left_) {
return nullptr;
}
space_left_ -= length;
return MockArrayBufferAllocator::AllocateUninitialized(length);
}
void Free(void* data, size_t length) override {
space_left_ += length;
return MockArrayBufferAllocator::Free(data, length);
}
private:
std::atomic<size_t> space_left_;
};
#if MULTI_MAPPED_ALLOCATOR_AVAILABLE
// This is a mock allocator variant that provides a huge virtual allocation
// backed by a small real allocation that is repeatedly mapped. If you create an
// array on memory allocated by this allocator, you will observe that elements
// will alias each other as if their indices were modulo-divided by the real
// allocation length.
// The purpose is to allow stability-testing of huge (typed) arrays without
// actually consuming huge amounts of physical memory.
// This is currently only available on Linux because it relies on {mremap}.
class MultiMappedAllocator : public ArrayBufferAllocatorBase {
protected:
void* Allocate(size_t length) override {
if (length < kChunkSize) {
return ArrayBufferAllocatorBase::Allocate(length);
}
// We use mmap, which initializes pages to zero anyway.
return AllocateUninitialized(length);
}
void* AllocateUninitialized(size_t length) override {
if (length < kChunkSize) {
return ArrayBufferAllocatorBase::AllocateUninitialized(length);
}
size_t rounded_length = RoundUp(length, kChunkSize);
int prot = PROT_READ | PROT_WRITE;
// We have to specify MAP_SHARED to make {mremap} below do what we want.
int flags = MAP_SHARED | MAP_ANONYMOUS;
void* real_alloc = mmap(nullptr, kChunkSize, prot, flags, -1, 0);
if (reinterpret_cast<intptr_t>(real_alloc) == -1) {
// If we ran into some limit (physical or virtual memory, or number
// of mappings, etc), return {nullptr}, which callers can handle.
if (errno == ENOMEM) {
return nullptr;
}
// Other errors may be bugs which we want to learn about.
FATAL("mmap (real) failed with error %d: %s", errno, strerror(errno));
}
void* virtual_alloc =
mmap(nullptr, rounded_length, prot, flags | MAP_NORESERVE, -1, 0);
if (reinterpret_cast<intptr_t>(virtual_alloc) == -1) {
if (errno == ENOMEM) {
// Undo earlier, successful mappings.
munmap(real_alloc, kChunkSize);
return nullptr;
}
FATAL("mmap (virtual) failed with error %d: %s", errno, strerror(errno));
}
i::Address virtual_base = reinterpret_cast<i::Address>(virtual_alloc);
i::Address virtual_end = virtual_base + rounded_length;
for (i::Address to_map = virtual_base; to_map < virtual_end;
to_map += kChunkSize) {
// Specifying 0 as the "old size" causes the existing map entry to not
// get deleted, which is important so that we can remap it again in the
// next iteration of this loop.
void* result =
mremap(real_alloc, 0, kChunkSize, MREMAP_MAYMOVE | MREMAP_FIXED,
reinterpret_cast<void*>(to_map));
if (reinterpret_cast<intptr_t>(result) == -1) {
if (errno == ENOMEM) {
// Undo earlier, successful mappings.
munmap(real_alloc, kChunkSize);
munmap(virtual_alloc, (to_map - virtual_base));
return nullptr;
}
FATAL("mremap failed with error %d: %s", errno, strerror(errno));
}
}
base::MutexGuard lock_guard(®ions_mutex_);
regions_[virtual_alloc] = real_alloc;
return virtual_alloc;
}
void Free(void* data, size_t length) override {
if (length < kChunkSize) {
return ArrayBufferAllocatorBase::Free(data, length);
}
base::MutexGuard lock_guard(®ions_mutex_);
void* real_alloc = regions_[data];
munmap(real_alloc, kChunkSize);
size_t rounded_length = RoundUp(length, kChunkSize);
munmap(data, rounded_length);
regions_.erase(data);
}
private:
// Aiming for a "Huge Page" (2M on Linux x64) to go easy on the TLB.
static constexpr size_t kChunkSize = 2 * 1024 * 1024;
std::unordered_map<void*, void*> regions_;
base::Mutex regions_mutex_;
};
#endif // MULTI_MAPPED_ALLOCATOR_AVAILABLE
v8::Platform* g_default_platform;
std::unique_ptr<v8::Platform> g_platform;
template <int N>
bool ThrowError(Isolate* isolate, const char (&message)[N]) {
if (isolate->IsExecutionTerminating()) return false;
isolate->ThrowError(message);
return true;
}
bool ThrowError(Isolate* isolate, Local<String> message) {
if (isolate->IsExecutionTerminating()) return false;
isolate->ThrowError(message);
return true;
}
static MaybeLocal<Value> TryGetValue(v8::Isolate* isolate,
Local<Context> context,
Local<v8::Object> object,
const char* property) {
MaybeLocal<String> v8_str = String::NewFromUtf8(isolate, property);
if (v8_str.IsEmpty()) return {};
return object->Get(context, v8_str.ToLocalChecked());
}
static Local<Value> GetValue(v8::Isolate* isolate, Local<Context> context,
Local<v8::Object> object, const char* property) {
return TryGetValue(isolate, context, object, property).ToLocalChecked();
}
std::shared_ptr<Worker> GetWorkerFromInternalField(Isolate* isolate,
Local<Object> object) {
if (object->InternalFieldCount() != 1) {
ThrowError(isolate, "this is not a Worker");
return nullptr;
}
i::Handle<i::Object> handle = Utils::OpenHandle(*object->GetInternalField(0));
if (IsSmi(*handle)) {
ThrowError(isolate, "Worker is defunct because main thread is terminating");
return nullptr;
}
auto managed = i::Handle<i::Managed<Worker>>::cast(handle);
return managed->get();
}
base::Thread::Options GetThreadOptions(const char* name) {
// On some systems (OSX 10.6) the stack size default is 0.5Mb or less
// which is not enough to parse the big literal expressions used in tests.
// The stack size should be at least StackGuard::kLimitSize + some
// OS-specific padding for thread startup code. 2Mbytes seems to be enough.
return base::Thread::Options(name, 2 * i::MB);
}
} // namespace
namespace tracing {
namespace {
static constexpr char kIncludedCategoriesParam[] = "included_categories";
static constexpr char kTraceConfigParam[] = "trace_config";
class TraceConfigParser {
public:
static void FillTraceConfig(v8::Isolate* isolate,
platform::tracing::TraceConfig* trace_config,
const char* json_str) {
HandleScope outer_scope(isolate);
Local<Context> context = Context::New(isolate);
Context::Scope context_scope(context);
HandleScope inner_scope(isolate);
Local<String> source =
String::NewFromUtf8(isolate, json_str).ToLocalChecked();
Local<Value> result = JSON::Parse(context, source).ToLocalChecked();
Local<v8::Object> trace_config_object = result.As<v8::Object>();
// Try reading 'trace_config' property from a full chrome trace config.
// https://chromium.googlesource.com/chromium/src/+/master/docs/memory-infra/memory_infra_startup_tracing.md#the-advanced-way
Local<Value> maybe_trace_config_object =
GetValue(isolate, context, trace_config_object, kTraceConfigParam);
if (maybe_trace_config_object->IsObject()) {
trace_config_object = maybe_trace_config_object.As<Object>();
}
UpdateIncludedCategoriesList(isolate, context, trace_config_object,
trace_config);
}
private:
static int UpdateIncludedCategoriesList(
v8::Isolate* isolate, Local<Context> context, Local<v8::Object> object,
platform::tracing::TraceConfig* trace_config) {
Local<Value> value =
GetValue(isolate, context, object, kIncludedCategoriesParam);
if (value->IsArray()) {
Local<Array> v8_array = value.As<Array>();
for (int i = 0, length = v8_array->Length(); i < length; ++i) {
Local<Value> v = v8_array->Get(context, i)
.ToLocalChecked()
->ToString(context)
.ToLocalChecked();
String::Utf8Value str(isolate, v->ToString(context).ToLocalChecked());
trace_config->AddIncludedCategory(*str);
}
return v8_array->Length();
}
return 0;
}
};
} // namespace
static platform::tracing::TraceConfig* CreateTraceConfigFromJSON(
v8::Isolate* isolate, const char* json_str) {
platform::tracing::TraceConfig* trace_config =
new platform::tracing::TraceConfig();
TraceConfigParser::FillTraceConfig(isolate, trace_config, json_str);
return trace_config;
}
} // namespace tracing
class ExternalOwningOneByteStringResource
: public String::ExternalOneByteStringResource {
public:
ExternalOwningOneByteStringResource() = default;
ExternalOwningOneByteStringResource(
std::unique_ptr<base::OS::MemoryMappedFile> file)
: file_(std::move(file)) {}
const char* data() const override {
return static_cast<char*>(file_->memory());
}
size_t length() const override { return file_->size(); }
private:
std::unique_ptr<base::OS::MemoryMappedFile> file_;
};
// static variables:
CounterMap* Shell::counter_map_;
base::SharedMutex Shell::counter_mutex_;
base::OS::MemoryMappedFile* Shell::counters_file_ = nullptr;
CounterCollection Shell::local_counters_;
CounterCollection* Shell::counters_ = &local_counters_;
base::LazyMutex Shell::context_mutex_;
const base::TimeTicks Shell::kInitialTicks = base::TimeTicks::Now();
Global<Function> Shell::stringify_function_;
base::Mutex Shell::profiler_end_callback_lock_;
std::map<Isolate*, std::pair<Global<Function>, Global<Context>>>
Shell::profiler_end_callback_;
base::LazyMutex Shell::workers_mutex_;
bool Shell::allow_new_workers_ = true;
std::unordered_set<std::shared_ptr<Worker>> Shell::running_workers_;
std::atomic<bool> Shell::script_executed_{false};
std::atomic<bool> Shell::valid_fuzz_script_{false};
base::LazyMutex Shell::isolate_status_lock_;
std::map<v8::Isolate*, int> Shell::isolate_running_streaming_tasks_;
base::LazyMutex Shell::cached_code_mutex_;
std::map<std::string, std::unique_ptr<ScriptCompiler::CachedData>>
Shell::cached_code_map_;
std::atomic<int> Shell::unhandled_promise_rejections_{0};
Global<Context> Shell::evaluation_context_;
ArrayBuffer::Allocator* Shell::array_buffer_allocator;
bool check_d8_flag_contradictions = true;
ShellOptions Shell::options;
base::OnceType Shell::quit_once_ = V8_ONCE_INIT;
ScriptCompiler::CachedData* Shell::LookupCodeCache(Isolate* isolate,
Local<Value> source) {
i::ParkedMutexGuard lock_guard(
reinterpret_cast<i::Isolate*>(isolate)->main_thread_local_isolate(),
cached_code_mutex_.Pointer());
CHECK(source->IsString());
v8::String::Utf8Value key(isolate, source);
DCHECK(*key);
auto entry = cached_code_map_.find(*key);
if (entry != cached_code_map_.end() && entry->second) {
int length = entry->second->length;
uint8_t* cache = new uint8_t[length];
memcpy(cache, entry->second->data, length);
ScriptCompiler::CachedData* cached_data = new ScriptCompiler::CachedData(
cache, length, ScriptCompiler::CachedData::BufferOwned);
return cached_data;
}
return nullptr;
}
void Shell::StoreInCodeCache(Isolate* isolate, Local<Value> source,
const ScriptCompiler::CachedData* cache_data) {
i::ParkedMutexGuard lock_guard(
reinterpret_cast<i::Isolate*>(isolate)->main_thread_local_isolate(),
cached_code_mutex_.Pointer());
CHECK(source->IsString());
if (cache_data == nullptr) return;
v8::String::Utf8Value key(isolate, source);
DCHECK(*key);
int length = cache_data->length;
uint8_t* cache = new uint8_t[length];
memcpy(cache, cache_data->data, length);
cached_code_map_[*key] = std::unique_ptr<ScriptCompiler::CachedData>(
new ScriptCompiler::CachedData(cache, length,
ScriptCompiler::CachedData::BufferOwned));
}
// Dummy external source stream which returns the whole source in one go.
// TODO(leszeks): Also test chunking the data.
class DummySourceStream : public v8::ScriptCompiler::ExternalSourceStream {
public:
explicit DummySourceStream(Local<String> source) : done_(false) {
source_buffer_ = Utils::OpenHandle(*source)->ToCString(
i::ALLOW_NULLS, i::FAST_STRING_TRAVERSAL, &source_length_);
}
size_t GetMoreData(const uint8_t** src) override {
if (done_) {
return 0;
}
*src = reinterpret_cast<uint8_t*>(source_buffer_.release());
done_ = true;
return source_length_;
}
private:
int source_length_;
std::unique_ptr<char[]> source_buffer_;
bool done_;
};
class StreamingCompileTask final : public v8::Task {
public:
StreamingCompileTask(Isolate* isolate,
v8::ScriptCompiler::StreamedSource* streamed_source,
v8::ScriptType type)
: isolate_(isolate),
script_streaming_task_(v8::ScriptCompiler::StartStreaming(
isolate, streamed_source, type)) {
Shell::NotifyStartStreamingTask(isolate_);
}
void Run() override {
script_streaming_task_->Run();
// Signal that the task has finished using the task runner to wake the
// message loop.
Shell::PostForegroundTask(isolate_, std::make_unique<FinishTask>(isolate_));
}
private:
class FinishTask final : public v8::Task {
public:
explicit FinishTask(Isolate* isolate) : isolate_(isolate) {}
void Run() final { Shell::NotifyFinishStreamingTask(isolate_); }
Isolate* isolate_;
};
Isolate* isolate_;
std::unique_ptr<v8::ScriptCompiler::ScriptStreamingTask>
script_streaming_task_;
};
namespace {
template <class T>
MaybeLocal<T> CompileStreamed(Local<Context> context,
ScriptCompiler::StreamedSource* v8_source,
Local<String> full_source_string,
const ScriptOrigin& origin) {}
template <>
MaybeLocal<Script> CompileStreamed(Local<Context> context,
ScriptCompiler::StreamedSource* v8_source,
Local<String> full_source_string,
const ScriptOrigin& origin) {
return ScriptCompiler::Compile(context, v8_source, full_source_string,
origin);
}
template <>
MaybeLocal<Module> CompileStreamed(Local<Context> context,
ScriptCompiler::StreamedSource* v8_source,
Local<String> full_source_string,
const ScriptOrigin& origin) {
return ScriptCompiler::CompileModule(context, v8_source, full_source_string,
origin);
}
template <class T>
MaybeLocal<T> Compile(Local<Context> context, ScriptCompiler::Source* source,
ScriptCompiler::CompileOptions options) {}
template <>
MaybeLocal<Script> Compile(Local<Context> context,
ScriptCompiler::Source* source,
ScriptCompiler::CompileOptions options) {
return ScriptCompiler::Compile(context, source, options);
}
template <>
MaybeLocal<Module> Compile(Local<Context> context,
ScriptCompiler::Source* source,
ScriptCompiler::CompileOptions options) {
return ScriptCompiler::CompileModule(context->GetIsolate(), source, options);
}
} // namespace
template <class T>
MaybeLocal<T> Shell::CompileString(Isolate* isolate, Local<Context> context,
Local<String> source,
const ScriptOrigin& origin) {
if (options.streaming_compile) {
v8::ScriptCompiler::StreamedSource streamed_source(
std::make_unique<DummySourceStream>(source),
v8::ScriptCompiler::StreamedSource::UTF8);
PostBlockingBackgroundTask(std::make_unique<StreamingCompileTask>(
isolate, &streamed_source,
std::is_same<T, Module>::value ? v8::ScriptType::kModule
: v8::ScriptType::kClassic));
// Pump the loop until the streaming task completes.
Shell::CompleteMessageLoop(isolate);
return CompileStreamed<T>(context, &streamed_source, source, origin);
}
ScriptCompiler::CachedData* cached_code = nullptr;
if (options.compile_options == ScriptCompiler::kConsumeCodeCache) {
cached_code = LookupCodeCache(isolate, source);
}
ScriptCompiler::Source script_source(source, origin, cached_code);
MaybeLocal<T> result =
Compile<T>(context, &script_source,
cached_code ? ScriptCompiler::kConsumeCodeCache
: ScriptCompiler::kNoCompileOptions);
if (cached_code) CHECK(!cached_code->rejected);
return result;
}
namespace {
// For testing.
const int kHostDefinedOptionsLength = 2;
const uint32_t kHostDefinedOptionsMagicConstant = 0xF1F2F3F0;
std::string ToSTLString(Isolate* isolate, Local<String> v8_str) {
String::Utf8Value utf8(isolate, v8_str);
// Should not be able to fail since the input is a String.
CHECK(*utf8);
return *utf8;
}
// Per-context Module data, allowing sharing of module maps
// across top-level module loads.
class ModuleEmbedderData {
private:
class ModuleGlobalHash {
public:
explicit ModuleGlobalHash(Isolate* isolate) : isolate_(isolate) {}
size_t operator()(const Global<Module>& module) const {
return module.Get(isolate_)->GetIdentityHash();
}
private:
Isolate* isolate_;
};
public:
explicit ModuleEmbedderData(Isolate* isolate)
: module_to_specifier_map(10, ModuleGlobalHash(isolate)),
json_module_to_parsed_json_map(
10, module_to_specifier_map.hash_function()) {}
static ModuleType ModuleTypeFromImportAssertions(
Local<Context> context, Local<FixedArray> import_assertions,
bool hasPositions) {
Isolate* isolate = context->GetIsolate();
const int kV8AssertionEntrySize = hasPositions ? 3 : 2;
for (int i = 0; i < import_assertions->Length();
i += kV8AssertionEntrySize) {
Local<String> v8_assertion_key =
import_assertions->Get(context, i).As<v8::String>();
std::string assertion_key = ToSTLString(isolate, v8_assertion_key);
if (assertion_key == "type") {
Local<String> v8_assertion_value =
import_assertions->Get(context, i + 1).As<String>();
std::string assertion_value = ToSTLString(isolate, v8_assertion_value);
if (assertion_value == "json") {
return ModuleType::kJSON;
} else {
// JSON is currently the only supported non-JS type
return ModuleType::kInvalid;
}
}
}
// If no type is asserted, default to JS.
return ModuleType::kJavaScript;
}
// Map from (normalized module specifier, module type) pair to Module.
std::map<std::pair<std::string, ModuleType>, Global<Module>> module_map;
// Map from Module to its URL as defined in the ScriptOrigin
std::unordered_map<Global<Module>, std::string, ModuleGlobalHash>
module_to_specifier_map;
// Map from JSON Module to its parsed content, for use in module
// JSONModuleEvaluationSteps
std::unordered_map<Global<Module>, Global<Value>, ModuleGlobalHash>
json_module_to_parsed_json_map;
// Origin location used for resolving modules when referrer is null.
std::string origin;
};
enum { kModuleEmbedderDataIndex, kInspectorClientIndex };
std::shared_ptr<ModuleEmbedderData> InitializeModuleEmbedderData(
Local<Context> context) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
const size_t kModuleEmbedderDataEstimate = 4 * 1024; // module map.
i::Handle<i::Managed<ModuleEmbedderData>> module_data_managed =
i::Managed<ModuleEmbedderData>::Allocate(
i_isolate, kModuleEmbedderDataEstimate, context->GetIsolate());
v8::Local<v8::Value> module_data = Utils::ToLocal(module_data_managed);
context->SetEmbedderData(kModuleEmbedderDataIndex, module_data);
return module_data_managed->get();
}
std::shared_ptr<ModuleEmbedderData> GetModuleDataFromContext(
Local<Context> context) {
v8::Local<v8::Value> module_data =
context->GetEmbedderData(kModuleEmbedderDataIndex);
i::Handle<i::Managed<ModuleEmbedderData>> module_data_managed =
i::Handle<i::Managed<ModuleEmbedderData>>::cast(
Utils::OpenHandle<Value, i::Object>(module_data));
return module_data_managed->get();
}
ScriptOrigin CreateScriptOrigin(Isolate* isolate, Local<String> resource_name,
v8::ScriptType type) {
Local<PrimitiveArray> options =
PrimitiveArray::New(isolate, kHostDefinedOptionsLength);
options->Set(isolate, 0,
v8::Uint32::New(isolate, kHostDefinedOptionsMagicConstant));
options->Set(isolate, 1, resource_name);
return ScriptOrigin(isolate, resource_name, 0, 0, false, -1, Local<Value>(),
false, false, type == v8::ScriptType::kModule, options);
}
bool IsValidHostDefinedOptions(Local<Context> context, Local<Data> options,
Local<Value> resource_name) {
if (!options->IsFixedArray()) return false;
Local<FixedArray> array = options.As<FixedArray>();
if (array->Length() != kHostDefinedOptionsLength) return false;
uint32_t magic = 0;
if (!array->Get(context, 0).As<Value>()->Uint32Value(context).To(&magic)) {
return false;
}
if (magic != kHostDefinedOptionsMagicConstant) return false;
return array->Get(context, 1).As<String>()->StrictEquals(resource_name);
}
class D8WasmAsyncResolvePromiseTask : public v8::Task {
public:
D8WasmAsyncResolvePromiseTask(v8::Isolate* isolate,
v8::Local<v8::Context> context,
v8::Local<v8::Promise::Resolver> resolver,
v8::Local<v8::Value> result,
WasmAsyncSuccess success)
: isolate_(isolate),
context_(isolate, context),
resolver_(isolate, resolver),
result_(isolate, result),
success_(success) {}
void Run() override {
v8::HandleScope scope(isolate_);
v8::Local<v8::Context> context = context_.Get(isolate_);
MicrotasksScope microtasks_scope(context,
MicrotasksScope::kDoNotRunMicrotasks);
v8::Local<v8::Promise::Resolver> resolver = resolver_.Get(isolate_);
v8::Local<v8::Value> result = result_.Get(isolate_);
Maybe<bool> ret = success_ == WasmAsyncSuccess::kSuccess
? resolver->Resolve(context, result)
: resolver->Reject(context, result);
// It's guaranteed that no exceptions will be thrown by these
// operations, but execution might be terminating.
CHECK(ret.IsJust() ? ret.FromJust() : isolate_->IsExecutionTerminating());
}
private:
v8::Isolate* isolate_;
v8::Global<v8::Context> context_;
v8::Global<v8::Promise::Resolver> resolver_;
v8::Global<v8::Value> result_;
WasmAsyncSuccess success_;
};
void D8WasmAsyncResolvePromiseCallback(
v8::Isolate* isolate, v8::Local<v8::Context> context,
v8::Local<v8::Promise::Resolver> resolver, v8::Local<v8::Value> result,
WasmAsyncSuccess success) {
// We have to resolve the promise in a separate task which is not a cancelable
// task, to avoid a deadlock when {quit()} is called in the then-handler of
// the result promise.
g_platform->GetForegroundTaskRunner(isolate)->PostTask(
std::make_unique<D8WasmAsyncResolvePromiseTask>(
isolate, context, resolver, result, success));
}
} // namespace
// Executes a string within the current v8 context.
bool Shell::ExecuteString(Isolate* isolate, Local<String> source,
Local<String> name, PrintResult print_result,
ReportExceptions report_exceptions,
ProcessMessageQueue process_message_queue) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
if (i::v8_flags.parse_only) {
i::VMState<PARSER> state(i_isolate);
i::Handle<i::String> str = Utils::OpenHandle(*(source));
// Set up ParseInfo.
i::UnoptimizedCompileState compile_state;
i::ReusableUnoptimizedCompileState reusable_state(i_isolate);
i::UnoptimizedCompileFlags flags =
i::UnoptimizedCompileFlags::ForToplevelCompile(
i_isolate, true, i::construct_language_mode(i::v8_flags.use_strict),
i::REPLMode::kNo, ScriptType::kClassic, i::v8_flags.lazy);
if (options.compile_options == v8::ScriptCompiler::kEagerCompile) {
flags.set_is_eager(true);
}
i::ParseInfo parse_info(i_isolate, flags, &compile_state, &reusable_state);
i::Handle<i::Script> script = parse_info.CreateScript(
i_isolate, str, i::kNullMaybeHandle, ScriptOriginOptions());
if (!i::parsing::ParseProgram(&parse_info, script, i_isolate,
i::parsing::ReportStatisticsMode::kYes)) {
parse_info.pending_error_handler()->PrepareErrors(
i_isolate, parse_info.ast_value_factory());
parse_info.pending_error_handler()->ReportErrors(i_isolate, script);
fprintf(stderr, "Failed parsing\n");
return false;
}
return true;
}
HandleScope handle_scope(isolate);
TryCatch try_catch(isolate);
try_catch.SetVerbose(report_exceptions == kReportExceptions);
// Explicitly check for stack overflows. This method can be called
// recursively, and since we consume quite some stack space for the C++
// frames, the stack check in the called frame might be too late.
if (i::StackLimitCheck{i_isolate}.HasOverflowed()) {
i_isolate->StackOverflow();
i_isolate->OptionalRescheduleException(false);
return false;
}
MaybeLocal<Value> maybe_result;
bool success = true;
{
PerIsolateData* data = PerIsolateData::Get(isolate);
Local<Context> realm =
Local<Context>::New(isolate, data->realms_[data->realm_current_]);
Context::Scope context_scope(realm);
Local<Context> context(isolate->GetCurrentContext());
ScriptOrigin origin =
CreateScriptOrigin(isolate, name, ScriptType::kClassic);
std::shared_ptr<ModuleEmbedderData> module_data =
GetModuleDataFromContext(realm);
module_data->origin = ToSTLString(isolate, name);
for (int i = 1; i < options.repeat_compile; ++i) {
HandleScope handle_scope_for_compiling(isolate);
if (CompileString<Script>(isolate, context, source, origin).IsEmpty()) {
return false;
}
}
Local<Script> script;
if (!CompileString<Script>(isolate, context, source, origin)
.ToLocal(&script)) {
return false;
}
if (options.code_cache_options ==
ShellOptions::CodeCacheOptions::kProduceCache) {
// Serialize and store it in memory for the next execution.
ScriptCompiler::CachedData* cached_data =
ScriptCompiler::CreateCodeCache(script->GetUnboundScript());
StoreInCodeCache(isolate, source, cached_data);
delete cached_data;
}
if (options.compile_only) return true;
if (options.compile_options == ScriptCompiler::kConsumeCodeCache) {
i::Handle<i::Script> i_script(
i::Script::cast(Utils::OpenHandle(*script)->shared()->script()),
i_isolate);
// TODO(cbruni, chromium:1244145): remove once context-allocated.
i_script->set_host_defined_options(i::FixedArray::cast(
*Utils::OpenHandle(*(origin.GetHostDefinedOptions()))));
}
maybe_result = script->Run(realm);
if (options.code_cache_options ==
ShellOptions::CodeCacheOptions::kProduceCacheAfterExecute) {
// Serialize and store it in memory for the next execution.
ScriptCompiler::CachedData* cached_data =
ScriptCompiler::CreateCodeCache(script->GetUnboundScript());
StoreInCodeCache(isolate, source, cached_data);
delete cached_data;
}
if (process_message_queue) {
if (!CompleteMessageLoop(isolate)) success = false;
if (!HandleUnhandledPromiseRejections(isolate)) success = false;
}
data->realm_current_ = data->realm_switch_;
}
Local<Value> result;
if (!maybe_result.ToLocal(&result)) {
DCHECK(try_catch.HasCaught());
return false;
}
// It's possible that a FinalizationRegistry cleanup task threw an error.
if (try_catch.HasCaught()) success = false;
if (print_result) {
if (options.test_shell) {
if (!result->IsUndefined()) {
// If all went well and the result wasn't undefined then print
// the returned value.
v8::String::Utf8Value str(isolate, result);
fwrite(*str, sizeof(**str), str.length(), stdout);
printf("\n");
}
} else {
v8::String::Utf8Value str(isolate, Stringify(isolate, result));
fwrite(*str, sizeof(**str), str.length(), stdout);
printf("\n");
}
}
return success;
}
namespace {
bool IsAbsolutePath(const std::string& path) {
#if defined(_WIN32) || defined(_WIN64)
// This is an incorrect approximation, but should
// work for all our test-running cases.
return path.find(':') != std::string::npos;
#else
return path[0] == '/';
#endif
}
std::string GetWorkingDirectory() {
#if defined(_WIN32) || defined(_WIN64)
char system_buffer[MAX_PATH];
// Unicode paths are unsupported, which is fine as long as
// the test directory doesn't include any such paths.
DWORD len = GetCurrentDirectoryA(MAX_PATH, system_buffer);
CHECK_GT(len, 0);
return system_buffer;
#else
char curdir[PATH_MAX];
CHECK_NOT_NULL(getcwd(curdir, PATH_MAX));
return curdir;
#endif
}
// Returns the directory part of path, without the trailing '/'.
std::string DirName(const std::string& path) {
DCHECK(IsAbsolutePath(path));
size_t last_slash = path.find_last_of('/');
DCHECK(last_slash != std::string::npos);
return path.substr(0, last_slash);
}
// Resolves path to an absolute path if necessary, and does some
// normalization (eliding references to the current directory
// and replacing backslashes with slashes).
std::string NormalizePath(const std::string& path,
const std::string& dir_name) {
std::string absolute_path;
if (IsAbsolutePath(path)) {
absolute_path = path;
} else {
absolute_path = dir_name + '/' + path;
}
std::replace(absolute_path.begin(), absolute_path.end(), '\\', '/');
std::vector<std::string> segments;
std::istringstream segment_stream(absolute_path);
std::string segment;
while (std::getline(segment_stream, segment, '/')) {
if (segment == "..") {
if (!segments.empty()) segments.pop_back();
} else if (segment != ".") {
segments.push_back(segment);
}
}
// Join path segments.
std::ostringstream os;
if (segments.size() > 1) {
std::copy(segments.begin(), segments.end() - 1,
std::ostream_iterator<std::string>(os, "/"));
os << *segments.rbegin();
} else {
os << "/";
if (!segments.empty()) os << segments[0];
}
return os.str();
}
MaybeLocal<Module> ResolveModuleCallback(Local<Context> context,
Local<String> specifier,
Local<FixedArray> import_assertions,
Local<Module> referrer) {
Isolate* isolate = context->GetIsolate();
std::shared_ptr<ModuleEmbedderData> module_data =
GetModuleDataFromContext(context);
auto specifier_it = module_data->module_to_specifier_map.find(
Global<Module>(isolate, referrer));
CHECK(specifier_it != module_data->module_to_specifier_map.end());
std::string absolute_path = NormalizePath(ToSTLString(isolate, specifier),
DirName(specifier_it->second));
ModuleType module_type = ModuleEmbedderData::ModuleTypeFromImportAssertions(
context, import_assertions, true);
auto module_it =
module_data->module_map.find(std::make_pair(absolute_path, module_type));
CHECK(module_it != module_data->module_map.end());
return module_it->second.Get(isolate);
}
} // anonymous namespace
MaybeLocal<Module> Shell::FetchModuleTree(Local<Module> referrer,
Local<Context> context,
const std::string& file_name,
ModuleType module_type) {
DCHECK(IsAbsolutePath(file_name));
Isolate* isolate = context->GetIsolate();
MaybeLocal<String> source_text = ReadFile(isolate, file_name.c_str(), false);
if (source_text.IsEmpty() && options.fuzzy_module_file_extensions) {
std::string fallback_file_name = file_name + ".js";
source_text = ReadFile(isolate, fallback_file_name.c_str(), false);
if (source_text.IsEmpty()) {
fallback_file_name = file_name + ".mjs";
source_text = ReadFile(isolate, fallback_file_name.c_str());
}
}
std::shared_ptr<ModuleEmbedderData> module_data =
GetModuleDataFromContext(context);
if (source_text.IsEmpty()) {
std::string msg = "d8: Error reading module from " + file_name;
if (!referrer.IsEmpty()) {
auto specifier_it = module_data->module_to_specifier_map.find(
Global<Module>(isolate, referrer));
CHECK(specifier_it != module_data->module_to_specifier_map.end());
msg += "\n imported by " + specifier_it->second;
}
ThrowError(isolate,
v8::String::NewFromUtf8(isolate, msg.c_str()).ToLocalChecked());
return MaybeLocal<Module>();
}
Local<String> resource_name =
String::NewFromUtf8(isolate, file_name.c_str()).ToLocalChecked();
ScriptOrigin origin =
CreateScriptOrigin(isolate, resource_name, ScriptType::kModule);
Local<Module> module;
if (module_type == ModuleType::kJavaScript) {
ScriptCompiler::Source source(source_text.ToLocalChecked(), origin);
if (!CompileString<Module>(isolate, context, source_text.ToLocalChecked(),
origin)
.ToLocal(&module)) {
return MaybeLocal<Module>();
}
} else if (module_type == ModuleType::kJSON) {
Local<Value> parsed_json;
if (!v8::JSON::Parse(context, source_text.ToLocalChecked())
.ToLocal(&parsed_json)) {
return MaybeLocal<Module>();
}
auto export_names = v8::to_array<Local<String>>(
{String::NewFromUtf8(isolate, "default").ToLocalChecked()});
module = v8::Module::CreateSyntheticModule(
isolate,
String::NewFromUtf8(isolate, file_name.c_str()).ToLocalChecked(),
export_names, Shell::JSONModuleEvaluationSteps);
CHECK(module_data->json_module_to_parsed_json_map
.insert(std::make_pair(Global<Module>(isolate, module),
Global<Value>(isolate, parsed_json)))
.second);
} else {
UNREACHABLE();
}
CHECK(module_data->module_map
.insert(std::make_pair(std::make_pair(file_name, module_type),
Global<Module>(isolate, module)))
.second);
CHECK(module_data->module_to_specifier_map
.insert(std::make_pair(Global<Module>(isolate, module), file_name))
.second);
std::string dir_name = DirName(file_name);
Local<FixedArray> module_requests = module->GetModuleRequests();
for (int i = 0, length = module_requests->Length(); i < length; ++i) {
Local<ModuleRequest> module_request =
module_requests->Get(context, i).As<ModuleRequest>();
Local<String> name = module_request->GetSpecifier();
std::string absolute_path =
NormalizePath(ToSTLString(isolate, name), dir_name);
Local<FixedArray> import_assertions = module_request->GetImportAssertions();
ModuleType request_module_type =
ModuleEmbedderData::ModuleTypeFromImportAssertions(
context, import_assertions, true);
if (request_module_type == ModuleType::kInvalid) {
ThrowError(isolate, "Invalid module type was asserted");
return MaybeLocal<Module>();
}
if (module_data->module_map.count(
std::make_pair(absolute_path, request_module_type))) {
continue;
}
if (FetchModuleTree(module, context, absolute_path, request_module_type)
.IsEmpty()) {
return MaybeLocal<Module>();
}
}
return module;
}
MaybeLocal<Value> Shell::JSONModuleEvaluationSteps(Local<Context> context,
Local<Module> module) {
Isolate* isolate = context->GetIsolate();
std::shared_ptr<ModuleEmbedderData> module_data =
GetModuleDataFromContext(context);
auto json_value_it = module_data->json_module_to_parsed_json_map.find(
Global<Module>(isolate, module));
CHECK(json_value_it != module_data->json_module_to_parsed_json_map.end());
Local<Value> json_value = json_value_it->second.Get(isolate);
TryCatch try_catch(isolate);
Maybe<bool> result = module->SetSyntheticModuleExport(
isolate,
String::NewFromUtf8Literal(isolate, "default",
NewStringType::kInternalized),
json_value);
// Setting the default export should never fail.
CHECK(!try_catch.HasCaught());
CHECK(!result.IsNothing() && result.FromJust());
Local<Promise::Resolver> resolver =
Promise::Resolver::New(context).ToLocalChecked();
resolver->Resolve(context, Undefined(isolate)).ToChecked();
return resolver->GetPromise();
}
struct DynamicImportData {
DynamicImportData(Isolate* isolate_, Local<Context> context_,
Local<Value> referrer_, Local<String> specifier_,
Local<FixedArray> import_assertions_,
Local<Promise::Resolver> resolver_)
: isolate(isolate_) {
context.Reset(isolate, context_);
referrer.Reset(isolate, referrer_);
specifier.Reset(isolate, specifier_);
import_assertions.Reset(isolate, import_assertions_);
resolver.Reset(isolate, resolver_);
}
Isolate* isolate;
// The initiating context. It can be the Realm created by d8, or the context
// created by ShadowRealm built-in.
Global<Context> context;
Global<Value> referrer;
Global<String> specifier;
Global<FixedArray> import_assertions;
Global<Promise::Resolver> resolver;
};
namespace {
struct ModuleResolutionData {
ModuleResolutionData(Isolate* isolate_, Local<Value> module_namespace_,
Local<Promise::Resolver> resolver_)
: isolate(isolate_) {
module_namespace.Reset(isolate, module_namespace_);
resolver.Reset(isolate, resolver_);
}
Isolate* isolate;
Global<Value> module_namespace;
Global<Promise::Resolver> resolver;
};
} // namespace
void Shell::ModuleResolutionSuccessCallback(
const FunctionCallbackInfo<Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
std::unique_ptr<ModuleResolutionData> module_resolution_data(
static_cast<ModuleResolutionData*>(
info.Data().As<v8::External>()->Value()));
Isolate* isolate(module_resolution_data->isolate);
HandleScope handle_scope(isolate);
Local<Promise::Resolver> resolver(
module_resolution_data->resolver.Get(isolate));
Local<Value> module_namespace(
module_resolution_data->module_namespace.Get(isolate));
PerIsolateData* data = PerIsolateData::Get(isolate);
Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
Context::Scope context_scope(realm);
resolver->Resolve(realm, module_namespace).ToChecked();
}
void Shell::ModuleResolutionFailureCallback(
const FunctionCallbackInfo<Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
std::unique_ptr<ModuleResolutionData> module_resolution_data(
static_cast<ModuleResolutionData*>(
info.Data().As<v8::External>()->Value()));
Isolate* isolate(module_resolution_data->isolate);
HandleScope handle_scope(isolate);
Local<Promise::Resolver> resolver(
module_resolution_data->resolver.Get(isolate));
PerIsolateData* data = PerIsolateData::Get(isolate);
Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
Context::Scope context_scope(realm);
DCHECK_EQ(info.Length(), 1);
resolver->Reject(realm, info[0]).ToChecked();
}
MaybeLocal<Promise> Shell::HostImportModuleDynamically(
Local<Context> context, Local<Data> host_defined_options,
Local<Value> resource_name, Local<String> specifier,
Local<FixedArray> import_assertions) {
Isolate* isolate = context->GetIsolate();
MaybeLocal<Promise::Resolver> maybe_resolver =
Promise::Resolver::New(context);
Local<Promise::Resolver> resolver;
if (!maybe_resolver.ToLocal(&resolver)) return MaybeLocal<Promise>();
if (!resource_name->IsNull() &&
!IsValidHostDefinedOptions(context, host_defined_options,
resource_name)) {
resolver
->Reject(context, v8::Exception::TypeError(String::NewFromUtf8Literal(
isolate, "Invalid host defined options")))
.ToChecked();
} else {
DynamicImportData* data =
new DynamicImportData(isolate, context, resource_name, specifier,
import_assertions, resolver);
PerIsolateData::Get(isolate)->AddDynamicImportData(data);
isolate->EnqueueMicrotask(Shell::DoHostImportModuleDynamically, data);
}
return resolver->GetPromise();
}
void Shell::HostInitializeImportMetaObject(Local<Context> context,
Local<Module> module,
Local<Object> meta) {
Isolate* isolate = context->GetIsolate();
HandleScope handle_scope(isolate);
std::shared_ptr<ModuleEmbedderData> module_data =
GetModuleDataFromContext(context);
auto specifier_it = module_data->module_to_specifier_map.find(
Global<Module>(isolate, module));
CHECK(specifier_it != module_data->module_to_specifier_map.end());
Local<String> url_key =
String::NewFromUtf8Literal(isolate, "url", NewStringType::kInternalized);
Local<String> url = String::NewFromUtf8(isolate, specifier_it->second.c_str())
.ToLocalChecked();
meta->CreateDataProperty(context, url_key, url).ToChecked();
}
MaybeLocal<Context> Shell::HostCreateShadowRealmContext(
Local<Context> initiator_context) {
Local<Context> context = v8::Context::New(initiator_context->GetIsolate());
std::shared_ptr<ModuleEmbedderData> shadow_realm_data =
InitializeModuleEmbedderData(context);
std::shared_ptr<ModuleEmbedderData> initiator_data =
GetModuleDataFromContext(initiator_context);
// ShadowRealms are synchronously accessible and are always in the same origin
// as the initiator context.
context->SetSecurityToken(initiator_context->GetSecurityToken());
shadow_realm_data->origin = initiator_data->origin;
return context;
}
void Shell::DoHostImportModuleDynamically(void* import_data) {
DynamicImportData* import_data_ =
static_cast<DynamicImportData*>(import_data);
Isolate* isolate(import_data_->isolate);
HandleScope handle_scope(isolate);
Local<Context> realm = import_data_->context.Get(isolate);
Local<Value> referrer(import_data_->referrer.Get(isolate));
Local<String> specifier(import_data_->specifier.Get(isolate));
Local<FixedArray> import_assertions(
import_data_->import_assertions.Get(isolate));
Local<Promise::Resolver> resolver(import_data_->resolver.Get(isolate));
PerIsolateData* data = PerIsolateData::Get(isolate);
data->DeleteDynamicImportData(import_data_);
Context::Scope context_scope(realm);
ModuleType module_type = ModuleEmbedderData::ModuleTypeFromImportAssertions(
realm, import_assertions, false);
TryCatch try_catch(isolate);
try_catch.SetVerbose(true);
if (module_type == ModuleType::kInvalid) {
ThrowError(isolate, "Invalid module type was asserted");
CHECK(try_catch.HasCaught());
resolver->Reject(realm, try_catch.Exception()).ToChecked();
return;
}
std::shared_ptr<ModuleEmbedderData> module_data =
GetModuleDataFromContext(realm);
std::string source_url = referrer->IsNull()
? module_data->origin
: ToSTLString(isolate, referrer.As<String>());
std::string dir_name =
DirName(NormalizePath(source_url, GetWorkingDirectory()));
std::string file_name = ToSTLString(isolate, specifier);
std::string absolute_path = NormalizePath(file_name, dir_name);
Local<Module> root_module;
auto module_it =
module_data->module_map.find(std::make_pair(absolute_path, module_type));
if (module_it != module_data->module_map.end()) {
root_module = module_it->second.Get(isolate);
} else if (!FetchModuleTree(Local<Module>(), realm, absolute_path,
module_type)
.ToLocal(&root_module)) {
CHECK(try_catch.HasCaught());
if (isolate->IsExecutionTerminating()) {
Shell::ReportException(isolate, &try_catch);
} else {
resolver->Reject(realm, try_catch.Exception()).ToChecked();
}
return;
}
MaybeLocal<Value> maybe_result;
if (root_module->InstantiateModule(realm, ResolveModuleCallback)
.FromMaybe(false)) {
maybe_result = root_module->Evaluate(realm);
CHECK(!maybe_result.IsEmpty());
EmptyMessageQueues(isolate);
}
Local<Value> result;
if (!maybe_result.ToLocal(&result)) {
DCHECK(try_catch.HasCaught());
resolver->Reject(realm, try_catch.Exception()).ToChecked();
return;
}
Local<Value> module_namespace = root_module->GetModuleNamespace();
Local<Promise> result_promise(result.As<Promise>());
// Setup callbacks, and then chain them to the result promise.
// ModuleResolutionData will be deleted by the callbacks.
auto module_resolution_data =
new ModuleResolutionData(isolate, module_namespace, resolver);
Local<v8::External> edata = External::New(isolate, module_resolution_data);
Local<Function> callback_success;
CHECK(Function::New(realm, ModuleResolutionSuccessCallback, edata)
.ToLocal(&callback_success));
Local<Function> callback_failure;
CHECK(Function::New(realm, ModuleResolutionFailureCallback, edata)
.ToLocal(&callback_failure));
result_promise->Then(realm, callback_success, callback_failure)
.ToLocalChecked();
}
bool Shell::ExecuteModule(Isolate* isolate, const char* file_name) {
HandleScope handle_scope(isolate);
PerIsolateData* data = PerIsolateData::Get(isolate);
Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
Context::Scope context_scope(realm);
std::string absolute_path = NormalizePath(file_name, GetWorkingDirectory());
// Use a non-verbose TryCatch and report exceptions manually using
// Shell::ReportException, because some errors (such as file errors) are
// thrown without entering JS and thus do not trigger
// isolate->ReportPendingMessages().
TryCatch try_catch(isolate);
std::shared_ptr<ModuleEmbedderData> module_data =
GetModuleDataFromContext(realm);
Local<Module> root_module;
auto module_it = module_data->module_map.find(
std::make_pair(absolute_path, ModuleType::kJavaScript));
if (module_it != module_data->module_map.end()) {
root_module = module_it->second.Get(isolate);
} else if (!FetchModuleTree(Local<Module>(), realm, absolute_path,
ModuleType::kJavaScript)
.ToLocal(&root_module)) {
CHECK(try_catch.HasCaught());
ReportException(isolate, &try_catch);
return false;
}
module_data->origin = absolute_path;
MaybeLocal<Value> maybe_result;
if (root_module->InstantiateModule(realm, ResolveModuleCallback)
.FromMaybe(false)) {
maybe_result = root_module->Evaluate(realm);
CHECK(!maybe_result.IsEmpty());
EmptyMessageQueues(isolate);
}
Local<Value> result;
if (!maybe_result.ToLocal(&result)) {
DCHECK(try_catch.HasCaught());
ReportException(isolate, &try_catch);
return false;
}
// Loop until module execution finishes
Local<Promise> result_promise(result.As<Promise>());
while (isolate->HasPendingBackgroundTasks() ||
(result_promise->State() == Promise::kPending &&
reinterpret_cast<i::Isolate*>(isolate)
->default_microtask_queue()
->size() > 0)) {
Shell::CompleteMessageLoop(isolate);
}
if (result_promise->State() == Promise::kRejected) {
// If the exception has been caught by the promise pipeline, we rethrow
// here in order to ReportException.
// TODO(cbruni): Clean this up after we create a new API for the case
// where TLA is enabled.
if (!try_catch.HasCaught()) {
isolate->ThrowException(result_promise->Result());
} else {
DCHECK_EQ(try_catch.Exception(), result_promise->Result());
}
ReportException(isolate, &try_catch);
return false;
}
std::vector<std::tuple<Local<Module>, Local<Message>>> stalled =
root_module->GetStalledTopLevelAwaitMessage(isolate);
if (stalled.size() > 0) {
Local<Message> message = std::get<1>(stalled[0]);
ReportException(isolate, message, v8::Exception::Error(message->Get()));
return false;
}
DCHECK(!try_catch.HasCaught());
return true;
}
// Treat every line as a JSON value and parse it.
bool Shell::LoadJSON(Isolate* isolate, const char* file_name) {
HandleScope handle_scope(isolate);
PerIsolateData* isolate_data = PerIsolateData::Get(isolate);
Local<Context> realm =
isolate_data->realms_[isolate_data->realm_current_].Get(isolate);
Context::Scope context_scope(realm);
TryCatch try_catch(isolate);
std::string absolute_path = NormalizePath(file_name, GetWorkingDirectory());
int length = 0;
std::unique_ptr<char[]> data(ReadChars(absolute_path.c_str(), &length));
if (length == 0) {
printf("Error reading '%s'\n", file_name);
base::OS::ExitProcess(1);
}
std::stringstream stream(data.get());
std::string line;
while (std::getline(stream, line, '\n')) {
for (int r = 0; r < DeserializationRunCount(); ++r) {
Local<String> source =
String::NewFromUtf8(isolate, line.c_str()).ToLocalChecked();
MaybeLocal<Value> maybe_value = JSON::Parse(realm, source);
Local<Value> value;
if (!maybe_value.ToLocal(&value)) {
DCHECK(try_catch.HasCaught());
ReportException(isolate, &try_catch);
return false;
}
}
}
return true;
}
PerIsolateData::PerIsolateData(Isolate* isolate)
: isolate_(isolate), realms_(nullptr) {
isolate->SetData(0, this);
if (i::v8_flags.expose_async_hooks) {
async_hooks_wrapper_ = new AsyncHooks(isolate);
}
ignore_unhandled_promises_ = false;
}
PerIsolateData::~PerIsolateData() {
isolate_->SetData(0, nullptr); // Not really needed, just to be sure...
if (i::v8_flags.expose_async_hooks) {
delete async_hooks_wrapper_; // This uses the isolate
}
#if defined(LEAK_SANITIZER)
for (DynamicImportData* data : import_data_) {
delete data;
}
#endif
}
void PerIsolateData::SetTimeout(Local<Function> callback,
Local<Context> context) {
set_timeout_callbacks_.emplace(isolate_, callback);
set_timeout_contexts_.emplace(isolate_, context);
}
MaybeLocal<Function> PerIsolateData::GetTimeoutCallback() {
if (set_timeout_callbacks_.empty()) return MaybeLocal<Function>();
Local<Function> result = set_timeout_callbacks_.front().Get(isolate_);
set_timeout_callbacks_.pop();
return result;
}
MaybeLocal<Context> PerIsolateData::GetTimeoutContext() {
if (set_timeout_contexts_.empty()) return MaybeLocal<Context>();
Local<Context> result = set_timeout_contexts_.front().Get(isolate_);
set_timeout_contexts_.pop();
return result;
}
void PerIsolateData::RemoveUnhandledPromise(Local<Promise> promise) {
if (ignore_unhandled_promises_) return;
// Remove handled promises from the list
DCHECK_EQ(promise->GetIsolate(), isolate_);
for (auto it = unhandled_promises_.begin(); it != unhandled_promises_.end();
++it) {
v8::Local<v8::Promise> unhandled_promise = std::get<0>(*it).Get(isolate_);
if (unhandled_promise == promise) {
unhandled_promises_.erase(it--);
}
}
}
void PerIsolateData::AddUnhandledPromise(Local<Promise> promise,
Local<Message> message,
Local<Value> exception) {
if (ignore_unhandled_promises_) return;
DCHECK_EQ(promise->GetIsolate(), isolate_);
unhandled_promises_.emplace_back(v8::Global<v8::Promise>(isolate_, promise),
v8::Global<v8::Message>(isolate_, message),
v8::Global<v8::Value>(isolate_, exception));
}
int PerIsolateData::HandleUnhandledPromiseRejections() {
// Avoid recursive calls to HandleUnhandledPromiseRejections.
if (ignore_unhandled_promises_) return 0;
if (isolate_->IsExecutionTerminating()) return 0;
ignore_unhandled_promises_ = true;
v8::HandleScope scope(isolate_);
// Ignore promises that get added during error reporting.
size_t i = 0;
for (; i < unhandled_promises_.size(); i++) {
const auto& tuple = unhandled_promises_[i];
Local<v8::Message> message = std::get<1>(tuple).Get(isolate_);
Local<v8::Value> value = std::get<2>(tuple).Get(isolate_);
Shell::ReportException(isolate_, message, value);
}
unhandled_promises_.clear();
ignore_unhandled_promises_ = false;
return static_cast<int>(i);
}
void PerIsolateData::AddDynamicImportData(DynamicImportData* data) {
#if defined(LEAK_SANITIZER)
import_data_.insert(data);
#endif
}
void PerIsolateData::DeleteDynamicImportData(DynamicImportData* data) {
#if defined(LEAK_SANITIZER)
import_data_.erase(data);
#endif
delete data;
}
Local<FunctionTemplate> PerIsolateData::GetTestApiObjectCtor() const {
return test_api_object_ctor_.Get(isolate_);
}
void PerIsolateData::SetTestApiObjectCtor(Local<FunctionTemplate> ctor) {
test_api_object_ctor_.Reset(isolate_, ctor);
}
Local<FunctionTemplate> PerIsolateData::GetDomNodeCtor() const {
return dom_node_ctor_.Get(isolate_);
}
void PerIsolateData::SetDomNodeCtor(Local<FunctionTemplate> ctor) {
dom_node_ctor_.Reset(isolate_, ctor);
}
PerIsolateData::RealmScope::RealmScope(PerIsolateData* data) : data_(data) {
data_->realm_count_ = 1;
data_->realm_current_ = 0;
data_->realm_switch_ = 0;
data_->realms_ = new Global<Context>[1];
data_->realms_[0].Reset(data_->isolate_,
data_->isolate_->GetEnteredOrMicrotaskContext());
}
PerIsolateData::RealmScope::~RealmScope() {
// Drop realms to avoid keeping them alive.
data_->realm_count_ = 0;
delete[] data_->realms_;
}
PerIsolateData::ExplicitRealmScope::ExplicitRealmScope(PerIsolateData* data,
int index)
: data_(data), index_(index) {
realm_ = Local<Context>::New(data->isolate_, data->realms_[index_]);
realm_->Enter();
previous_index_ = data->realm_current_;
data->realm_current_ = data->realm_switch_ = index_;
}
PerIsolateData::ExplicitRealmScope::~ExplicitRealmScope() {
realm_->Exit();
data_->realm_current_ = data_->realm_switch_ = previous_index_;
}
Local<Context> PerIsolateData::ExplicitRealmScope::context() const {
return realm_;
}
int PerIsolateData::RealmFind(Local<Context> context) {
for (int i = 0; i < realm_count_; ++i) {
if (realms_[i] == context) return i;
}
return -1;
}
int PerIsolateData::RealmIndexOrThrow(
const v8::FunctionCallbackInfo<v8::Value>& info, int arg_offset) {
if (info.Length() < arg_offset || !info[arg_offset]->IsNumber()) {
ThrowError(info.GetIsolate(), "Invalid argument");
return -1;
}
int index = info[arg_offset]
->Int32Value(info.GetIsolate()->GetCurrentContext())
.FromMaybe(-1);
if (index < 0 || index >= realm_count_ || realms_[index].IsEmpty()) {
ThrowError(info.GetIsolate(), "Invalid realm index");
return -1;
}
return index;
}
// GetTimestamp() returns a time stamp as double, measured in milliseconds.
// When v8_flags.verify_predictable mode is enabled it returns result of
// v8::Platform::MonotonicallyIncreasingTime().
double Shell::GetTimestamp() {
if (i::v8_flags.verify_predictable) {
return g_platform->MonotonicallyIncreasingTime();
} else {
base::TimeDelta delta = base::TimeTicks::Now() - kInitialTicks;
return delta.InMillisecondsF();
}
}
uint64_t Shell::GetTracingTimestampFromPerformanceTimestamp(
double performance_timestamp) {
// Don't use this in --verify-predictable mode, predictable timestamps don't
// work well with tracing.
DCHECK(!i::v8_flags.verify_predictable);
base::TimeDelta delta =
base::TimeDelta::FromMillisecondsD(performance_timestamp);
// See TracingController::CurrentTimestampMicroseconds().
int64_t internal_value = (delta + kInitialTicks).ToInternalValue();
DCHECK_GE(internal_value, 0);
return internal_value;
}
// performance.now() returns GetTimestamp().
void Shell::PerformanceNow(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
info.GetReturnValue().Set(GetTimestamp());
}
// performance.mark() records and returns a PerformanceEntry with the current
// timestamp.
void Shell::PerformanceMark(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
Local<Context> context = isolate->GetCurrentContext();
if (info.Length() < 1 || !info[0]->IsString()) {
ThrowError(info.GetIsolate(), "Invalid 'name' argument");
return;
}
Local<String> name = info[0].As<String>();
double timestamp = GetTimestamp();
Local<Object> performance_entry = Object::New(isolate);
performance_entry
->DefineOwnProperty(context,
String::NewFromUtf8Literal(isolate, "entryType"),
String::NewFromUtf8Literal(isolate, "mark"), ReadOnly)
.Check();
performance_entry
->DefineOwnProperty(context, String::NewFromUtf8Literal(isolate, "name"),
name, ReadOnly)
.Check();
performance_entry
->DefineOwnProperty(context,
String::NewFromUtf8Literal(isolate, "startTime"),
Number::New(isolate, timestamp), ReadOnly)
.Check();
performance_entry
->DefineOwnProperty(context,
String::NewFromUtf8Literal(isolate, "duration"),
Integer::New(isolate, 0), ReadOnly)
.Check();
info.GetReturnValue().Set(performance_entry);
}
// performance.measure() records and returns a PerformanceEntry with a duration
// since a given mark, or since zero.
void Shell::PerformanceMeasure(
const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
Local<Context> context = isolate->GetCurrentContext();
if (info.Length() < 1 || !info[0]->IsString()) {
ThrowError(info.GetIsolate(), "Invalid 'name' argument");
return;
}
v8::Local<String> name = info[0].As<String>();
double start_timestamp = 0;
if (info.Length() >= 2) {
Local<Value> start_mark = info[1].As<Value>();
if (!start_mark->IsObject()) {
ThrowError(info.GetIsolate(),
"Invalid 'startMark' argument: Not an Object");
return;
}
Local<Value> start_time_field;
if (!start_mark.As<Object>()
->Get(context, String::NewFromUtf8Literal(isolate, "startTime"))
.ToLocal(&start_time_field)) {
return;
}
if (!start_time_field->IsNumber()) {
ThrowError(info.GetIsolate(),
"Invalid 'startMark' argument: No numeric 'startTime' field");
return;
}
start_timestamp = start_time_field.As<Number>()->Value();
}
if (info.Length() > 2) {
ThrowError(info.GetIsolate(), "Too many arguments");
return;
}
double end_timestamp = GetTimestamp();
if (options.trace_enabled) {
size_t hash = base::hash_combine(name->GetIdentityHash(), start_timestamp,
end_timestamp);
String::Utf8Value utf8(isolate, name);
TRACE_EVENT_COPY_NESTABLE_ASYNC_BEGIN_WITH_TIMESTAMP1(
"v8", *utf8, static_cast<uint64_t>(hash),
GetTracingTimestampFromPerformanceTimestamp(start_timestamp),
"startTime", start_timestamp);
TRACE_EVENT_COPY_NESTABLE_ASYNC_END_WITH_TIMESTAMP0(
"v8", *utf8, static_cast<uint64_t>(hash),
GetTracingTimestampFromPerformanceTimestamp(end_timestamp));
}
Local<Object> performance_entry = Object::New(isolate);
performance_entry
->DefineOwnProperty(
context, String::NewFromUtf8Literal(isolate, "entryType"),
String::NewFromUtf8Literal(isolate, "measure"), ReadOnly)
.Check();
performance_entry
->DefineOwnProperty(context, String::NewFromUtf8Literal(isolate, "name"),
name, ReadOnly)
.Check();
performance_entry
->DefineOwnProperty(context,
String::NewFromUtf8Literal(isolate, "startTime"),
Number::New(isolate, start_timestamp), ReadOnly)
.Check();
performance_entry
->DefineOwnProperty(
context, String::NewFromUtf8Literal(isolate, "duration"),
Number::New(isolate, end_timestamp - start_timestamp), ReadOnly)
.Check();
info.GetReturnValue().Set(performance_entry);
}
// performance.measureMemory() implements JavaScript Memory API proposal.
// See https://github.com/ulan/javascript-agent-memory/blob/master/explainer.md.
void Shell::PerformanceMeasureMemory(
const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
v8::MeasureMemoryMode mode = v8::MeasureMemoryMode::kSummary;
v8::Isolate* isolate = info.GetIsolate();
Local<Context> context = isolate->GetCurrentContext();
if (info.Length() >= 1 && info[0]->IsObject()) {
Local<Object> object = info[0].As<Object>();
Local<Value> value = TryGetValue(isolate, context, object, "detailed")
.FromMaybe(Local<Value>());
if (value.IsEmpty()) {
// Exception was thrown and scheduled, so return from the callback.
return;
}
if (value->IsBoolean() && value->BooleanValue(isolate)) {
mode = v8::MeasureMemoryMode::kDetailed;
}
}
Local<v8::Promise::Resolver> promise_resolver =
v8::Promise::Resolver::New(context).ToLocalChecked();
info.GetIsolate()->MeasureMemory(
v8::MeasureMemoryDelegate::Default(isolate, context, promise_resolver,
mode),
v8::MeasureMemoryExecution::kEager);
info.GetReturnValue().Set(promise_resolver->GetPromise());
}
// Realm.current() returns the index of the currently active realm.
void Shell::RealmCurrent(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmFind(isolate->GetEnteredOrMicrotaskContext());
if (index == -1) return;
info.GetReturnValue().Set(index);
}
// Realm.owner(o) returns the index of the realm that created o.
void Shell::RealmOwner(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
if (info.Length() < 1 || !info[0]->IsObject()) {
ThrowError(info.GetIsolate(), "Invalid argument");
return;
}
Local<Object> object =
info[0]->ToObject(isolate->GetCurrentContext()).ToLocalChecked();
i::Handle<i::JSReceiver> i_object = Utils::OpenHandle(*object);
if (IsJSGlobalProxy(*i_object) &&
i::Handle<i::JSGlobalProxy>::cast(i_object)->IsDetached()) {
return;
}
Local<Context> creation_context;
if (!object->GetCreationContext().ToLocal(&creation_context)) {
ThrowError(info.GetIsolate(), "object doesn't have creation context");
return;
}
int index = data->RealmFind(creation_context);
if (index == -1) return;
info.GetReturnValue().Set(index);
}
// Realm.global(i) returns the global object of realm i.
// (Note that properties of global objects cannot be read/written cross-realm.)
void Shell::RealmGlobal(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
PerIsolateData* data = PerIsolateData::Get(info.GetIsolate());
int index = data->RealmIndexOrThrow(info, 0);
if (index == -1) return;
// TODO(chromium:324812): Ideally Context::Global should never return raw
// global objects but return a global proxy. Currently it returns global
// object when the global proxy is detached from the global object. The
// following is a workaround till we fix Context::Global so we don't leak
// global objects.
Local<Object> global =
Local<Context>::New(info.GetIsolate(), data->realms_[index])->Global();
i::Handle<i::Object> i_global = Utils::OpenHandle(*global);
if (IsJSGlobalObject(*i_global)) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(info.GetIsolate());
i::Handle<i::JSObject> i_global_proxy =
handle(i::Handle<i::JSGlobalObject>::cast(i_global)->global_proxy(),
i_isolate);
global = Utils::ToLocal(i_global_proxy);
}
info.GetReturnValue().Set(global);
}
MaybeLocal<Context> Shell::CreateRealm(
const v8::FunctionCallbackInfo<v8::Value>& info, int index,
v8::MaybeLocal<Value> global_object) {
DCHECK(i::ValidateCallbackInfo(info));
const char* kGlobalHandleLabel = "d8::realm";
Isolate* isolate = info.GetIsolate();
TryCatch try_catch(isolate);
PerIsolateData* data = PerIsolateData::Get(isolate);
if (index < 0) {
Global<Context>* old_realms = data->realms_;
index = data->realm_count_;
data->realms_ = new Global<Context>[++data->realm_count_];
for (int i = 0; i < index; ++i) {
Global<Context>& realm = data->realms_[i];
realm.Reset(isolate, old_realms[i]);
if (!realm.IsEmpty()) {
realm.AnnotateStrongRetainer(kGlobalHandleLabel);
}
old_realms[i].Reset();
}
delete[] old_realms;
}
Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
Local<Context> context =
Context::New(isolate, nullptr, global_template, global_object);
if (context.IsEmpty()) return MaybeLocal<Context>();
DCHECK(!try_catch.HasCaught());
InitializeModuleEmbedderData(context);
data->realms_[index].Reset(isolate, context);
data->realms_[index].AnnotateStrongRetainer(kGlobalHandleLabel);
info.GetReturnValue().Set(index);
return context;
}
void Shell::DisposeRealm(const v8::FunctionCallbackInfo<v8::Value>& info,
int index) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
Local<Context> context = data->realms_[index].Get(isolate);
data->realms_[index].Reset();
// ContextDisposedNotification expects the disposed context to be entered.
v8::Context::Scope scope(context);
isolate->ContextDisposedNotification();
}
// Realm.create() creates a new realm with a distinct security token
// and returns its index.
void Shell::RealmCreate(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
CreateRealm(info, -1, v8::MaybeLocal<Value>());
}
// Realm.createAllowCrossRealmAccess() creates a new realm with the same
// security token as the current realm.
void Shell::RealmCreateAllowCrossRealmAccess(
const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Local<Context> context;
if (CreateRealm(info, -1, v8::MaybeLocal<Value>()).ToLocal(&context)) {
context->SetSecurityToken(
info.GetIsolate()->GetEnteredOrMicrotaskContext()->GetSecurityToken());
}
}
// Realm.navigate(i) creates a new realm with a distinct security token
// in place of realm i.
void Shell::RealmNavigate(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(info, 0);
if (index == -1) return;
if (index == 0 || index == data->realm_current_ ||
index == data->realm_switch_) {
ThrowError(info.GetIsolate(), "Invalid realm index");
return;
}
Local<Context> context = Local<Context>::New(isolate, data->realms_[index]);
v8::MaybeLocal<Value> global_object = context->Global();
// Context::Global doesn't return JSGlobalProxy if DetachGlobal is called in
// advance.
if (!global_object.IsEmpty()) {
HandleScope scope(isolate);
if (!IsJSGlobalProxy(*Utils::OpenHandle(*global_object.ToLocalChecked()))) {
global_object = v8::MaybeLocal<Value>();
}
}
DisposeRealm(info, index);
CreateRealm(info, index, global_object);
}
// Realm.detachGlobal(i) detaches the global objects of realm i from realm i.
void Shell::RealmDetachGlobal(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(info, 0);
if (index == -1) return;
if (index == 0 || index == data->realm_current_ ||
index == data->realm_switch_) {
ThrowError(info.GetIsolate(), "Invalid realm index");
return;
}
HandleScope scope(isolate);
Local<Context> realm = Local<Context>::New(isolate, data->realms_[index]);
realm->DetachGlobal();
}
// Realm.dispose(i) disposes the reference to the realm i.
void Shell::RealmDispose(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(info, 0);
if (index == -1) return;
if (index == 0 || index == data->realm_current_ ||
index == data->realm_switch_) {
ThrowError(info.GetIsolate(), "Invalid realm index");
return;
}
DisposeRealm(info, index);
}
// Realm.switch(i) switches to the realm i for consecutive interactive inputs.
void Shell::RealmSwitch(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(info, 0);
if (index == -1) return;
data->realm_switch_ = index;
}
// Realm.eval(i, s) evaluates s in realm i and returns the result.
void Shell::RealmEval(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(info, 0);
if (index == -1) return;
if (info.Length() < 2) {
ThrowError(isolate, "Invalid argument");
return;
}
Local<String> source;
if (!ReadSource(info, 1, CodeType::kString).ToLocal(&source)) {
ThrowError(isolate, "Invalid argument");
return;
}
ScriptOrigin origin =
CreateScriptOrigin(isolate, String::NewFromUtf8Literal(isolate, "(d8)"),
ScriptType::kClassic);
ScriptCompiler::Source script_source(source, origin);
Local<UnboundScript> script;
if (!ScriptCompiler::CompileUnboundScript(isolate, &script_source)
.ToLocal(&script)) {
return;
}
Local<Value> result;
{
PerIsolateData::ExplicitRealmScope realm_scope(data, index);
if (!script->BindToCurrentContext()
->Run(realm_scope.context())
.ToLocal(&result)) {
return;
}
}
info.GetReturnValue().Set(result);
}
// Realm.shared is an accessor for a single shared value across realms.
void Shell::RealmSharedGet(Local<String> property,
const PropertyCallbackInfo<Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
if (data->realm_shared_.IsEmpty()) return;
info.GetReturnValue().Set(data->realm_shared_);
}
void Shell::RealmSharedSet(Local<String> property, Local<Value> value,
const PropertyCallbackInfo<void>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
data->realm_shared_.Reset(isolate, value);
}
void Shell::LogGetAndStop(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
HandleScope handle_scope(isolate);
std::string file_name = i_isolate->v8_file_logger()->file_name();
if (!i::LogFile::IsLoggingToTemporaryFile(file_name)) {
ThrowError(isolate, "Only capturing from temporary files is supported.");
return;
}
if (!i_isolate->v8_file_logger()->is_logging()) {
ThrowError(isolate, "Logging not enabled.");
return;
}
std::string raw_log;
FILE* log_file = i_isolate->v8_file_logger()->TearDownAndGetLogFile();
if (!log_file) {
ThrowError(isolate, "Log file does not exist.");
return;
}
bool exists = false;
raw_log = i::ReadFile(log_file, &exists, true);
base::Fclose(log_file);
if (!exists) {
ThrowError(isolate, "Unable to read log file.");
return;
}
Local<String> result =
String::NewFromUtf8(isolate, raw_log.c_str(), NewStringType::kNormal,
static_cast<int>(raw_log.size()))
.ToLocalChecked();
info.GetReturnValue().Set(result);
}
void Shell::TestVerifySourcePositions(
const v8::FunctionCallbackInfo<v8::Value>& info) {
Isolate* isolate = info.GetIsolate();
// Check if the argument is a valid function.
if (info.Length() != 1) {
ThrowError(isolate, "Expected function as single argument.");
return;
}
auto arg_handle = Utils::OpenHandle(*info[0]);
if (!IsHeapObject(*arg_handle) ||
!IsJSFunctionOrBoundFunctionOrWrappedFunction(
*i::Handle<i::HeapObject>::cast(arg_handle))) {
ThrowError(isolate, "Expected function as single argument.");
return;
}
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
HandleScope handle_scope(isolate);
auto callable =
i::Handle<i::JSFunctionOrBoundFunctionOrWrappedFunction>::cast(
arg_handle);
while (IsJSBoundFunction(*callable)) {
internal::DisallowGarbageCollection no_gc;
auto bound_function = i::Handle<i::JSBoundFunction>::cast(callable);
auto bound_target = bound_function->bound_target_function();
if (!IsJSFunctionOrBoundFunctionOrWrappedFunction(bound_target)) {
internal::AllowGarbageCollection allow_gc;
ThrowError(isolate, "Expected function as bound target.");
return;
}
callable = handle(
i::JSFunctionOrBoundFunctionOrWrappedFunction::cast(bound_target),
i_isolate);
}
i::Handle<i::JSFunction> function = i::Handle<i::JSFunction>::cast(callable);
if (!function->shared()->HasBytecodeArray()) {
ThrowError(isolate, "Function has no BytecodeArray attached.");
return;
}
i::Handle<i::BytecodeArray> bytecodes =
handle(function->shared()->GetBytecodeArray(i_isolate), i_isolate);
i::interpreter::BytecodeArrayIterator bytecode_iterator(bytecodes);
bool has_baseline = function->shared()->HasBaselineCode();
i::Handle<i::ByteArray> bytecode_offsets;
std::unique_ptr<i::baseline::BytecodeOffsetIterator> offset_iterator;
if (has_baseline) {
bytecode_offsets = handle(
i::ByteArray::cast(
function->shared()->GetCode(i_isolate)->bytecode_offset_table()),
i_isolate);
offset_iterator = std::make_unique<i::baseline::BytecodeOffsetIterator>(
bytecode_offsets, bytecodes);
// A freshly initiated BytecodeOffsetIterator points to the prologue.
DCHECK_EQ(offset_iterator->current_pc_start_offset(), 0);
DCHECK_EQ(offset_iterator->current_bytecode_offset(),
i::kFunctionEntryBytecodeOffset);
offset_iterator->Advance();
}
while (!bytecode_iterator.done()) {
if (has_baseline) {
if (offset_iterator->current_bytecode_offset() !=
bytecode_iterator.current_offset()) {
ThrowError(isolate, "Baseline bytecode offset mismatch.");
return;
}
// Check that we map every address to this bytecode correctly.
// The start address is exclusive and the end address inclusive.
for (i::Address pc = offset_iterator->current_pc_start_offset() + 1;
pc <= offset_iterator->current_pc_end_offset(); ++pc) {
i::baseline::BytecodeOffsetIterator pc_lookup(bytecode_offsets,
bytecodes);
pc_lookup.AdvanceToPCOffset(pc);
if (pc_lookup.current_bytecode_offset() !=
bytecode_iterator.current_offset()) {
ThrowError(isolate,
"Baseline bytecode offset mismatch for PC lookup.");
return;
}
}
}
bytecode_iterator.Advance();
if (has_baseline && !bytecode_iterator.done()) {
if (offset_iterator->done()) {
ThrowError(isolate, "Missing bytecode(s) in baseline offset mapping.");
return;
}
offset_iterator->Advance();
}
}
if (has_baseline && !offset_iterator->done()) {
ThrowError(isolate, "Excess offsets in baseline offset mapping.");
return;
}
}
void Shell::InstallConditionalFeatures(
const v8::FunctionCallbackInfo<v8::Value>& info) {
Isolate* isolate = info.GetIsolate();
isolate->InstallConditionalFeatures(isolate->GetCurrentContext());
}
// async_hooks.createHook() registers functions to be called for different
// lifetime events of each async operation.
void Shell::AsyncHooksCreateHook(
const v8::FunctionCallbackInfo<v8::Value>& info) {
Local<Object> wrap =
PerIsolateData::Get(info.GetIsolate())->GetAsyncHooks()->CreateHook(info);
info.GetReturnValue().Set(wrap);
}
// async_hooks.executionAsyncId() returns the asyncId of the current execution
// context.
void Shell::AsyncHooksExecutionAsyncId(
const v8::FunctionCallbackInfo<v8::Value>& info) {
Isolate* isolate = info.GetIsolate();
HandleScope handle_scope(isolate);
info.GetReturnValue().Set(v8::Number::New(
isolate,
PerIsolateData::Get(isolate)->GetAsyncHooks()->GetExecutionAsyncId()));
}
void Shell::AsyncHooksTriggerAsyncId(
const v8::FunctionCallbackInfo<v8::Value>& info) {
Isolate* isolate = info.GetIsolate();
HandleScope handle_scope(isolate);
info.GetReturnValue().Set(v8::Number::New(
isolate,
PerIsolateData::Get(isolate)->GetAsyncHooks()->GetTriggerAsyncId()));
}
static v8::debug::DebugDelegate dummy_delegate;
void Shell::EnableDebugger(const v8::FunctionCallbackInfo<v8::Value>& info) {
v8::debug::SetDebugDelegate(info.GetIsolate(), &dummy_delegate);
}
void Shell::DisableDebugger(const v8::FunctionCallbackInfo<v8::Value>& info) {
v8::debug::SetDebugDelegate(info.GetIsolate(), nullptr);
}
void Shell::SetPromiseHooks(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
if (i::v8_flags.correctness_fuzzer_suppressions) {
// Setting promise hoooks dynamically has unexpected timing side-effects
// with certain promise optimizations. We might not get all callbacks for
// previously scheduled Promises or optimized code-paths that skip Promise
// creation.
ThrowError(isolate,
"d8.promise.setHooks is disabled with "
"--correctness-fuzzer-suppressions");
return;
}
#ifdef V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS
Local<Context> context = isolate->GetCurrentContext();
HandleScope handle_scope(isolate);
context->SetPromiseHooks(
info[0]->IsFunction() ? info[0].As<Function>() : Local<Function>(),
info[1]->IsFunction() ? info[1].As<Function>() : Local<Function>(),
info[2]->IsFunction() ? info[2].As<Function>() : Local<Function>(),
info[3]->IsFunction() ? info[3].As<Function>() : Local<Function>());
info.GetReturnValue().Set(v8::Undefined(isolate));
#else // V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS
ThrowError(isolate,
"d8.promise.setHooks is disabled due to missing build flag "
"v8_enabale_javascript_in_promise_hooks");
#endif // V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS
}
void Shell::SerializerSerialize(
const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
HandleScope handle_scope(isolate);
Local<Context> context = isolate->GetCurrentContext();
ValueSerializer serializer(isolate);
serializer.WriteHeader();
for (int i = 0; i < info.Length(); i++) {
bool ok;
if (!serializer.WriteValue(context, info[i]).To(&ok)) return;
}
Local<v8::ArrayBuffer> buffer;
{
std::pair<uint8_t*, size_t> pair = serializer.Release();
buffer = ArrayBuffer::New(isolate, pair.second);
memcpy(buffer->GetBackingStore()->Data(), pair.first, pair.second);
free(pair.first);
}
info.GetReturnValue().Set(buffer);
}
void Shell::SerializerDeserialize(
const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
HandleScope handle_scope(isolate);
Local<Context> context = isolate->GetCurrentContext();
if (!info[0]->IsArrayBuffer()) {
ThrowError(isolate, "Can only deserialize from an ArrayBuffer");
return;
}
std::shared_ptr<BackingStore> backing_store =
info[0].As<ArrayBuffer>()->GetBackingStore();
ValueDeserializer deserializer(
isolate, static_cast<const uint8_t*>(backing_store->Data()),
backing_store->ByteLength());
bool ok;
if (!deserializer.ReadHeader(context).To(&ok)) return;
Local<Value> result;
if (!deserializer.ReadValue(context).ToLocal(&result)) return;
info.GetReturnValue().Set(result);
}
void Shell::ProfilerSetOnProfileEndListener(
const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
HandleScope handle_scope(isolate);
if (!info[0]->IsFunction()) {
ThrowError(isolate, "The OnProfileEnd listener has to be a function");
return;
}
base::MutexGuard lock_guard(&profiler_end_callback_lock_);
profiler_end_callback_[isolate] =
std::make_pair(Global<Function>(isolate, info[0].As<Function>()),
Global<Context>(isolate, isolate->GetCurrentContext()));
}
bool Shell::HasOnProfileEndListener(Isolate* isolate) {
base::MutexGuard lock_guard(&profiler_end_callback_lock_);
return profiler_end_callback_.find(isolate) != profiler_end_callback_.end();
}
void Shell::ResetOnProfileEndListener(Isolate* isolate) {
// If the inspector is enabled, then the installed console is not the
// D8Console.
if (options.enable_inspector) return;
{
base::MutexGuard lock_guard(&profiler_end_callback_lock_);
profiler_end_callback_.erase(isolate);
}
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
D8Console* console =
reinterpret_cast<D8Console*>(i_isolate->console_delegate());
if (console) {
console->DisposeProfiler();
}
}
void Shell::ProfilerTriggerSample(
const v8::FunctionCallbackInfo<v8::Value>& info) {
Isolate* isolate = info.GetIsolate();
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
D8Console* console =
reinterpret_cast<D8Console*>(i_isolate->console_delegate());
if (console && console->profiler()) {
console->profiler()->CollectSample(isolate);
}
}
void Shell::TriggerOnProfileEndListener(Isolate* isolate, std::string profile) {
CHECK(HasOnProfileEndListener(isolate));
Local<Function> callback;
Local<Context> context;
Local<Value> argv[1] = {
String::NewFromUtf8(isolate, profile.c_str()).ToLocalChecked()};
{
base::MutexGuard lock_guard(&profiler_end_callback_lock_);
auto& callback_pair = profiler_end_callback_[isolate];
callback = callback_pair.first.Get(isolate);
context = callback_pair.second.Get(isolate);
}
TryCatch try_catch(isolate);
try_catch.SetVerbose(true);
USE(callback->Call(context, Undefined(isolate), 1, argv));
}
void WriteToFile(FILE* file, const v8::FunctionCallbackInfo<v8::Value>& info,
int first_arg_index = 0) {
for (int i = first_arg_index; i < info.Length(); i++) {
HandleScope handle_scope(info.GetIsolate());
if (i != first_arg_index) {
fprintf(file, " ");
}
// Explicitly catch potential exceptions in toString().
v8::TryCatch try_catch(info.GetIsolate());
Local<Value> arg = info[i];
Local<String> str_obj;
if (arg->IsSymbol()) {
arg = arg.As<Symbol>()->Description(info.GetIsolate());
}
if (!arg->ToString(info.GetIsolate()->GetCurrentContext())
.ToLocal(&str_obj)) {
try_catch.ReThrow();
return;
}
v8::String::Utf8Value str(info.GetIsolate(), str_obj);
int n = static_cast<int>(fwrite(*str, sizeof(**str), str.length(), file));
if (n != str.length()) {
printf("Error in fwrite\n");
base::OS::ExitProcess(1);
}
}
}
void WriteAndFlush(FILE* file,
const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
WriteToFile(file, info);
fprintf(file, "\n");
fflush(file);
}
void Shell::Print(const v8::FunctionCallbackInfo<v8::Value>& info) {
WriteAndFlush(stdout, info);
}
void Shell::PrintErr(const v8::FunctionCallbackInfo<v8::Value>& info) {
WriteAndFlush(stderr, info);
}
void Shell::WriteStdout(const v8::FunctionCallbackInfo<v8::Value>& info) {
WriteToFile(stdout, info);
}
// There are two overloads of writeFile().
//
// The first parameter is always the filename.
//
// If there are exactly 2 arguments, and the second argument is an ArrayBuffer
// or an ArrayBufferView, write the binary contents into the file.
//
// Otherwise, convert arguments to UTF-8 strings, and write them to the file,
// separated by space.
void Shell::WriteFile(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
String::Utf8Value file_name(info.GetIsolate(), info[0]);
if (*file_name == nullptr) {
ThrowError(info.GetIsolate(), "Error converting filename to string");
return;
}
FILE* file;
if (info.Length() == 2 &&
(info[1]->IsArrayBuffer() || info[1]->IsArrayBufferView())) {
file = base::Fopen(*file_name, "wb");
if (file == nullptr) {
ThrowError(info.GetIsolate(), "Error opening file");
return;
}
void* data;
size_t length;
if (info[1]->IsArrayBuffer()) {
Local<v8::ArrayBuffer> buffer = Local<v8::ArrayBuffer>::Cast(info[1]);
length = buffer->ByteLength();
data = buffer->Data();
} else {
Local<v8::ArrayBufferView> buffer_view =
Local<v8::ArrayBufferView>::Cast(info[1]);
length = buffer_view->ByteLength();
data = static_cast<uint8_t*>(buffer_view->Buffer()->Data()) +
buffer_view->ByteOffset();
}
fwrite(data, 1, length, file);
} else {
file = base::Fopen(*file_name, "w");
if (file == nullptr) {
ThrowError(info.GetIsolate(), "Error opening file");
return;
}
WriteToFile(file, info, 1);
}
base::Fclose(file);
}
void Shell::ReadFile(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
String::Utf8Value file_name(info.GetIsolate(), info[0]);
if (*file_name == nullptr) {
ThrowError(info.GetIsolate(), "Error converting filename to string");
return;
}
if (info.Length() == 2) {
String::Utf8Value format(info.GetIsolate(), info[1]);
if (*format && std::strcmp(*format, "binary") == 0) {
ReadBuffer(info);
return;
}
}
Local<String> source;
if (!ReadFile(info.GetIsolate(), *file_name).ToLocal(&source)) return;
info.GetReturnValue().Set(source);
}
Local<String> Shell::ReadFromStdin(Isolate* isolate) {
static const int kBufferSize = 256;
char buffer[kBufferSize];
Local<String> accumulator = String::NewFromUtf8Literal(isolate, "");
int length;
// Flush stdout before reading stdin, as stdout isn't guaranteed to be flushed
// automatically.
fflush(stdout);
while (true) {
// Continue reading if the line ends with an escape '\\' or the line has
// not been fully read into the buffer yet (does not end with '\n').
// If fgets gets an error, just give up.
char* input = nullptr;
input = fgets(buffer, kBufferSize, stdin);
if (input == nullptr) return Local<String>();
length = static_cast<int>(strlen(buffer));
if (length == 0) {
return accumulator;
} else if (buffer[length - 1] != '\n') {
accumulator = String::Concat(
isolate, accumulator,
String::NewFromUtf8(isolate, buffer, NewStringType::kNormal, length)
.ToLocalChecked());
} else if (length > 1 && buffer[length - 2] == '\\') {
buffer[length - 2] = '\n';
accumulator =
String::Concat(isolate, accumulator,
String::NewFromUtf8(isolate, buffer,
NewStringType::kNormal, length - 1)
.ToLocalChecked());
} else {
return String::Concat(
isolate, accumulator,
String::NewFromUtf8(isolate, buffer, NewStringType::kNormal,
length - 1)
.ToLocalChecked());
}
}
}
void Shell::ExecuteFile(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
for (int i = 0; i < info.Length(); i++) {
HandleScope handle_scope(isolate);
String::Utf8Value file_name(isolate, info[i]);
if (*file_name == nullptr) {
std::ostringstream oss;
oss << "Cannot convert file[" << i << "] name to string.";
ThrowError(
isolate,
String::NewFromUtf8(isolate, oss.str().c_str()).ToLocalChecked());
return;
}
Local<String> source;
if (!ReadFile(isolate, *file_name).ToLocal(&source)) return;
if (!ExecuteString(
info.GetIsolate(), source,
String::NewFromUtf8(isolate, *file_name).ToLocalChecked(),
kNoPrintResult,
options.quiet_load ? kNoReportExceptions : kReportExceptions,
kNoProcessMessageQueue)) {
std::ostringstream oss;
oss << "Error executing file: \"" << *file_name << '"';
ThrowError(
isolate,
String::NewFromUtf8(isolate, oss.str().c_str()).ToLocalChecked());
return;
}
}
}
void Shell::SetTimeout(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
info.GetReturnValue().Set(v8::Number::New(isolate, 0));
if (info.Length() == 0 || !info[0]->IsFunction()) return;
Local<Function> callback = info[0].As<Function>();
Local<Context> context = isolate->GetCurrentContext();
PerIsolateData::Get(isolate)->SetTimeout(callback, context);
}
void Shell::ReadCodeTypeAndArguments(
const v8::FunctionCallbackInfo<v8::Value>& info, int index,
CodeType* code_type, Local<Value>* arguments) {
Isolate* isolate = info.GetIsolate();
if (info.Length() > index && info[index]->IsObject()) {
Local<Object> object = info[index].As<Object>();
Local<Context> context = isolate->GetCurrentContext();
Local<Value> value;
if (!TryGetValue(isolate, context, object, "type").ToLocal(&value)) {
*code_type = CodeType::kNone;
return;
}
if (!value->IsString()) {
*code_type = CodeType::kInvalid;
return;
}
Local<String> worker_type_string =
value->ToString(context).ToLocalChecked();
String::Utf8Value str(isolate, worker_type_string);
if (strcmp("classic", *str) == 0) {
*code_type = CodeType::kFileName;
} else if (strcmp("string", *str) == 0) {
*code_type = CodeType::kString;
} else if (strcmp("function", *str) == 0) {
*code_type = CodeType::kFunction;
} else {
*code_type = CodeType::kInvalid;
}
if (arguments != nullptr) {
bool got_arguments =
TryGetValue(isolate, context, object, "arguments").ToLocal(arguments);
USE(got_arguments);
}
} else {
*code_type = CodeType::kNone;
}
}
bool Shell::FunctionAndArgumentsToString(Local<Function> function,
Local<Value> arguments,
Local<String>* source,
Isolate* isolate) {
Local<Context> context = isolate->GetCurrentContext();
MaybeLocal<String> maybe_function_string =
function->FunctionProtoToString(context);
Local<String> function_string;
if (!maybe_function_string.ToLocal(&function_string)) {
ThrowError(isolate, "Failed to convert function to string");
return false;
}
*source = String::NewFromUtf8Literal(isolate, "(");
*source = String::Concat(isolate, *source, function_string);
Local<String> middle = String::NewFromUtf8Literal(isolate, ")(");
*source = String::Concat(isolate, *source, middle);
if (!arguments.IsEmpty() && !arguments->IsUndefined()) {
if (!arguments->IsArray()) {
ThrowError(isolate, "'arguments' must be an array");
return false;
}
Local<String> comma = String::NewFromUtf8Literal(isolate, ",");
Local<Array> array = arguments.As<Array>();
for (uint32_t i = 0; i < array->Length(); ++i) {
if (i > 0) {
*source = String::Concat(isolate, *source, comma);
}
MaybeLocal<Value> maybe_argument = array->Get(context, i);
Local<Value> argument;
if (!maybe_argument.ToLocal(&argument)) {
ThrowError(isolate, "Failed to get argument");
return false;
}
Local<String> argument_string;
if (!JSON::Stringify(context, argument).ToLocal(&argument_string)) {
ThrowError(isolate, "Failed to convert argument to string");
return false;
}
*source = String::Concat(isolate, *source, argument_string);
}
}
Local<String> suffix = String::NewFromUtf8Literal(isolate, ")");
*source = String::Concat(isolate, *source, suffix);
return true;
}
// ReadSource() supports reading source code through `info[index]` as specified
// by the `default_type` or an optional options bag provided in `info[index+1]`
// (e.g. `options={type: 'code_type', arguments:[...]}`).
MaybeLocal<String> Shell::ReadSource(
const v8::FunctionCallbackInfo<v8::Value>& info, int index,
CodeType default_type) {
CodeType code_type;
Local<Value> arguments;
ReadCodeTypeAndArguments(info, index + 1, &code_type, &arguments);
Isolate* isolate = info.GetIsolate();
Local<String> source;
if (code_type == CodeType::kNone) {
code_type = default_type;
}
switch (code_type) {
case CodeType::kFunction:
if (!info[index]->IsFunction()) {
return MaybeLocal<String>();
}
// Source: ( function_to_string )( params )
if (!FunctionAndArgumentsToString(info[index].As<Function>(), arguments,
&source, isolate)) {
return MaybeLocal<String>();
}
break;
case CodeType::kFileName: {
if (!info[index]->IsString()) {
return MaybeLocal<String>();
}
String::Utf8Value filename(isolate, info[index]);
if (!Shell::ReadFile(isolate, *filename).ToLocal(&source)) {
return MaybeLocal<String>();
}
break;
}
case CodeType::kString:
if (!info[index]->IsString()) {
return MaybeLocal<String>();
}
source = info[index].As<String>();
break;
case CodeType::kNone:
case CodeType::kInvalid:
return MaybeLocal<String>();
}
return source;
}
void Shell::WorkerNew(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
HandleScope handle_scope(isolate);
if (info.Length() < 1 || (!info[0]->IsString() && !info[0]->IsFunction())) {
ThrowError(isolate, "1st argument must be a string or a function");
return;
}
Local<String> source;
if (!ReadSource(info, 0, CodeType::kFileName).ToLocal(&source)) {
ThrowError(isolate, "Invalid argument");
return;
}
if (!info.IsConstructCall()) {
ThrowError(isolate, "Worker must be constructed with new");
return;
}
// Initialize the embedder field to 0; if we return early without
// creating a new Worker (because the main thread is terminating) we can
// early-out from the instance calls.
info.Holder()->SetInternalField(0, v8::Integer::New(isolate, 0));
{
// Don't allow workers to create more workers if the main thread
// is waiting for existing running workers to terminate.
i::ParkedMutexGuard lock_guard(
reinterpret_cast<i::Isolate*>(isolate)->main_thread_local_isolate(),
workers_mutex_.Pointer());
if (!allow_new_workers_) return;
String::Utf8Value script(isolate, source);
if (!*script) {
ThrowError(isolate, "Can't get worker script");
return;
}
// The C++ worker object's lifetime is shared between the Managed<Worker>
// object on the heap, which the JavaScript object points to, and an
// internal std::shared_ptr in the worker thread itself.
auto worker = std::make_shared<Worker>(*script);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
const size_t kWorkerSizeEstimate = 4 * 1024 * 1024; // stack + heap.
i::Handle<i::Object> managed = i::Managed<Worker>::FromSharedPtr(
i_isolate, kWorkerSizeEstimate, worker);
info.Holder()->SetInternalField(0, Utils::ToLocal(managed));
base::Thread::Priority priority =
options.apply_priority ? base::Thread::Priority::kUserBlocking
: base::Thread::Priority::kDefault;
if (!Worker::StartWorkerThread(isolate, std::move(worker), priority)) {
ThrowError(isolate, "Can't start thread");
return;
}
}
}
void Shell::WorkerPostMessage(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
HandleScope handle_scope(isolate);
if (info.Length() < 1) {
ThrowError(isolate, "Invalid argument");
return;
}
std::shared_ptr<Worker> worker =
GetWorkerFromInternalField(isolate, info.Holder());
if (!worker.get()) {
return;
}
Local<Value> message = info[0];
Local<Value> transfer =
info.Length() >= 2 ? info[1] : Undefined(isolate).As<Value>();
std::unique_ptr<SerializationData> data =
Shell::SerializeValue(isolate, message, transfer);
if (data) {
worker->PostMessage(std::move(data));
}
}
void Shell::WorkerGetMessage(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
HandleScope handle_scope(isolate);
std::shared_ptr<Worker> worker =
GetWorkerFromInternalField(isolate, info.Holder());
if (!worker.get()) {
return;
}
std::unique_ptr<SerializationData> data = worker->GetMessage(isolate);
if (data) {
Local<Value> value;
if (Shell::DeserializeValue(isolate, std::move(data)).ToLocal(&value)) {
info.GetReturnValue().Set(value);
}
}
}
void Shell::WorkerTerminate(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
HandleScope handle_scope(isolate);
std::shared_ptr<Worker> worker =
GetWorkerFromInternalField(isolate, info.Holder());
if (!worker.get()) return;
worker->Terminate();
}
void Shell::WorkerTerminateAndWait(
const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
HandleScope handle_scope(isolate);
std::shared_ptr<Worker> worker =
GetWorkerFromInternalField(isolate, info.Holder());
if (!worker.get()) {
return;
}
reinterpret_cast<i::Isolate*>(isolate)
->main_thread_local_isolate()
->BlockMainThreadWhileParked([worker](const i::ParkedScope& parked) {
worker->TerminateAndWaitForThread(parked);
});
}
void Shell::QuitOnce(v8::FunctionCallbackInfo<v8::Value>* info) {
int exit_code = (*info)[0]
->Int32Value(info->GetIsolate()->GetCurrentContext())
.FromMaybe(0);
Isolate* isolate = info->GetIsolate();
ResetOnProfileEndListener(isolate);
isolate->Exit();
// As we exit the process anyway, we do not dispose the platform and other
// global data and manually unlock to quell DCHECKs. Other isolates might
// still be running, so disposing here can cause them to crash.
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
if (i_isolate->thread_manager()->IsLockedByCurrentThread()) {
i_isolate->thread_manager()->Unlock();
}
// When disposing the shared space isolate, the workers (client isolates) need
// to be terminated first.
if (i_isolate->is_shared_space_isolate()) {
i_isolate->main_thread_local_isolate()->BlockMainThreadWhileParked(
[](const i::ParkedScope& parked) { WaitForRunningWorkers(parked); });
}
OnExit(isolate, false);
base::OS::ExitProcess(exit_code);
}
void Shell::Terminate(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
// Triggering termination from JS can cause some non-determinism thus we
// skip it for correctness fuzzing.
// Termination also currently breaks Fuzzilli's REPRL mechanism as the
// scheduled termination will prevent the next testcase sent by Fuzzilli from
// being processed. This will in turn desynchronize the communication
// between d8 and Fuzzilli, leading to a crash.
if (!i::v8_flags.correctness_fuzzer_suppressions && !fuzzilli_reprl) {
auto v8_isolate = info.GetIsolate();
if (!v8_isolate->IsExecutionTerminating()) v8_isolate->TerminateExecution();
}
}
void Shell::Quit(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
base::CallOnce(&quit_once_, &QuitOnce,
const_cast<v8::FunctionCallbackInfo<v8::Value>*>(&info));
}
void Shell::Version(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
info.GetReturnValue().Set(
String::NewFromUtf8(info.GetIsolate(), V8::GetVersion())
.ToLocalChecked());
}
#ifdef V8_FUZZILLI
// We have to assume that the fuzzer will be able to call this function e.g. by
// enumerating the properties of the global object and eval'ing them. As such
// this function is implemented in a way that requires passing some magic value
// as first argument (with the idea being that the fuzzer won't be able to
// generate this value) which then also acts as a selector for the operation
// to perform.
void Shell::Fuzzilli(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
HandleScope handle_scope(info.GetIsolate());
String::Utf8Value operation(info.GetIsolate(), info[0]);
if (*operation == nullptr) {
return;
}
if (strcmp(*operation, "FUZZILLI_CRASH") == 0) {
auto arg = info[1]
->Int32Value(info.GetIsolate()->GetCurrentContext())
.FromMaybe(0);
switch (arg) {
case 0:
IMMEDIATE_CRASH();
break;
case 1:
CHECK(false);
break;
case 2:
DCHECK(false);
break;
case 3: {
// Access an invalid address.
// We want to use an "interesting" address for the access (instead of
// e.g. nullptr). In the (unlikely) case that the address is actually
// mapped, simply increment the pointer until it crashes.
char* ptr = reinterpret_cast<char*>(0x414141414141ull);
for (int i = 0; i < 1024; i++) {
*ptr = 'A';
ptr += 1 * i::GB;
}
break;
}
case 4: {
// Use-after-free, likely only crashes in ASan builds.
auto* vec = new std::vector<int>(4);
delete vec;
USE(vec->at(0));
break;
}
case 5: {
// Out-of-bounds access (1), likely only crashes in ASan or
// "hardened"/"safe" libc++ builds.
std::vector<int> vec(5);
USE(vec[5]);
break;
}
case 6: {
// Out-of-bounds access (2), likely only crashes in ASan builds.
std::vector<int> vec(6);
memset(vec.data(), 42, 0x100);
break;
}
default:
break;
}
} else if (strcmp(*operation, "FUZZILLI_PRINT") == 0) {
static FILE* fzliout = fdopen(REPRL_DWFD, "w");
if (!fzliout) {
fprintf(
stderr,
"Fuzzer output channel not available, printing to stdout instead\n");
fzliout = stdout;
}
String::Utf8Value string(info.GetIsolate(), info[1]);
if (*string == nullptr) {
return;
}
fprintf(fzliout, "%s\n", *string);
fflush(fzliout);
}
}
#endif // V8_FUZZILLI
void Shell::ReportException(Isolate* isolate, Local<v8::Message> message,
Local<v8::Value> exception_obj) {
// Using ErrorPrototypeToString for converting the error to string will fail
// if there's a pending exception.
CHECK(!reinterpret_cast<i::Isolate*>(isolate)->has_pending_exception());
HandleScope handle_scope(isolate);
Local<Context> context = isolate->GetCurrentContext();
bool enter_context = context.IsEmpty();
if (enter_context) {
context = Local<Context>::New(isolate, evaluation_context_);
context->Enter();
}
// Converts a V8 value to a C string.
auto ToCString = [](const v8::String::Utf8Value& value) {
return *value ? *value : "<string conversion failed>";
};
v8::String::Utf8Value exception(isolate, exception_obj);
const char* exception_string = ToCString(exception);
if (message.IsEmpty()) {
// V8 didn't provide any extra information about this error; just
// print the exception.
printf("%s\n", exception_string);
} else if (message->GetScriptOrigin().Options().IsWasm()) {
// Print wasm-function[(function index)]:(offset): (message).
int function_index = message->GetWasmFunctionIndex();
int offset = message->GetStartColumn(context).FromJust();
printf("wasm-function[%d]:0x%x: %s\n", function_index, offset,
exception_string);
} else {
// Print (filename):(line number): (message).
v8::String::Utf8Value filename(isolate,
message->GetScriptOrigin().ResourceName());
const char* filename_string = ToCString(filename);
int linenum = message->GetLineNumber(context).FromMaybe(-1);
printf("%s:%i: %s\n", filename_string, linenum, exception_string);
Local<String> sourceline;
if (message->GetSourceLine(context).ToLocal(&sourceline)) {
// Print line of source code.
v8::String::Utf8Value sourcelinevalue(isolate, sourceline);
const char* sourceline_string = ToCString(sourcelinevalue);
printf("%s\n", sourceline_string);
// Print wavy underline (GetUnderline is deprecated).
int start = message->GetStartColumn(context).FromJust();
for (int i = 0; i < start; i++) {
printf(" ");
}
int end = message->GetEndColumn(context).FromJust();
for (int i = start; i < end; i++) {
printf("^");
}
printf("\n");
}
}
Local<Value> stack_trace_string;
if (v8::TryCatch::StackTrace(context, exception_obj)
.ToLocal(&stack_trace_string) &&
stack_trace_string->IsString()) {
v8::String::Utf8Value stack_trace(isolate, stack_trace_string.As<String>());
printf("%s\n", ToCString(stack_trace));
}
printf("\n");
if (enter_context) context->Exit();
}
void Shell::ReportException(v8::Isolate* isolate, v8::TryCatch* try_catch) {
if (isolate->IsExecutionTerminating()) {
printf("Got Execution Termination Exception\n");
} else {
ReportException(isolate, try_catch->Message(), try_catch->Exception());
}
}
void Counter::Bind(const char* name, bool is_histogram) {
base::OS::StrNCpy(name_, kMaxNameSize, name, kMaxNameSize);
// Explicitly null-terminate, in case {name} is longer than {kMaxNameSize}.
name_[kMaxNameSize - 1] = '\0';
is_histogram_ = is_histogram;
}
void Counter::AddSample(int sample) {
count_.fetch_add(1, std::memory_order_relaxed);
sample_total_.fetch_add(sample, std::memory_order_relaxed);
}
CounterCollection::CounterCollection() {
magic_number_ = 0xDEADFACE;
max_counters_ = kMaxCounters;
max_name_size_ = Counter::kMaxNameSize;
counters_in_use_ = 0;
}
Counter* CounterCollection::GetNextCounter() {
if (counters_in_use_ == kMaxCounters) return nullptr;
return &counters_[counters_in_use_++];
}
void Shell::MapCounters(v8::Isolate* isolate, const char* name) {
counters_file_ = base::OS::MemoryMappedFile::create(
name, sizeof(CounterCollection), &local_counters_);
void* memory =
(counters_file_ == nullptr) ? nullptr : counters_file_->memory();
if (memory == nullptr) {
printf("Could not map counters file %s\n", name);
base::OS::ExitProcess(1);
}
counters_ = static_cast<CounterCollection*>(memory);
isolate->SetCounterFunction(LookupCounter);
isolate->SetCreateHistogramFunction(CreateHistogram);
isolate->SetAddHistogramSampleFunction(AddHistogramSample);
}
Counter* Shell::GetCounter(const char* name, bool is_histogram) {
Counter* counter = nullptr;
{
base::SharedMutexGuard<base::kShared> mutex_guard(&counter_mutex_);
auto map_entry = counter_map_->find(name);
if (map_entry != counter_map_->end()) {
counter = map_entry->second;
}
}
if (counter == nullptr) {
base::SharedMutexGuard<base::kExclusive> mutex_guard(&counter_mutex_);
counter = (*counter_map_)[name];
if (counter == nullptr) {
counter = counters_->GetNextCounter();
if (counter == nullptr) {
// Too many counters.
return nullptr;
}
(*counter_map_)[name] = counter;
counter->Bind(name, is_histogram);
}
}
DCHECK_EQ(is_histogram, counter->is_histogram());
return counter;
}
int* Shell::LookupCounter(const char* name) {
Counter* counter = GetCounter(name, false);
return counter ? counter->ptr() : nullptr;
}
void* Shell::CreateHistogram(const char* name, int min, int max,
size_t buckets) {
return GetCounter(name, true);
}
void Shell::AddHistogramSample(void* histogram, int sample) {
Counter* counter = reinterpret_cast<Counter*>(histogram);
counter->AddSample(sample);
}
// Turn a value into a human-readable string.
Local<String> Shell::Stringify(Isolate* isolate, Local<Value> value) {
v8::Local<v8::Context> context =
v8::Local<v8::Context>::New(isolate, evaluation_context_);
if (stringify_function_.IsEmpty()) {
Local<String> source =
String::NewFromUtf8(isolate, stringify_source_).ToLocalChecked();
Local<String> name = String::NewFromUtf8Literal(isolate, "d8-stringify");
ScriptOrigin origin(isolate, name);
Local<Script> script =
Script::Compile(context, source, &origin).ToLocalChecked();
stringify_function_.Reset(
isolate, script->Run(context).ToLocalChecked().As<Function>());
}
Local<Function> fun = Local<Function>::New(isolate, stringify_function_);
Local<Value> argv[1] = {value};
v8::TryCatch try_catch(isolate);
MaybeLocal<Value> result = fun->Call(context, Undefined(isolate), 1, argv);
if (result.IsEmpty()) return String::Empty(isolate);
return result.ToLocalChecked().As<String>();
}
void Shell::NodeTypeCallback(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
v8::Isolate* isolate = info.GetIsolate();
info.GetReturnValue().Set(v8::Number::New(isolate, 1));
}
Local<FunctionTemplate> NewDOMFunctionTemplate(Isolate* isolate,
uint16_t instance_type) {
return FunctionTemplate::New(
isolate, nullptr, Local<Value>(), Local<Signature>(), 0,
ConstructorBehavior::kAllow, SideEffectType::kHasSideEffect, nullptr,
instance_type);
}
Local<FunctionTemplate> Shell::CreateEventTargetTemplate(Isolate* isolate) {
Local<FunctionTemplate> event_target =
NewDOMFunctionTemplate(isolate, i::Internals::kFirstJSApiObjectType + 1);
return event_target;
}
Local<FunctionTemplate> Shell::CreateNodeTemplates(
Isolate* isolate, Local<FunctionTemplate> event_target) {
Local<FunctionTemplate> node =
NewDOMFunctionTemplate(isolate, i::Internals::kFirstJSApiObjectType + 2);
node->Inherit(event_target);
PerIsolateData* data = PerIsolateData::Get(isolate);
data->SetDomNodeCtor(node);
Local<ObjectTemplate> proto_template = node->PrototypeTemplate();
Local<Signature> signature = v8::Signature::New(isolate, node);
Local<FunctionTemplate> nodeType = FunctionTemplate::New(
isolate, NodeTypeCallback, Local<Value>(), signature, 0,
ConstructorBehavior::kThrow, SideEffectType::kHasSideEffect, nullptr,
i::Internals::kFirstJSApiObjectType,
i::Internals::kFirstJSApiObjectType + 3,
i::Internals::kFirstJSApiObjectType + 5);
nodeType->SetAcceptAnyReceiver(false);
proto_template->SetAccessorProperty(
String::NewFromUtf8Literal(isolate, "nodeType"), nodeType);
Local<FunctionTemplate> element =
NewDOMFunctionTemplate(isolate, i::Internals::kFirstJSApiObjectType + 3);
element->Inherit(node);
Local<FunctionTemplate> html_element =
NewDOMFunctionTemplate(isolate, i::Internals::kFirstJSApiObjectType + 4);
html_element->Inherit(element);
Local<FunctionTemplate> div_element =
NewDOMFunctionTemplate(isolate, i::Internals::kFirstJSApiObjectType + 5);
div_element->Inherit(html_element);
return div_element;
}
Local<ObjectTemplate> Shell::CreateGlobalTemplate(Isolate* isolate) {
Local<ObjectTemplate> global_template = ObjectTemplate::New(isolate);
global_template->Set(Symbol::GetToStringTag(isolate),
String::NewFromUtf8Literal(isolate, "global"));
global_template->Set(isolate, "version",
FunctionTemplate::New(isolate, Version));
global_template->Set(isolate, "print", FunctionTemplate::New(isolate, Print));
global_template->Set(isolate, "printErr",
FunctionTemplate::New(isolate, PrintErr));
global_template->Set(isolate, "write",
FunctionTemplate::New(isolate, WriteStdout));
if (!i::v8_flags.fuzzing) {
global_template->Set(isolate, "writeFile",
FunctionTemplate::New(isolate, WriteFile));
}
global_template->Set(isolate, "read",
FunctionTemplate::New(isolate, ReadFile));
global_template->Set(isolate, "readbuffer",
FunctionTemplate::New(isolate, ReadBuffer));
global_template->Set(isolate, "readline",
FunctionTemplate::New(isolate, ReadLine));
global_template->Set(isolate, "load",
FunctionTemplate::New(isolate, ExecuteFile));
global_template->Set(isolate, "setTimeout",
FunctionTemplate::New(isolate, SetTimeout));
// Some Emscripten-generated code tries to call 'quit', which in turn would
// call C's exit(). This would lead to memory leaks, because there is no way
// we can terminate cleanly then, so we need a way to hide 'quit'.
if (!options.omit_quit) {
global_template->Set(isolate, "quit", FunctionTemplate::New(isolate, Quit));
}
global_template->Set(isolate, "testRunner",
Shell::CreateTestRunnerTemplate(isolate));
global_template->Set(isolate, "Realm", Shell::CreateRealmTemplate(isolate));
global_template->Set(isolate, "performance",
Shell::CreatePerformanceTemplate(isolate));
global_template->Set(isolate, "Worker", Shell::CreateWorkerTemplate(isolate));
// Prevent fuzzers from creating side effects.
if (!i::v8_flags.fuzzing) {
global_template->Set(isolate, "os", Shell::CreateOSTemplate(isolate));
}
global_template->Set(isolate, "d8", Shell::CreateD8Template(isolate));
#ifdef V8_FUZZILLI
global_template->Set(
String::NewFromUtf8(isolate, "fuzzilli", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Fuzzilli), PropertyAttribute::DontEnum);
#endif // V8_FUZZILLI
if (i::v8_flags.expose_async_hooks) {
global_template->Set(isolate, "async_hooks",
Shell::CreateAsyncHookTemplate(isolate));
}
return global_template;
}
Local<ObjectTemplate> Shell::CreateOSTemplate(Isolate* isolate) {
Local<ObjectTemplate> os_template = ObjectTemplate::New(isolate);
AddOSMethods(isolate, os_template);
os_template->Set(isolate, "name",
v8::String::NewFromUtf8Literal(isolate, V8_TARGET_OS_STRING),
PropertyAttribute::ReadOnly);
os_template->Set(
isolate, "d8Path",
v8::String::NewFromUtf8(isolate, options.d8_path).ToLocalChecked(),
PropertyAttribute::ReadOnly);
return os_template;
}
Local<FunctionTemplate> Shell::CreateWorkerTemplate(Isolate* isolate) {
Local<FunctionTemplate> worker_fun_template =
FunctionTemplate::New(isolate, WorkerNew);
Local<Signature> worker_signature =
Signature::New(isolate, worker_fun_template);
worker_fun_template->SetClassName(
String::NewFromUtf8Literal(isolate, "Worker"));
worker_fun_template->ReadOnlyPrototype();
worker_fun_template->PrototypeTemplate()->Set(
isolate, "terminate",
FunctionTemplate::New(isolate, WorkerTerminate, Local<Value>(),
worker_signature));
worker_fun_template->PrototypeTemplate()->Set(
isolate, "terminateAndWait",
FunctionTemplate::New(isolate, WorkerTerminateAndWait, Local<Value>(),
worker_signature));
worker_fun_template->PrototypeTemplate()->Set(
isolate, "postMessage",
FunctionTemplate::New(isolate, WorkerPostMessage, Local<Value>(),
worker_signature));
worker_fun_template->PrototypeTemplate()->Set(
isolate, "getMessage",
FunctionTemplate::New(isolate, WorkerGetMessage, Local<Value>(),
worker_signature));
worker_fun_template->InstanceTemplate()->SetInternalFieldCount(1);
return worker_fun_template;
}
Local<ObjectTemplate> Shell::CreateAsyncHookTemplate(Isolate* isolate) {
Local<ObjectTemplate> async_hooks_templ = ObjectTemplate::New(isolate);
async_hooks_templ->Set(isolate, "createHook",
FunctionTemplate::New(isolate, AsyncHooksCreateHook));
async_hooks_templ->Set(
isolate, "executionAsyncId",
FunctionTemplate::New(isolate, AsyncHooksExecutionAsyncId));
async_hooks_templ->Set(
isolate, "triggerAsyncId",
FunctionTemplate::New(isolate, AsyncHooksTriggerAsyncId));
return async_hooks_templ;
}
Local<ObjectTemplate> Shell::CreateTestRunnerTemplate(Isolate* isolate) {
Local<ObjectTemplate> test_template = ObjectTemplate::New(isolate);
// Reliable access to quit functionality. The "quit" method function
// installed on the global object can be hidden with the --omit-quit flag
// (e.g. on asan bots).
test_template->Set(isolate, "quit", FunctionTemplate::New(isolate, Quit));
return test_template;
}
Local<ObjectTemplate> Shell::CreatePerformanceTemplate(Isolate* isolate) {
Local<ObjectTemplate> performance_template = ObjectTemplate::New(isolate);
performance_template->Set(isolate, "now",
FunctionTemplate::New(isolate, PerformanceNow));
performance_template->Set(isolate, "mark",
FunctionTemplate::New(isolate, PerformanceMark));
performance_template->Set(isolate, "measure",
FunctionTemplate::New(isolate, PerformanceMeasure));
performance_template->Set(
isolate, "measureMemory",
FunctionTemplate::New(isolate, PerformanceMeasureMemory));
return performance_template;
}
Local<ObjectTemplate> Shell::CreateRealmTemplate(Isolate* isolate) {
Local<ObjectTemplate> realm_template = ObjectTemplate::New(isolate);
realm_template->Set(isolate, "current",
FunctionTemplate::New(isolate, RealmCurrent));
realm_template->Set(isolate, "owner",
FunctionTemplate::New(isolate, RealmOwner));
realm_template->Set(isolate, "global",
FunctionTemplate::New(isolate, RealmGlobal));
realm_template->Set(isolate, "create",
FunctionTemplate::New(isolate, RealmCreate));
realm_template->Set(
isolate, "createAllowCrossRealmAccess",
FunctionTemplate::New(isolate, RealmCreateAllowCrossRealmAccess));
realm_template->Set(isolate, "navigate",
FunctionTemplate::New(isolate, RealmNavigate));
realm_template->Set(isolate, "detachGlobal",
FunctionTemplate::New(isolate, RealmDetachGlobal));
realm_template->Set(isolate, "dispose",
FunctionTemplate::New(isolate, RealmDispose));
realm_template->Set(isolate, "switch",
FunctionTemplate::New(isolate, RealmSwitch));
realm_template->Set(isolate, "eval",
FunctionTemplate::New(isolate, RealmEval));
realm_template->SetAccessor(String::NewFromUtf8Literal(isolate, "shared"),
RealmSharedGet, RealmSharedSet);
return realm_template;
}
Local<ObjectTemplate> Shell::CreateD8Template(Isolate* isolate) {
Local<ObjectTemplate> d8_template = ObjectTemplate::New(isolate);
{
Local<ObjectTemplate> file_template = ObjectTemplate::New(isolate);
file_template->Set(isolate, "read",
FunctionTemplate::New(isolate, Shell::ReadFile));
file_template->Set(isolate, "execute",
FunctionTemplate::New(isolate, Shell::ExecuteFile));
d8_template->Set(isolate, "file", file_template);
}
{
Local<ObjectTemplate> log_template = ObjectTemplate::New(isolate);
log_template->Set(isolate, "getAndStop",
FunctionTemplate::New(isolate, LogGetAndStop));
d8_template->Set(isolate, "log", log_template);
}
{
Local<ObjectTemplate> dom_template = ObjectTemplate::New(isolate);
Local<FunctionTemplate> event_target =
Shell::CreateEventTargetTemplate(isolate);
dom_template->Set(isolate, "EventTarget", event_target);
dom_template->Set(isolate, "Div",
Shell::CreateNodeTemplates(isolate, event_target));
d8_template->Set(isolate, "dom", dom_template);
}
{
Local<ObjectTemplate> test_template = ObjectTemplate::New(isolate);
// For different runs of correctness fuzzing the bytecode of a function
// might get flushed, resulting in spurious errors.
if (!i::v8_flags.correctness_fuzzer_suppressions) {
test_template->Set(
isolate, "verifySourcePositions",
FunctionTemplate::New(isolate, TestVerifySourcePositions));
}
// Correctness fuzzing will attempt to compare results of tests with and
// without turbo_fast_api_calls, so we don't expose the fast_c_api
// constructor when --correctness_fuzzer_suppressions is on.
if (options.expose_fast_api && i::v8_flags.turbo_fast_api_calls &&
!i::v8_flags.correctness_fuzzer_suppressions) {
test_template->Set(isolate, "FastCAPI",
Shell::CreateTestFastCApiTemplate(isolate));
test_template->Set(isolate, "LeafInterfaceType",
Shell::CreateLeafInterfaceTypeTemplate(isolate));
}
// Allows testing code paths that are triggered when Origin Trials are
// added in the browser.
test_template->Set(
isolate, "installConditionalFeatures",
FunctionTemplate::New(isolate, Shell::InstallConditionalFeatures));
d8_template->Set(isolate, "test", test_template);
}
{
Local<ObjectTemplate> promise_template = ObjectTemplate::New(isolate);
promise_template->Set(
isolate, "setHooks",
FunctionTemplate::New(isolate, SetPromiseHooks, Local<Value>(),
Local<Signature>(), 4));
d8_template->Set(isolate, "promise", promise_template);
}
{
Local<ObjectTemplate> debugger_template = ObjectTemplate::New(isolate);
debugger_template->Set(
isolate, "enable",
FunctionTemplate::New(isolate, EnableDebugger, Local<Value>(),
Local<Signature>(), 0));
debugger_template->Set(
isolate, "disable",
FunctionTemplate::New(isolate, DisableDebugger, Local<Value>(),
Local<Signature>(), 0));
d8_template->Set(isolate, "debugger", debugger_template);
}
{
Local<ObjectTemplate> serializer_template = ObjectTemplate::New(isolate);
serializer_template->Set(
isolate, "serialize",
FunctionTemplate::New(isolate, SerializerSerialize));
serializer_template->Set(
isolate, "deserialize",
FunctionTemplate::New(isolate, SerializerDeserialize, Local<Value>(),
Local<Signature>(), 1));
d8_template->Set(isolate, "serializer", serializer_template);
}
{
Local<ObjectTemplate> profiler_template = ObjectTemplate::New(isolate);
profiler_template->Set(
isolate, "setOnProfileEndListener",
FunctionTemplate::New(isolate, ProfilerSetOnProfileEndListener));
profiler_template->Set(
isolate, "triggerSample",
FunctionTemplate::New(isolate, ProfilerTriggerSample));
d8_template->Set(isolate, "profiler", profiler_template);
}
d8_template->Set(isolate, "terminate",
FunctionTemplate::New(isolate, Terminate));
if (!options.omit_quit) {
d8_template->Set(isolate, "quit", FunctionTemplate::New(isolate, Quit));
}
return d8_template;
}
static void PrintMessageCallback(Local<Message> message, Local<Value> error) {
switch (message->ErrorLevel()) {
case v8::Isolate::kMessageWarning:
case v8::Isolate::kMessageLog:
case v8::Isolate::kMessageInfo:
case v8::Isolate::kMessageDebug: {
break;
}
case v8::Isolate::kMessageError: {
Shell::ReportException(message->GetIsolate(), message, error);
return;
}
default: {
UNREACHABLE();
}
}
// Converts a V8 value to a C string.
auto ToCString = [](const v8::String::Utf8Value& value) {
return *value ? *value : "<string conversion failed>";
};
Isolate* isolate = message->GetIsolate();
v8::String::Utf8Value msg(isolate, message->Get());
const char* msg_string = ToCString(msg);
// Print (filename):(line number): (message).
v8::String::Utf8Value filename(isolate,
message->GetScriptOrigin().ResourceName());
const char* filename_string = ToCString(filename);
Maybe<int> maybeline = message->GetLineNumber(isolate->GetCurrentContext());
int linenum = maybeline.IsJust() ? maybeline.FromJust() : -1;
printf("%s:%i: %s\n", filename_string, linenum, msg_string);
}
void Shell::PromiseRejectCallback(v8::PromiseRejectMessage data) {
if (options.ignore_unhandled_promises) return;
if (data.GetEvent() == v8::kPromiseRejectAfterResolved ||
data.GetEvent() == v8::kPromiseResolveAfterResolved) {
// Ignore reject/resolve after resolved.
return;
}
v8::Local<v8::Promise> promise = data.GetPromise();
v8::Isolate* isolate = promise->GetIsolate();
PerIsolateData* isolate_data = PerIsolateData::Get(isolate);
if (data.GetEvent() == v8::kPromiseHandlerAddedAfterReject) {
isolate_data->RemoveUnhandledPromise(promise);
return;
}
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
bool capture_exceptions =
i_isolate->get_capture_stack_trace_for_uncaught_exceptions();
isolate->SetCaptureStackTraceForUncaughtExceptions(true);
v8::Local<Value> exception = data.GetValue();
v8::Local<Message> message;
// Assume that all objects are stack-traces.
if (exception->IsObject()) {
message = v8::Exception::CreateMessage(isolate, exception);
}
if (!exception->IsNativeError() &&
(message.IsEmpty() || message->GetStackTrace().IsEmpty())) {
// If there is no real Error object, manually create a stack trace.
exception = v8::Exception::Error(
v8::String::NewFromUtf8Literal(isolate, "Unhandled Promise."));
message = Exception::CreateMessage(isolate, exception);
}
isolate->SetCaptureStackTraceForUncaughtExceptions(capture_exceptions);
isolate_data->AddUnhandledPromise(promise, message, exception);
}
void Shell::Initialize(Isolate* isolate, D8Console* console,
bool isOnMainThread) {
isolate->SetPromiseRejectCallback(PromiseRejectCallback);
isolate->SetWasmAsyncResolvePromiseCallback(
D8WasmAsyncResolvePromiseCallback);
if (isOnMainThread) {
// Set up counters
if (i::v8_flags.map_counters[0] != '\0') {
MapCounters(isolate, i::v8_flags.map_counters);
}
// Disable default message reporting.
isolate->AddMessageListenerWithErrorLevel(
PrintMessageCallback,
v8::Isolate::kMessageError | v8::Isolate::kMessageWarning |
v8::Isolate::kMessageInfo | v8::Isolate::kMessageDebug |
v8::Isolate::kMessageLog);
}
isolate->SetHostImportModuleDynamicallyCallback(
Shell::HostImportModuleDynamically);
isolate->SetHostInitializeImportMetaObjectCallback(
Shell::HostInitializeImportMetaObject);
isolate->SetHostCreateShadowRealmContextCallback(
Shell::HostCreateShadowRealmContext);
debug::SetConsoleDelegate(isolate, console);
}
Local<String> Shell::WasmLoadSourceMapCallback(Isolate* isolate,
const char* path) {
return Shell::ReadFile(isolate, path, false).ToLocalChecked();
}
MaybeLocal<Context> Shell::CreateEvaluationContext(Isolate* isolate) {
// This needs to be a critical section since this is not thread-safe
i::ParkedMutexGuard lock_guard(
reinterpret_cast<i::Isolate*>(isolate)->main_thread_local_isolate(),
context_mutex_.Pointer());
// Initialize the global objects
Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
EscapableHandleScope handle_scope(isolate);
Local<Context> context = Context::New(isolate, nullptr, global_template);
if (context.IsEmpty()) {
DCHECK(isolate->IsExecutionTerminating());
return {};
}
if (i::v8_flags.perf_prof_annotate_wasm ||
i::v8_flags.vtune_prof_annotate_wasm) {
isolate->SetWasmLoadSourceMapCallback(Shell::WasmLoadSourceMapCallback);
}
InitializeModuleEmbedderData(context);
Context::Scope scope(context);
if (options.include_arguments) {
const std::vector<const char*>& args = options.arguments;
int size = static_cast<int>(args.size());
Local<Array> array = Array::New(isolate, size);
for (int i = 0; i < size; i++) {
Local<String> arg =
v8::String::NewFromUtf8(isolate, args[i]).ToLocalChecked();
Local<Number> index = v8::Number::New(isolate, i);
array->Set(context, index, arg).FromJust();
}
Local<String> name = String::NewFromUtf8Literal(
isolate, "arguments", NewStringType::kInternalized);
context->Global()->Set(context, name, array).FromJust();
}
{
// setup console global.
Local<String> name = String::NewFromUtf8Literal(
isolate, "console", NewStringType::kInternalized);
Local<Value> console =
context->GetExtrasBindingObject()->Get(context, name).ToLocalChecked();
context->Global()->Set(context, name, console).FromJust();
}
return handle_scope.Escape(context);
}
void Shell::WriteIgnitionDispatchCountersFile(v8::Isolate* isolate) {
HandleScope handle_scope(isolate);
Local<Context> context = Context::New(isolate);
Context::Scope context_scope(context);
i::Handle<i::JSObject> dispatch_counters =
reinterpret_cast<i::Isolate*>(isolate)
->interpreter()
->GetDispatchCountersObject();
std::ofstream dispatch_counters_stream(
i::v8_flags.trace_ignition_dispatches_output_file);
dispatch_counters_stream << *String::Utf8Value(
isolate, JSON::Stringify(context, Utils::ToLocal(dispatch_counters))
.ToLocalChecked());
}
namespace {
int LineFromOffset(Local<debug::Script> script, int offset) {
debug::Location location = script->GetSourceLocation(offset);
return location.GetLineNumber();
}
void WriteLcovDataForRange(std::vector<uint32_t>* lines, int start_line,
int end_line, uint32_t count) {
// Ensure space in the array.
lines->resize(std::max(static_cast<size_t>(end_line + 1), lines->size()), 0);
// Boundary lines could be shared between two functions with different
// invocation counts. Take the maximum.
(*lines)[start_line] = std::max((*lines)[start_line], count);
(*lines)[end_line] = std::max((*lines)[end_line], count);
// Invocation counts for non-boundary lines are overwritten.
for (int k = start_line + 1; k < end_line; k++) (*lines)[k] = count;
}
void WriteLcovDataForNamedRange(std::ostream& sink,
std::vector<uint32_t>* lines,
const std::string& name, int start_line,
int end_line, uint32_t count) {
WriteLcovDataForRange(lines, start_line, end_line, count);
sink << "FN:" << start_line + 1 << "," << name << std::endl;
sink << "FNDA:" << count << "," << name << std::endl;
}
} // namespace
// Write coverage data in LCOV format. See man page for geninfo(1).
void Shell::WriteLcovData(v8::Isolate* isolate, const char* file) {
if (!file) return;
HandleScope handle_scope(isolate);
debug::Coverage coverage = debug::Coverage::CollectPrecise(isolate);
std::ofstream sink(file, std::ofstream::app);
for (size_t i = 0; i < coverage.ScriptCount(); i++) {
debug::Coverage::ScriptData script_data = coverage.GetScriptData(i);
Local<debug::Script> script = script_data.GetScript();
// Skip unnamed scripts.
Local<String> name;
if (!script->Name().ToLocal(&name)) continue;
std::string file_name = ToSTLString(isolate, name);
// Skip scripts not backed by a file.
if (!std::ifstream(file_name).good()) continue;
sink << "SF:";
sink << NormalizePath(file_name, GetWorkingDirectory()) << std::endl;
std::vector<uint32_t> lines;
for (size_t j = 0; j < script_data.FunctionCount(); j++) {
debug::Coverage::FunctionData function_data =
script_data.GetFunctionData(j);
// Write function stats.
{
debug::Location start =
script->GetSourceLocation(function_data.StartOffset());
debug::Location end =
script->GetSourceLocation(function_data.EndOffset());
int start_line = start.GetLineNumber();
int end_line = end.GetLineNumber();
uint32_t count = function_data.Count();
Local<String> function_name;
std::stringstream name_stream;
if (function_data.Name().ToLocal(&function_name)) {
name_stream << ToSTLString(isolate, function_name);
} else {
name_stream << "<" << start_line + 1 << "-";
name_stream << start.GetColumnNumber() << ">";
}
WriteLcovDataForNamedRange(sink, &lines, name_stream.str(), start_line,
end_line, count);
}
// Process inner blocks.
for (size_t k = 0; k < function_data.BlockCount(); k++) {
debug::Coverage::BlockData block_data = function_data.GetBlockData(k);
int start_line = LineFromOffset(script, block_data.StartOffset());
int end_line = LineFromOffset(script, block_data.EndOffset() - 1);
uint32_t count = block_data.Count();
WriteLcovDataForRange(&lines, start_line, end_line, count);
}
}
// Write per-line coverage. LCOV uses 1-based line numbers.
for (size_t j = 0; j < lines.size(); j++) {
sink << "DA:" << (j + 1) << "," << lines[j] << std::endl;
}
sink << "end_of_record" << std::endl;
}
}
void Shell::OnExit(v8::Isolate* isolate, bool dispose) {
platform::NotifyIsolateShutdown(g_default_platform, isolate);
if (Worker* worker = Worker::GetCurrentWorker()) {
// When invoking `quit` on a worker isolate, the worker needs to reach
// State::kTerminated before invoking Isolate::Dispose. This is because the
// main thread tries to terminate all workers at the end, which can happen
// concurrently to Isolate::Dispose.
worker->EnterTerminatedState();
}
isolate->Dispose();
// Simulate errors before disposing V8, as that resets flags (via
// FlagList::ResetAllFlags()), but error simulation reads the random seed.
if (options.simulate_errors && is_valid_fuzz_script()) {
// Simulate several errors detectable by fuzzers behind a flag if the
// minimum file size for fuzzing was executed.
FuzzerMonitor::SimulateErrors();
}
if (dispose) {
V8::Dispose();
V8::DisposePlatform();
}
if (options.dump_counters || options.dump_counters_nvp) {
base::SharedMutexGuard<base::kShared> mutex_guard(&counter_mutex_);
std::vector<std::pair<std::string, Counter*>> counters(
counter_map_->begin(), counter_map_->end());
std::sort(counters.begin(), counters.end());
if (options.dump_counters_nvp) {
// Dump counters as name-value pairs.
for (const auto& pair : counters) {
std::string key = pair.first;
Counter* counter = pair.second;
if (counter->is_histogram()) {
std::cout << "\"c:" << key << "\"=" << counter->count() << "\n";
std::cout << "\"t:" << key << "\"=" << counter->sample_total()
<< "\n";
} else {
std::cout << "\"" << key << "\"=" << counter->count() << "\n";
}
}
} else {
// Dump counters in formatted boxes.
constexpr int kNameBoxSize = 64;
constexpr int kValueBoxSize = 13;
std::cout << "+" << std::string(kNameBoxSize, '-') << "+"
<< std::string(kValueBoxSize, '-') << "+\n";
std::cout << "| Name" << std::string(kNameBoxSize - 5, ' ') << "| Value"
<< std::string(kValueBoxSize - 6, ' ') << "|\n";
std::cout << "+" << std::string(kNameBoxSize, '-') << "+"
<< std::string(kValueBoxSize, '-') << "+\n";
for (const auto& pair : counters) {
std::string key = pair.first;
Counter* counter = pair.second;
if (counter->is_histogram()) {
std::cout << "| c:" << std::setw(kNameBoxSize - 4) << std::left << key
<< " | " << std::setw(kValueBoxSize - 2) << std::right
<< counter->count() << " |\n";
std::cout << "| t:" << std::setw(kNameBoxSize - 4) << std::left << key
<< " | " << std::setw(kValueBoxSize - 2) << std::right
<< counter->sample_total() << " |\n";
} else {
std::cout << "| " << std::setw(kNameBoxSize - 2) << std::left << key
<< " | " << std::setw(kValueBoxSize - 2) << std::right
<< counter->count() << " |\n";
}
}
std::cout << "+" << std::string(kNameBoxSize, '-') << "+"
<< std::string(kValueBoxSize, '-') << "+\n";
}
}
if (options.dump_system_memory_stats) {
int peak_memory_usage = base::OS::GetPeakMemoryUsageKb();
std::cout << "System peak memory usage (kb): " << peak_memory_usage
<< std::endl;
// TODO(jdapena): call rusage platform independent call, and extract peak
// memory usage to print it
}
// Only delete the counters if we are done executing; after calling `quit`,
// other isolates might still be running and accessing that memory. This is a
// memory leak, which is OK in this case.
if (dispose) {
delete counters_file_;
delete counter_map_;
}
}
void Dummy(char* arg) {}
V8_NOINLINE void FuzzerMonitor::SimulateErrors() {
// Initialize a fresh RNG to not interfere with JS execution.
std::unique_ptr<base::RandomNumberGenerator> rng;
int64_t seed = i::v8_flags.random_seed;
if (seed != 0) {
rng = std::make_unique<base::RandomNumberGenerator>(seed);
} else {
rng = std::make_unique<base::RandomNumberGenerator>();
}
double p = rng->NextDouble();
if (p < 0.1) {
ControlFlowViolation();
} else if (p < 0.2) {
DCheck();
} else if (p < 0.3) {
Fatal();
} else if (p < 0.4) {
ObservableDifference();
} else if (p < 0.5) {
UndefinedBehavior();
} else if (p < 0.6) {
UseAfterFree();
} else if (p < 0.7) {
UseOfUninitializedValue();
}
}
V8_NOINLINE void FuzzerMonitor::ControlFlowViolation() {
// Control flow violation caught by CFI.
void (*func)() = (void (*)()) & Dummy;
func();
}
V8_NOINLINE void FuzzerMonitor::DCheck() {
// Caught in debug builds.
DCHECK(false);
}
V8_NOINLINE void FuzzerMonitor::Fatal() {
// Caught in all build types.
FATAL("Fake error.");
}
V8_NOINLINE void FuzzerMonitor::ObservableDifference() {
// Observable difference caught by differential fuzzing.
printf("___fake_difference___\n");
}
V8_NOINLINE void FuzzerMonitor::UndefinedBehavior() {
// Caught by UBSAN.
int32_t val = -1;
USE(val << val);
}
V8_NOINLINE void FuzzerMonitor::UseAfterFree() {
// Use-after-free caught by ASAN.
std::vector<bool>* storage = new std::vector<bool>(3);
delete storage;
USE(storage->at(1));
}
V8_NOINLINE void FuzzerMonitor::UseOfUninitializedValue() {
// Use-of-uninitialized-value caught by MSAN.
#if defined(__clang__)
int uninitialized[1];
if (uninitialized[0]) USE(uninitialized);
#endif
}
char* Shell::ReadChars(const char* name, int* size_out) {
if (options.read_from_tcp_port >= 0) {
return ReadCharsFromTcpPort(name, size_out);
}
FILE* file = base::OS::FOpen(name, "rb");
if (file == nullptr) return nullptr;
fseek(file, 0, SEEK_END);
size_t size = ftell(file);
rewind(file);
char* chars = new char[size + 1];
chars[size] = '\0';
for (size_t i = 0; i < size;) {
i += fread(&chars[i], 1, size - i, file);
if (ferror(file)) {
base::Fclose(file);
delete[] chars;
return nullptr;
}
}
base::Fclose(file);
*size_out = static_cast<int>(size);
return chars;
}
MaybeLocal<PrimitiveArray> Shell::ReadLines(Isolate* isolate,
const char* name) {
int length;
std::unique_ptr<char[]> data(ReadChars(name, &length));
if (data.get() == nullptr) {
return MaybeLocal<PrimitiveArray>();
}
std::stringstream stream(data.get());
std::string line;
std::vector<std::string> lines;
while (std::getline(stream, line, '\n')) {
lines.emplace_back(line);
}
// Create a Local<PrimitiveArray> off the read lines.
int size = static_cast<int>(lines.size());
Local<PrimitiveArray> exports = PrimitiveArray::New(isolate, size);
for (int i = 0; i < size; ++i) {
MaybeLocal<String> maybe_str = v8::String::NewFromUtf8(
isolate, lines[i].c_str(), NewStringType::kNormal,
static_cast<int>(lines[i].length()));
Local<String> str;
if (!maybe_str.ToLocal(&str)) {
return MaybeLocal<PrimitiveArray>();
}
exports->Set(isolate, i, str);
}
return exports;
}
void Shell::ReadBuffer(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
static_assert(sizeof(char) == sizeof(uint8_t),
"char and uint8_t should both have 1 byte");
Isolate* isolate = info.GetIsolate();
String::Utf8Value filename(isolate, info[0]);
int length;
if (*filename == nullptr) {
ThrowError(isolate, "Error loading file");
return;
}
uint8_t* data = reinterpret_cast<uint8_t*>(ReadChars(*filename, &length));
if (data == nullptr) {
ThrowError(isolate, "Error reading file");
return;
}
Local<v8::ArrayBuffer> buffer = ArrayBuffer::New(isolate, length);
memcpy(buffer->GetBackingStore()->Data(), data, length);
delete[] data;
info.GetReturnValue().Set(buffer);
}
void Shell::ReadLine(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
info.GetReturnValue().Set(ReadFromStdin(info.GetIsolate()));
}
// Reads a file into a v8 string.
MaybeLocal<String> Shell::ReadFile(Isolate* isolate, const char* name,
bool should_throw) {
std::unique_ptr<base::OS::MemoryMappedFile> file(
base::OS::MemoryMappedFile::open(
name, base::OS::MemoryMappedFile::FileMode::kReadOnly));
if (!file) {
if (should_throw) {
std::ostringstream oss;
oss << "Error loading file: " << name;
ThrowError(isolate,
v8::String::NewFromUtf8(
isolate, oss.str().substr(0, String::kMaxLength).c_str())
.ToLocalChecked());
}
return MaybeLocal<String>();
}
int size = static_cast<int>(file->size());
char* chars = static_cast<char*>(file->memory());
if (i::v8_flags.use_external_strings && i::String::IsAscii(chars, size)) {
String::ExternalOneByteStringResource* resource =
new ExternalOwningOneByteStringResource(std::move(file));
return String::NewExternalOneByte(isolate, resource);
}
return String::NewFromUtf8(isolate, chars, NewStringType::kNormal, size);
}
void Shell::WriteChars(const char* name, uint8_t* buffer, size_t buffer_size) {
FILE* file = base::Fopen(name, "w");
if (file == nullptr) return;
fwrite(buffer, 1, buffer_size, file);
base::Fclose(file);
}
void Shell::RunShell(Isolate* isolate) {
HandleScope outer_scope(isolate);
v8::Local<v8::Context> context =
v8::Local<v8::Context>::New(isolate, evaluation_context_);
v8::Context::Scope context_scope(context);
PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
Local<String> name = String::NewFromUtf8Literal(isolate, "(d8)");
printf("V8 version %s\n", V8::GetVersion());
while (true) {
HandleScope inner_scope(isolate);
printf("d8> ");
Local<String> input = Shell::ReadFromStdin(isolate);
if (input.IsEmpty()) break;
ExecuteString(isolate, input, name, kPrintResult, kReportExceptions,
kProcessMessageQueue);
}
printf("\n");
}
class InspectorFrontend final : public v8_inspector::V8Inspector::Channel {
public:
explicit InspectorFrontend(Local<Context> context) {
isolate_ = context->GetIsolate();
context_.Reset(isolate_, context);
}
~InspectorFrontend() override = default;
private:
void sendResponse(
int callId,
std::unique_ptr<v8_inspector::StringBuffer> message) override {
Send(message->string());
}
void sendNotification(
std::unique_ptr<v8_inspector::StringBuffer> message) override {
Send(message->string());
}
void flushProtocolNotifications() override {}
void Send(const v8_inspector::StringView& string) {
v8::Isolate::AllowJavascriptExecutionScope allow_script(isolate_);
v8::HandleScope handle_scope(isolate_);
int length = static_cast<int>(string.length());
DCHECK_LT(length, v8::String::kMaxLength);
Local<String> message =
(string.is8Bit()
? v8::String::NewFromOneByte(
isolate_,
reinterpret_cast<const uint8_t*>(string.characters8()),
v8::NewStringType::kNormal, length)
: v8::String::NewFromTwoByte(
isolate_,
reinterpret_cast<const uint16_t*>(string.characters16()),
v8::NewStringType::kNormal, length))
.ToLocalChecked();
Local<String> callback_name = v8::String::NewFromUtf8Literal(
isolate_, "receive", NewStringType::kInternalized);
Local<Context> context = context_.Get(isolate_);
Local<Value> callback =
context->Global()->Get(context, callback_name).ToLocalChecked();
if (callback->IsFunction()) {
v8::TryCatch try_catch(isolate_);
Local<Value> args[] = {message};
USE(callback.As<Function>()->Call(context, Undefined(isolate_), 1, args));
#ifdef DEBUG
if (try_catch.HasCaught()) {
Local<Object> exception = try_catch.Exception().As<Object>();
Local<String> key = v8::String::NewFromUtf8Literal(
isolate_, "message", NewStringType::kInternalized);
Local<String> expected = v8::String::NewFromUtf8Literal(
isolate_, "Maximum call stack size exceeded");
Local<Value> value = exception->Get(context, key).ToLocalChecked();
DCHECK(value->StrictEquals(expected));
}
#endif
}
}
Isolate* isolate_;
Global<Context> context_;
};
class InspectorClient : public v8_inspector::V8InspectorClient {
public:
InspectorClient(Local<Context> context, bool connect) {
if (!connect) return;
isolate_ = context->GetIsolate();
channel_.reset(new InspectorFrontend(context));
inspector_ = v8_inspector::V8Inspector::create(isolate_, this);
session_ =
inspector_->connect(1, channel_.get(), v8_inspector::StringView(),
v8_inspector::V8Inspector::kFullyTrusted,
v8_inspector::V8Inspector::kNotWaitingForDebugger);
context->SetAlignedPointerInEmbedderData(kInspectorClientIndex, this);
inspector_->contextCreated(v8_inspector::V8ContextInfo(
context, kContextGroupId, v8_inspector::StringView()));
Local<Value> function =
FunctionTemplate::New(isolate_, SendInspectorMessage)
->GetFunction(context)
.ToLocalChecked();
Local<String> function_name = String::NewFromUtf8Literal(
isolate_, "send", NewStringType::kInternalized);
CHECK(context->Global()->Set(context, function_name, function).FromJust());
context_.Reset(isolate_, context);
}
void runMessageLoopOnPause(int contextGroupId) override {
v8::Isolate::AllowJavascriptExecutionScope allow_script(isolate_);
v8::HandleScope handle_scope(isolate_);
Local<String> callback_name = v8::String::NewFromUtf8Literal(
isolate_, "handleInspectorMessage", NewStringType::kInternalized);
Local<Context> context = context_.Get(isolate_);
Local<Value> callback =
context->Global()->Get(context, callback_name).ToLocalChecked();
if (!callback->IsFunction()) return;
v8::TryCatch try_catch(isolate_);
try_catch.SetVerbose(true);
is_paused = true;
while (is_paused) {
USE(callback.As<Function>()->Call(context, Undefined(isolate_), 0, {}));
if (try_catch.HasCaught()) {
is_paused = false;
}
}
}
void quitMessageLoopOnPause() override { is_paused = false; }
private:
static v8_inspector::V8InspectorSession* GetSession(Local<Context> context) {
InspectorClient* inspector_client = static_cast<InspectorClient*>(
context->GetAlignedPointerFromEmbedderData(kInspectorClientIndex));
return inspector_client->session_.get();
}
Local<Context> ensureDefaultContextInGroup(int group_id) override {
DCHECK(isolate_);
DCHECK_EQ(kContextGroupId, group_id);
return context_.Get(isolate_);
}
static void SendInspectorMessage(
const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
v8::HandleScope handle_scope(isolate);
Local<Context> context = isolate->GetCurrentContext();
info.GetReturnValue().Set(Undefined(isolate));
Local<String> message = info[0]->ToString(context).ToLocalChecked();
v8_inspector::V8InspectorSession* session =
InspectorClient::GetSession(context);
int length = message->Length();
std::unique_ptr<uint16_t[]> buffer(new uint16_t[length]);
message->Write(isolate, buffer.get(), 0, length);
v8_inspector::StringView message_view(buffer.get(), length);
{
v8::SealHandleScope seal_handle_scope(isolate);
session->dispatchProtocolMessage(message_view);
}
info.GetReturnValue().Set(True(isolate));
}
static const int kContextGroupId = 1;
std::unique_ptr<v8_inspector::V8Inspector> inspector_;
std::unique_ptr<v8_inspector::V8InspectorSession> session_;
std::unique_ptr<v8_inspector::V8Inspector::Channel> channel_;
bool is_paused = false;
Global<Context> context_;
Isolate* isolate_;
};
SourceGroup::~SourceGroup() {
delete thread_;
thread_ = nullptr;
}
bool ends_with(const char* input, const char* suffix) {
size_t input_length = strlen(input);
size_t suffix_length = strlen(suffix);
if (suffix_length <= input_length) {
return strcmp(input + input_length - suffix_length, suffix) == 0;
}
return false;
}
bool SourceGroup::Execute(Isolate* isolate) {
bool success = true;
#ifdef V8_FUZZILLI
if (fuzzilli_reprl) {
HandleScope handle_scope(isolate);
Local<String> file_name =
String::NewFromUtf8(isolate, "fuzzcode.js", NewStringType::kNormal)
.ToLocalChecked();
size_t script_size;
CHECK_EQ(read(REPRL_CRFD, &script_size, 8), 8);
char* buffer = new char[script_size + 1];
char* ptr = buffer;
size_t remaining = script_size;
while (remaining > 0) {
ssize_t rv = read(REPRL_DRFD, ptr, remaining);
CHECK_GE(rv, 0);
remaining -= rv;
ptr += rv;
}
buffer[script_size] = 0;
Local<String> source =
String::NewFromUtf8(isolate, buffer, NewStringType::kNormal)
.ToLocalChecked();
delete[] buffer;
Shell::set_script_executed();
if (!Shell::ExecuteString(isolate, source, file_name, Shell::kNoPrintResult,
Shell::kReportExceptions,
Shell::kNoProcessMessageQueue)) {
return false;
}
}
#endif // V8_FUZZILLI
for (int i = begin_offset_; i < end_offset_; ++i) {
const char* arg = argv_[i];
if (strcmp(arg, "-e") == 0 && i + 1 < end_offset_) {
// Execute argument given to -e option directly.
HandleScope handle_scope(isolate);
Local<String> file_name = String::NewFromUtf8Literal(isolate, "unnamed");
Local<String> source =
String::NewFromUtf8(isolate, argv_[i + 1]).ToLocalChecked();
Shell::set_script_executed();
if (!Shell::ExecuteString(isolate, source, file_name,
Shell::kNoPrintResult, Shell::kReportExceptions,
Shell::kNoProcessMessageQueue)) {
success = false;
break;
}
++i;
continue;
} else if (ends_with(arg, ".mjs")) {
Shell::set_script_executed();
if (!Shell::ExecuteModule(isolate, arg)) {
success = false;
break;
}
continue;
} else if (strcmp(arg, "--module") == 0 && i + 1 < end_offset_) {
// Treat the next file as a module.
arg = argv_[++i];
Shell::set_script_executed();
if (!Shell::ExecuteModule(isolate, arg)) {
success = false;
break;
}
continue;
} else if (strcmp(arg, "--json") == 0 && i + 1 < end_offset_) {
// Treat the next file as a JSON file.
arg = argv_[++i];
Shell::set_script_executed();
if (!Shell::LoadJSON(isolate, arg)) {
success = false;
break;
}
continue;
} else if (arg[0] == '-') {
// Ignore other options. They have been parsed already.
continue;
}
// Use all other arguments as names of files to load and run.
HandleScope handle_scope(isolate);
Local<String> file_name =
String::NewFromUtf8(isolate, arg).ToLocalChecked();
Local<String> source;
if (!Shell::ReadFile(isolate, arg).ToLocal(&source)) {
printf("Error reading '%s'\n", arg);
base::OS::ExitProcess(1);
}
Shell::set_script_executed();
Shell::update_script_size(source->Length());
if (!Shell::ExecuteString(isolate, source, file_name, Shell::kNoPrintResult,
Shell::kReportExceptions,
Shell::kProcessMessageQueue)) {
success = false;
break;
}
}
return success;
}
SourceGroup::IsolateThread::IsolateThread(SourceGroup* group)
: base::Thread(GetThreadOptions("IsolateThread")), group_(group) {}
void SourceGroup::ExecuteInThread() {
Isolate::CreateParams create_params;
create_params.array_buffer_allocator = Shell::array_buffer_allocator;
Isolate* isolate = Isolate::New(create_params);
{
Isolate::Scope isolate_scope(isolate);
D8Console console(isolate);
Shell::Initialize(isolate, &console, false);
PerIsolateData data(isolate);
for (int i = 0; i < Shell::options.stress_runs; ++i) {
{
next_semaphore_.ParkedWait(reinterpret_cast<i::Isolate*>(isolate)
->main_thread_local_isolate());
}
{
{
HandleScope scope(isolate);
Local<Context> context;
if (!Shell::CreateEvaluationContext(isolate).ToLocal(&context)) {
DCHECK(isolate->IsExecutionTerminating());
break;
}
{
Context::Scope context_scope(context);
InspectorClient inspector_client(context,
Shell::options.enable_inspector);
PerIsolateData::RealmScope realm_scope(
PerIsolateData::Get(isolate));
Execute(isolate);
Shell::CompleteMessageLoop(isolate);
}
}
Shell::CollectGarbage(isolate);
}
done_semaphore_.Signal();
}
Shell::ResetOnProfileEndListener(isolate);
}
isolate->Dispose();
}
void SourceGroup::StartExecuteInThread() {
if (thread_ == nullptr) {
thread_ = new IsolateThread(this);
CHECK(thread_->Start());
}
next_semaphore_.Signal();
}
void SourceGroup::WaitForThread(const i::ParkedScope& parked) {
if (thread_ == nullptr) return;
done_semaphore_.ParkedWait(parked);
}
void SourceGroup::JoinThread(const i::ParkedScope& parked) {
USE(parked);
if (thread_ == nullptr) return;
thread_->Join();
}
void SerializationDataQueue::Enqueue(std::unique_ptr<SerializationData> data) {
base::MutexGuard lock_guard(&mutex_);
data_.push_back(std::move(data));
}
bool SerializationDataQueue::Dequeue(
std::unique_ptr<SerializationData>* out_data) {
out_data->reset();
base::MutexGuard lock_guard(&mutex_);
if (data_.empty()) return false;
*out_data = std::move(data_[0]);
data_.erase(data_.begin());
return true;
}
bool SerializationDataQueue::IsEmpty() {
base::MutexGuard lock_guard(&mutex_);
return data_.empty();
}
void SerializationDataQueue::Clear() {
base::MutexGuard lock_guard(&mutex_);
data_.clear();
}
Worker::Worker(const char* script) : script_(i::StrDup(script)) {
state_.store(State::kReady);
}
Worker::~Worker() {
CHECK(state_.load() == State::kTerminated);
DCHECK_NULL(isolate_);
delete thread_;
thread_ = nullptr;
delete[] script_;
script_ = nullptr;
}
bool Worker::is_running() const { return state_.load() == State::kRunning; }
bool Worker::StartWorkerThread(Isolate* requester,
std::shared_ptr<Worker> worker,
base::Thread::Priority priority) {
auto expected = State::kReady;
CHECK(
worker->state_.compare_exchange_strong(expected, State::kPrepareRunning));
auto thread = new WorkerThread(worker, priority);
worker->thread_ = thread;
if (!thread->Start()) return false;
// Wait until the worker is ready to receive messages.
worker->started_semaphore_.ParkedWait(
reinterpret_cast<i::Isolate*>(requester)->main_thread_local_isolate());
Shell::AddRunningWorker(std::move(worker));
return true;
}
void Worker::WorkerThread::Run() {
// Prevent a lifetime cycle from Worker -> WorkerThread -> Worker.
// We must clear the worker_ field of the thread, but we keep the
// worker alive via a stack root until the thread finishes execution
// and removes itself from the running set. Thereafter the only
// remaining reference can be from a JavaScript object via a Managed.
auto worker = std::move(worker_);
worker_ = nullptr;
worker->ExecuteInThread();
Shell::RemoveRunningWorker(worker);
}
class ProcessMessageTask : public i::CancelableTask {
public:
ProcessMessageTask(i::CancelableTaskManager* task_manager,
std::shared_ptr<Worker> worker,
std::unique_ptr<SerializationData> data)
: i::CancelableTask(task_manager),
worker_(worker),
data_(std::move(data)) {}
void RunInternal() override { worker_->ProcessMessage(std::move(data_)); }
private:
std::shared_ptr<Worker> worker_;
std::unique_ptr<SerializationData> data_;
};
void Worker::PostMessage(std::unique_ptr<SerializationData> data) {
base::MutexGuard lock_guard(&worker_mutex_);
if (!is_running()) return;
std::unique_ptr<v8::Task> task(new ProcessMessageTask(
task_manager_, shared_from_this(), std::move(data)));
task_runner_->PostNonNestableTask(std::move(task));
}
class TerminateTask : public i::CancelableTask {
public:
TerminateTask(i::CancelableTaskManager* task_manager,
std::shared_ptr<Worker> worker)
: i::CancelableTask(task_manager), worker_(worker) {}
void RunInternal() override {
auto expected = Worker::State::kTerminating;
CHECK(worker_->state_.compare_exchange_strong(expected,
Worker::State::kTerminated));
}
private:
std::shared_ptr<Worker> worker_;
};
std::unique_ptr<SerializationData> Worker::GetMessage(Isolate* requester) {
std::unique_ptr<SerializationData> result;
while (!out_queue_.Dequeue(&result)) {
// If the worker is no longer running, and there are no messages in the
// queue, don't expect any more messages from it.
if (!is_running()) break;
out_semaphore_.ParkedWait(
reinterpret_cast<i::Isolate*>(requester)->main_thread_local_isolate());
}
return result;
}
void Worker::TerminateAndWaitForThread(const i::ParkedScope& parked) {
USE(parked);
Terminate();
{
base::MutexGuard lock_guard(&worker_mutex_);
// Prevent double-joining.
if (is_joined_) return;
is_joined_ = true;
}
thread_->Join();
}
void Worker::Terminate() {
base::MutexGuard lock_guard(&worker_mutex_);
auto expected = State::kRunning;
if (!state_.compare_exchange_strong(expected, State::kTerminating)) return;
std::unique_ptr<v8::Task> task(
new TerminateTask(task_manager_, shared_from_this()));
task_runner_->PostTask(std::move(task));
// Also schedule an interrupt in case the worker is running code and never
// returning to the event queue. Since we checked the state before, and we are
// holding the {worker_mutex_}, it's safe to access the isolate.
isolate_->TerminateExecution();
}
void Worker::EnterTerminatedState() {
base::MutexGuard lock_guard(&worker_mutex_);
state_.store(State::kTerminated);
CHECK(!is_running());
task_runner_.reset();
task_manager_ = nullptr;
}
void Worker::ProcessMessage(std::unique_ptr<SerializationData> data) {
if (!is_running()) return;
DCHECK_NOT_NULL(isolate_);
HandleScope scope(isolate_);
Local<Context> context = context_.Get(isolate_);
Context::Scope context_scope(context);
Local<Object> global = context->Global();
// Get the message handler.
MaybeLocal<Value> maybe_onmessage = global->Get(
context, String::NewFromUtf8Literal(isolate_, "onmessage",
NewStringType::kInternalized));
Local<Value> onmessage;
if (!maybe_onmessage.ToLocal(&onmessage) || !onmessage->IsFunction()) return;
Local<Function> onmessage_fun = onmessage.As<Function>();
v8::TryCatch try_catch(isolate_);
try_catch.SetVerbose(true);
Local<Value> value;
if (Shell::DeserializeValue(isolate_, std::move(data)).ToLocal(&value)) {
DCHECK(!isolate_->IsExecutionTerminating());
Local<Value> argv[] = {value};
MaybeLocal<Value> result = onmessage_fun->Call(context, global, 1, argv);
USE(result);
}
}
void Worker::ProcessMessages() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate_);
i::SaveAndSwitchContext saved_context(i_isolate, i::Context());
SealHandleScope shs(isolate_);
while (is_running() && v8::platform::PumpMessageLoop(
g_default_platform, isolate_,
platform::MessageLoopBehavior::kWaitForWork)) {
if (is_running()) {
MicrotasksScope::PerformCheckpoint(isolate_);
}
}
}
// static
void Worker::SetCurrentWorker(Worker* worker) {
CHECK_NULL(current_worker_);
current_worker_ = worker;
}
// static
Worker* Worker::GetCurrentWorker() { return current_worker_; }
void Worker::ExecuteInThread() {
Isolate::CreateParams create_params;
create_params.array_buffer_allocator = Shell::array_buffer_allocator;
isolate_ = Isolate::New(create_params);
// Make the Worker instance available to the whole thread.
SetCurrentWorker(this);
task_runner_ = g_default_platform->GetForegroundTaskRunner(isolate_);
task_manager_ =
reinterpret_cast<i::Isolate*>(isolate_)->cancelable_task_manager();
auto expected = State::kPrepareRunning;
CHECK(state_.compare_exchange_strong(expected, State::kRunning));
// The Worker is now ready to receive messages.
started_semaphore_.Signal();
{
Isolate::Scope isolate_scope(isolate_);
D8Console console(isolate_);
Shell::Initialize(isolate_, &console, false);
PerIsolateData data(isolate_);
// This is not really a loop, but the loop allows us to break out of this
// block easily.
for (bool execute = true; execute; execute = false) {
{
HandleScope scope(isolate_);
Local<Context> context;
if (!Shell::CreateEvaluationContext(isolate_).ToLocal(&context)) {
DCHECK(isolate_->IsExecutionTerminating());
break;
}
context_.Reset(isolate_, context);
{
Context::Scope context_scope(context);
PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate_));
Local<Object> global = context->Global();
Local<Value> this_value = External::New(isolate_, this);
Local<FunctionTemplate> postmessage_fun_template =
FunctionTemplate::New(isolate_, PostMessageOut, this_value);
Local<Function> postmessage_fun;
if (postmessage_fun_template->GetFunction(context).ToLocal(
&postmessage_fun)) {
global
->Set(
context,
v8::String::NewFromUtf8Literal(
isolate_, "postMessage", NewStringType::kInternalized),
postmessage_fun)
.FromJust();
}
// First run the script
Local<String> file_name =
String::NewFromUtf8Literal(isolate_, "unnamed");
Local<String> source =
String::NewFromUtf8(isolate_, script_).ToLocalChecked();
if (Shell::ExecuteString(
isolate_, source, file_name, Shell::kNoPrintResult,
Shell::kReportExceptions, Shell::kProcessMessageQueue)) {
// Check that there's a message handler
MaybeLocal<Value> maybe_onmessage = global->Get(
context,
String::NewFromUtf8Literal(isolate_, "onmessage",
NewStringType::kInternalized));
Local<Value> onmessage;
if (maybe_onmessage.ToLocal(&onmessage) &&
onmessage->IsFunction()) {
// Now wait for messages.
ProcessMessages();
}
}
}
}
Shell::CollectGarbage(isolate_);
}
EnterTerminatedState();
Shell::ResetOnProfileEndListener(isolate_);
context_.Reset();
platform::NotifyIsolateShutdown(g_default_platform, isolate_);
}
isolate_->Dispose();
isolate_ = nullptr;
// Post nullptr to wake the thread waiting on GetMessage() if there is one.
out_queue_.Enqueue(nullptr);
out_semaphore_.Signal();
}
void Worker::PostMessageOut(const v8::FunctionCallbackInfo<v8::Value>& info) {
DCHECK(i::ValidateCallbackInfo(info));
Isolate* isolate = info.GetIsolate();
HandleScope handle_scope(isolate);
if (info.Length() < 1) {
ThrowError(isolate, "Invalid argument");
return;
}
Local<Value> message = info[0];
Local<Value> transfer = Undefined(isolate);
std::unique_ptr<SerializationData> data =
Shell::SerializeValue(isolate, message, transfer);
if (data) {
DCHECK(info.Data()->IsExternal());
Local<External> this_value = info.Data().As<External>();
Worker* worker = static_cast<Worker*>(this_value->Value());
worker->out_queue_.Enqueue(std::move(data));
worker->out_semaphore_.Signal();
}
}
#ifdef V8_TARGET_OS_WIN
// Enable support for unicode filename path on windows.
// We first convert ansi encoded argv[i] to utf16 encoded, and then
// convert utf16 encoded to utf8 encoded with setting the argv[i]
// to the utf8 encoded arg. We allocate memory for the utf8 encoded
// arg, and we will free it and reset it to nullptr after using
// the filename path arg. And because Execute may be called multiple
// times, we need to free the allocated unicode filename when exit.
// Save the allocated utf8 filenames, and we will free them when exit.
std::vector<char*> utf8_filenames;
#include <shellapi.h>
// Convert utf-16 encoded string to utf-8 encoded.
char* ConvertUtf16StringToUtf8(const wchar_t* str) {
// On Windows wchar_t must be a 16-bit value.
static_assert(sizeof(wchar_t) == 2, "wrong wchar_t size");
int len =
WideCharToMultiByte(CP_UTF8, 0, str, -1, nullptr, 0, nullptr, FALSE);
DCHECK_LT(0, len);
char* utf8_str = new char[len];
utf8_filenames.push_back(utf8_str);
WideCharToMultiByte(CP_UTF8, 0, str, -1, utf8_str, len, nullptr, FALSE);
return utf8_str;
}
// Convert ansi encoded argv[i] to utf8 encoded.
void PreProcessUnicodeFilenameArg(char* argv[], int i) {
int argc;
wchar_t** wargv = CommandLineToArgvW(GetCommandLineW(), &argc);
argv[i] = ConvertUtf16StringToUtf8(wargv[i]);
LocalFree(wargv);
}
#endif
bool Shell::SetOptions(int argc, char* argv[]) {
bool logfile_per_isolate = false;
options.d8_path = argv[0];
for (int i = 0; i < argc; i++) {
if (strcmp(argv[i], "--") == 0) {
argv[i] = nullptr;
for (int j = i + 1; j < argc; j++) {
options.arguments.push_back(argv[j]);
argv[j] = nullptr;
}
break;
} else if (strcmp(argv[i], "--no-arguments") == 0) {
options.include_arguments = false;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--simulate-errors") == 0) {
options.simulate_errors = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--fuzzing") == 0 ||
strcmp(argv[i], "--no-abort-on-contradictory-flags") == 0 ||
strcmp(argv[i], "--noabort-on-contradictory-flags") == 0) {
check_d8_flag_contradictions = false;
} else if (strcmp(argv[i], "--abort-on-contradictory-flags") == 0) {
check_d8_flag_contradictions = true;
} else if (strcmp(argv[i], "--logfile-per-isolate") == 0) {
logfile_per_isolate = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--shell") == 0) {
options.interactive_shell = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--test") == 0) {
options.test_shell = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--notest") == 0 ||
strcmp(argv[i], "--no-test") == 0) {
options.test_shell = false;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--send-idle-notification") == 0) {
options.send_idle_notification = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--invoke-weak-callbacks") == 0) {
options.invoke_weak_callbacks = true;
// TODO(v8:3351): Invoking weak callbacks does not always collect all
// available garbage.
options.send_idle_notification = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--omit-quit") == 0) {
options.omit_quit = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--no-wait-for-background-tasks") == 0) {
// TODO(herhut) Remove this flag once wasm compilation is fully
// isolate-independent.
options.wait_for_background_tasks = false;
argv[i] = nullptr;
} else if (strcmp(argv[i], "-f") == 0) {
// Ignore any -f flags for compatibility with other stand-alone
// JavaScript engines.
continue;
} else if (strcmp(argv[i], "--ignore-unhandled-promises") == 0) {
options.ignore_unhandled_promises = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--isolate") == 0) {
options.num_isolates++;
} else if (strcmp(argv[i], "--throws") == 0) {
options.expected_to_throw = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--no-fail") == 0) {
options.no_fail = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--dump-counters") == 0) {
i::v8_flags.slow_histograms = true;
options.dump_counters = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--dump-counters-nvp") == 0) {
i::v8_flags.slow_histograms = true;
options.dump_counters_nvp = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--dump-system-memory-stats") == 0) {
options.dump_system_memory_stats = true;
argv[i] = nullptr;
} else if (strncmp(argv[i], "--icu-data-file=", 16) == 0) {
options.icu_data_file = argv[i] + 16;
argv[i] = nullptr;
} else if (strncmp(argv[i], "--icu-locale=", 13) == 0) {
options.icu_locale = argv[i] + 13;
argv[i] = nullptr;
#ifdef V8_USE_EXTERNAL_STARTUP_DATA
} else if (strncmp(argv[i], "--snapshot_blob=", 16) == 0) {
options.snapshot_blob = argv[i] + 16;
argv[i] = nullptr;
#endif // V8_USE_EXTERNAL_STARTUP_DATA
} else if (strcmp(argv[i], "--cache") == 0 ||
strncmp(argv[i], "--cache=", 8) == 0) {
const char* value = argv[i] + 7;
if (!*value || strncmp(value, "=code", 6) == 0) {
options.compile_options = v8::ScriptCompiler::kNoCompileOptions;
options.code_cache_options =
ShellOptions::CodeCacheOptions::kProduceCache;
} else if (strncmp(value, "=none", 6) == 0) {
options.compile_options = v8::ScriptCompiler::kNoCompileOptions;
options.code_cache_options = ShellOptions::kNoProduceCache;
} else if (strncmp(value, "=after-execute", 15) == 0) {
options.compile_options = v8::ScriptCompiler::kNoCompileOptions;
options.code_cache_options =
ShellOptions::CodeCacheOptions::kProduceCacheAfterExecute;
} else if (strncmp(value, "=full-code-cache", 17) == 0) {
options.compile_options = v8::ScriptCompiler::kEagerCompile;
options.code_cache_options =
ShellOptions::CodeCacheOptions::kProduceCache;
} else {
printf("Unknown option to --cache.\n");
return false;
}
argv[i] = nullptr;
} else if (strcmp(argv[i], "--streaming-compile") == 0) {
options.streaming_compile = true;
argv[i] = nullptr;
} else if ((strcmp(argv[i], "--no-streaming-compile") == 0) ||
(strcmp(argv[i], "--nostreaming-compile") == 0)) {
options.streaming_compile = false;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--enable-tracing") == 0) {
options.trace_enabled = true;
argv[i] = nullptr;
} else if (strncmp(argv[i], "--trace-path=", 13) == 0) {
options.trace_path = argv[i] + 13;
argv[i] = nullptr;
} else if (strncmp(argv[i], "--trace-config=", 15) == 0) {
options.trace_config = argv[i] + 15;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--enable-inspector") == 0) {
options.enable_inspector = true;
argv[i] = nullptr;
} else if (strncmp(argv[i], "--lcov=", 7) == 0) {
options.lcov_file = argv[i] + 7;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--disable-in-process-stack-traces") == 0) {
options.disable_in_process_stack_traces = true;
argv[i] = nullptr;
#ifdef V8_OS_POSIX
} else if (strncmp(argv[i], "--read-from-tcp-port=", 21) == 0) {
options.read_from_tcp_port = atoi(argv[i] + 21);
argv[i] = nullptr;
#endif // V8_OS_POSIX
} else if (strcmp(argv[i], "--enable-os-system") == 0) {
options.enable_os_system = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--no-apply-priority") == 0) {
options.apply_priority = false;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--quiet-load") == 0) {
options.quiet_load = true;
argv[i] = nullptr;
} else if (strncmp(argv[i], "--thread-pool-size=", 19) == 0) {
options.thread_pool_size = atoi(argv[i] + 19);
argv[i] = nullptr;
} else if (strcmp(argv[i], "--stress-delay-tasks") == 0) {
// Delay execution of tasks by 0-100ms randomly (based on --random-seed).
options.stress_delay_tasks = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--cpu-profiler") == 0) {
options.cpu_profiler = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--cpu-profiler-print") == 0) {
options.cpu_profiler = true;
options.cpu_profiler_print = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--stress-deserialize") == 0) {
options.stress_deserialize = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--compile-only") == 0) {
options.compile_only = true;
argv[i] = nullptr;
} else if (strncmp(argv[i], "--repeat-compile=", 17) == 0) {
options.repeat_compile = atoi(argv[i] + 17);
argv[i] = nullptr;
} else if (strncmp(argv[i], "--max-serializer-memory=", 24) == 0) {
// Value is expressed in MB.
options.max_serializer_memory = atoi(argv[i] + 24) * i::MB;
argv[i] = nullptr;
#ifdef V8_FUZZILLI
} else if (strcmp(argv[i], "--fuzzilli-enable-builtins-coverage") == 0) {
options.fuzzilli_enable_builtins_coverage = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--fuzzilli-coverage-statistics") == 0) {
options.fuzzilli_coverage_statistics = true;
argv[i] = nullptr;
#endif
} else if (strcmp(argv[i], "--no-fuzzy-module-file-extensions") == 0) {
DCHECK(options.fuzzy_module_file_extensions);
options.fuzzy_module_file_extensions = false;
argv[i] = nullptr;
#if defined(V8_ENABLE_ETW_STACK_WALKING)
} else if (strcmp(argv[i], "--enable-etw-stack-walking") == 0) {
options.enable_etw_stack_walking = true;
// This needs to be manually triggered for JIT ETW events to work.
i::v8_flags.enable_etw_stack_walking = true;
#if defined(V8_ENABLE_SYSTEM_INSTRUMENTATION)
} else if (strcmp(argv[i], "--enable-system-instrumentation") == 0) {
options.enable_system_instrumentation = true;
options.trace_enabled = true;
#endif
#if defined(V8_OS_WIN)
// Guard this bc the flag has a lot of overhead and is not currently used
// by macos
i::v8_flags.interpreted_frames_native_stack = true;
#endif
argv[i] = nullptr;
#endif
#if V8_ENABLE_WEBASSEMBLY
} else if (strcmp(argv[i], "--wasm-trap-handler") == 0) {
options.wasm_trap_handler = true;
argv[i] = nullptr;
} else if (strcmp(argv[i], "--no-wasm-trap-handler") == 0) {
options.wasm_trap_handler = false;
argv[i] = nullptr;
#endif // V8_ENABLE_WEBASSEMBLY
} else if (strcmp(argv[i], "--expose-fast-api") == 0) {
options.expose_fast_api = true;
argv[i] = nullptr;
#if V8_ENABLE_SANDBOX
} else if (strcmp(argv[i], "--enable-sandbox-crash-filter") == 0) {
options.enable_sandbox_crash_filter = true;
argv[i] = nullptr;
#endif // V8_ENABLE_SANDBOX
} else {
#ifdef V8_TARGET_OS_WIN
PreProcessUnicodeFilenameArg(argv, i);
#endif
}
}
const char* usage =
"Synopsis:\n"
" shell [options] [--shell] [<file>...]\n"
" d8 [options] [-e <string>] [--shell] [--module|]"
" <file>...]\n\n"
" -e execute a string in V8\n"
" --shell run an interactive JavaScript shell\n"
" --module execute a file as a JavaScript module\n";
using HelpOptions = i::FlagList::HelpOptions;
i::v8_flags.abort_on_contradictory_flags = true;
i::FlagList::SetFlagsFromCommandLine(&argc, argv, true,
HelpOptions(HelpOptions::kExit, usage));
options.mock_arraybuffer_allocator = i::v8_flags.mock_arraybuffer_allocator;
options.mock_arraybuffer_allocator_limit =
i::v8_flags.mock_arraybuffer_allocator_limit;
#if MULTI_MAPPED_ALLOCATOR_AVAILABLE
options.multi_mapped_mock_allocator = i::v8_flags.multi_mapped_mock_allocator;
#endif
if (i::v8_flags.stress_snapshot && options.expose_fast_api &&
check_d8_flag_contradictions) {
FATAL("Flag --expose-fast-api is incompatible with --stress-snapshot.");
}
// Set up isolated source groups.
options.isolate_sources = new SourceGroup[options.num_isolates];
SourceGroup* current = options.isolate_sources;
current->Begin(argv, 1);
for (int i = 1; i < argc; i++) {
const char* str = argv[i];
if (strcmp(str, "--isolate") == 0) {
current->End(i);
current++;
current->Begin(argv, i + 1);
} else if (strcmp(str, "--module") == 0 || strcmp(str, "--json") == 0) {
// Pass on to SourceGroup, which understands these options.
} else if (strncmp(str, "--", 2) == 0) {
if (!i::v8_flags.correctness_fuzzer_suppressions) {
printf("Warning: unknown flag %s.\nTry --help for options\n", str);
}
} else if (strcmp(str, "-e") == 0 && i + 1 < argc) {
set_script_executed();
} else if (strncmp(str, "-", 1) != 0) {
// Not a flag, so it must be a script to execute.
set_script_executed();
}
}
current->End(argc);
if (!logfile_per_isolate && options.num_isolates) {
V8::SetFlagsFromString("--no-logfile-per-isolate");
}
return true;
}
int Shell::RunMain(v8::Isolate* isolate, bool last_run) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
for (int i = 1; i < options.num_isolates; ++i) {
options.isolate_sources[i].StartExecuteInThread();
}
// The Context object, created inside RunMainIsolate, is used after the method
// returns in some situations:
const bool keep_context_alive =
last_run && (use_interactive_shell() || i::v8_flags.stress_snapshot);
bool success = RunMainIsolate(isolate, keep_context_alive);
CollectGarbage(isolate);
// Park the main thread here to prevent deadlocks in shared GCs when
// waiting in JoinThread.
i_isolate->main_thread_local_heap()->BlockMainThreadWhileParked(
[last_run](const i::ParkedScope& parked) {
for (int i = 1; i < options.num_isolates; ++i) {
if (last_run) {
options.isolate_sources[i].JoinThread(parked);
} else {
options.isolate_sources[i].WaitForThread(parked);
}
}
WaitForRunningWorkers(parked);
});
// Other threads have terminated, we can now run the artifical
// serialize-deserialize pass (which destructively mutates heap state).
if (success && last_run && i::v8_flags.stress_snapshot) {
HandleScope handle_scope(isolate);
static constexpr bool kClearRecompilableData = true;
auto context = v8::Local<v8::Context>::New(isolate, evaluation_context_);
i::Handle<i::Context> i_context = Utils::OpenHandle(*context);
// Stop concurrent compiles before mutating the heap.
if (i_isolate->concurrent_recompilation_enabled()) {
i_isolate->optimizing_compile_dispatcher()->Stop();
}
#if V8_ENABLE_MAGLEV
if (i_isolate->maglev_concurrent_dispatcher()->is_enabled()) {
i_isolate->maglev_concurrent_dispatcher()->AwaitCompileJobs();
}
#endif // V8_ENABLE_MAGLEV
// TODO(jgruber,v8:10500): Don't deoptimize once we support serialization
// of optimized code.
i::Deoptimizer::DeoptimizeAll(i_isolate);
// Trigger GC to better align with production code. Also needed by
// ClearReconstructableDataForSerialization to not look into dead objects.
i_isolate->heap()->CollectAllAvailableGarbage(
i::GarbageCollectionReason::kSnapshotCreator);
i::Snapshot::ClearReconstructableDataForSerialization(
i_isolate, kClearRecompilableData);
i::Snapshot::SerializeDeserializeAndVerifyForTesting(i_isolate, i_context);
}
if (Shell::unhandled_promise_rejections_.load() > 0) {
printf("%i pending unhandled Promise rejection(s) detected.\n",
Shell::unhandled_promise_rejections_.load());
success = false;
// RunMain may be executed multiple times, e.g. in REPRL mode, so we have to
// reset this counter.
Shell::unhandled_promise_rejections_.store(0);
}
// In order to finish successfully, success must be != expected_to_throw.
if (Shell::options.no_fail) return 0;
// Fuzzers aren't expected to use --throws, but may pick it up from testcases.
// In that case, just ignore the flag.
if (i::v8_flags.fuzzing && Shell::options.expected_to_throw) return 0;
return (success == Shell::options.expected_to_throw ? 1 : 0);
}
bool Shell::RunMainIsolate(v8::Isolate* isolate, bool keep_context_alive) {
if (options.lcov_file) {
debug::Coverage::SelectMode(isolate, debug::CoverageMode::kBlockCount);
}
HandleScope scope(isolate);
Local<Context> context;
if (!CreateEvaluationContext(isolate).ToLocal(&context)) {
DCHECK(isolate->IsExecutionTerminating());
// We must not exit early here in REPRL mode as that would cause the next
// testcase sent by Fuzzilli to be skipped, which will desynchronize the
// communication between d8 and Fuzzilli, leading to a crash.
DCHECK(!fuzzilli_reprl);
return false;
}
if (keep_context_alive) {
evaluation_context_.Reset(isolate, context);
}
bool success = true;
{
Context::Scope context_scope(context);
InspectorClient inspector_client(context, options.enable_inspector);
PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
if (!options.isolate_sources[0].Execute(isolate)) success = false;
if (!CompleteMessageLoop(isolate)) success = false;
}
WriteLcovData(isolate, options.lcov_file);
return success;
}
void Shell::CollectGarbage(Isolate* isolate) {
if (options.send_idle_notification) {
isolate->ContextDisposedNotification();
}
if (options.invoke_weak_callbacks) {
// By sending a low memory notifications, we will try hard to collect all
// garbage and will therefore also invoke all weak callbacks of actually
// unreachable persistent handles.
isolate->LowMemoryNotification();
}
}
void Shell::NotifyStartStreamingTask(Isolate* isolate) {
DCHECK(options.streaming_compile);
base::MutexGuard guard(isolate_status_lock_.Pointer());
++isolate_running_streaming_tasks_[isolate];
}
void Shell::NotifyFinishStreamingTask(Isolate* isolate) {
DCHECK(options.streaming_compile);
base::MutexGuard guard(isolate_status_lock_.Pointer());
--isolate_running_streaming_tasks_[isolate];
DCHECK_GE(isolate_running_streaming_tasks_[isolate], 0);
}
namespace {
bool RunSetTimeoutCallback(Isolate* isolate, bool* did_run) {
PerIsolateData* data = PerIsolateData::Get(isolate);
HandleScope handle_scope(isolate);
Local<Function> callback;
if (!data->GetTimeoutCallback().ToLocal(&callback)) return true;
Local<Context> context;
if (!data->GetTimeoutContext().ToLocal(&context)) return true;
TryCatch try_catch(isolate);
try_catch.SetVerbose(true);
Context::Scope context_scope(context);
if (callback->Call(context, Undefined(isolate), 0, nullptr).IsEmpty()) {
return false;
}
*did_run = true;
return true;
}
bool ProcessMessages(
Isolate* isolate,
const std::function<platform::MessageLoopBehavior()>& behavior) {
while (true) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::SaveAndSwitchContext saved_context(i_isolate, i::Context());
SealHandleScope shs(isolate);
for (bool ran_tasks = true; ran_tasks;) {
// Execute one foreground task (if one exists), then microtasks.
if (isolate->IsExecutionTerminating()) return false;
ran_tasks = v8::platform::PumpMessageLoop(g_default_platform, isolate,
behavior());
if (isolate->IsExecutionTerminating()) return false;
if (ran_tasks) MicrotasksScope::PerformCheckpoint(isolate);
// In predictable mode we push all background tasks into the foreground
// task queue of the {kProcessGlobalPredictablePlatformWorkerTaskQueue}
// isolate. We execute all background tasks after running one foreground
// task.
if (i::v8_flags.verify_predictable) {
if (isolate->IsExecutionTerminating()) return false;
while (v8::platform::PumpMessageLoop(
g_default_platform,
kProcessGlobalPredictablePlatformWorkerTaskQueue,
platform::MessageLoopBehavior::kDoNotWait)) {
ran_tasks = true;
if (isolate->IsExecutionTerminating()) return false;
}
}
}
if (g_default_platform->IdleTasksEnabled(isolate)) {
v8::platform::RunIdleTasks(g_default_platform, isolate,
50.0 / base::Time::kMillisecondsPerSecond);
}
if (isolate->IsExecutionTerminating()) return false;
bool ran_set_timeout = false;
if (!RunSetTimeoutCallback(isolate, &ran_set_timeout)) return false;
if (!ran_set_timeout) return true;
}
}
} // anonymous namespace
bool Shell::CompleteMessageLoop(Isolate* isolate) {
auto get_waiting_behaviour = [isolate]() {
base::MutexGuard guard(isolate_status_lock_.Pointer());
bool should_wait = (options.wait_for_background_tasks &&
isolate->HasPendingBackgroundTasks()) ||
isolate_running_streaming_tasks_[isolate] > 0;
return should_wait ? platform::MessageLoopBehavior::kWaitForWork
: platform::MessageLoopBehavior::kDoNotWait;
};
if (i::v8_flags.verify_predictable) {
bool ran_tasks = ProcessMessages(
isolate, [] { return platform::MessageLoopBehavior::kDoNotWait; });
if (get_waiting_behaviour() ==
platform::MessageLoopBehavior::kWaitForWork) {
FATAL(
"There is outstanding work after executing all tasks in predictable "
"mode -- this would deadlock.");
}
return ran_tasks;
}
return ProcessMessages(isolate, get_waiting_behaviour);
}
bool Shell::EmptyMessageQueues(Isolate* isolate) {
return ProcessMessages(
isolate, []() { return platform::MessageLoopBehavior::kDoNotWait; });
}
void Shell::PostForegroundTask(Isolate* isolate, std::unique_ptr<Task> task) {
g_default_platform->GetForegroundTaskRunner(isolate)->PostTask(
std::move(task));
}
void Shell::PostBlockingBackgroundTask(std::unique_ptr<Task> task) {
g_default_platform->CallBlockingTaskOnWorkerThread(std::move(task));
}
bool Shell::HandleUnhandledPromiseRejections(Isolate* isolate) {
if (options.ignore_unhandled_promises) return true;
PerIsolateData* data = PerIsolateData::Get(isolate);
int count = data->HandleUnhandledPromiseRejections();
Shell::unhandled_promise_rejections_.store(
Shell::unhandled_promise_rejections_.load() + count);
return count == 0;
}
class Serializer : public ValueSerializer::Delegate {
public:
explicit Serializer(Isolate* isolate)
: isolate_(isolate),
serializer_(isolate, this),
current_memory_usage_(0) {}
Serializer(const Serializer&) = delete;
Serializer& operator=(const Serializer&) = delete;
Maybe<bool> WriteValue(Local<Context> context, Local<Value> value,
Local<Value> transfer) {
bool ok;
DCHECK(!data_);
data_.reset(new SerializationData);
if (!PrepareTransfer(context, transfer).To(&ok)) {
return Nothing<bool>();
}
serializer_.WriteHeader();
if (!serializer_.WriteValue(context, value).To(&ok)) {
data_.reset();
return Nothing<bool>();
}
if (!FinalizeTransfer().To(&ok)) {
return Nothing<bool>();
}
std::pair<uint8_t*, size_t> pair = serializer_.Release();
data_->data_.reset(pair.first);
data_->size_ = pair.second;
return Just(true);
}
std::unique_ptr<SerializationData> Release() { return std::move(data_); }
void AppendBackingStoresTo(std::vector<std::shared_ptr<BackingStore>>* to) {
to->insert(to->end(), std::make_move_iterator(backing_stores_.begin()),
std::make_move_iterator(backing_stores_.end()));
backing_stores_.clear();
}
protected:
// Implements ValueSerializer::Delegate.
void ThrowDataCloneError(Local<String> message) override {
isolate_->ThrowException(Exception::Error(message));
}
Maybe<uint32_t> GetSharedArrayBufferId(
Isolate* isolate, Local<SharedArrayBuffer> shared_array_buffer) override {
DCHECK_NOT_NULL(data_);
for (size_t index = 0; index < shared_array_buffers_.size(); ++index) {
if (shared_array_buffers_[index] == shared_array_buffer) {
return Just<uint32_t>(static_cast<uint32_t>(index));
}
}
size_t index = shared_array_buffers_.size();
shared_array_buffers_.emplace_back(isolate_, shared_array_buffer);
data_->sab_backing_stores_.push_back(
shared_array_buffer->GetBackingStore());
return Just<uint32_t>(static_cast<uint32_t>(index));
}
Maybe<uint32_t> GetWasmModuleTransferId(
Isolate* isolate, Local<WasmModuleObject> module) override {
DCHECK_NOT_NULL(data_);
for (size_t index = 0; index < wasm_modules_.size(); ++index) {
if (wasm_modules_[index] == module) {
return Just<uint32_t>(static_cast<uint32_t>(index));
}
}
size_t index = wasm_modules_.size();
wasm_modules_.emplace_back(isolate_, module);
data_->compiled_wasm_modules_.push_back(module->GetCompiledModule());
return Just<uint32_t>(static_cast<uint32_t>(index));
}
void* ReallocateBufferMemory(void* old_buffer, size_t size,
size_t* actual_size) override {
// Not accurate, because we don't take into account reallocated buffers,
// but this is fine for testing.
current_memory_usage_ += size;
if (current_memory_usage_ > Shell::options.max_serializer_memory) {
return nullptr;
}
void* result = base::Realloc(old_buffer, size);
*actual_size = result ? size : 0;
return result;
}
void FreeBufferMemory(void* buffer) override { base::Free(buffer); }
bool AdoptSharedValueConveyor(Isolate* isolate,
SharedValueConveyor&& conveyor) override {
data_->shared_value_conveyor_.emplace(std::move(conveyor));
return true;
}
private:
Maybe<bool> PrepareTransfer(Local<Context> context, Local<Value> transfer) {
if (transfer->IsArray()) {
Local<Array> transfer_array = transfer.As<Array>();
uint32_t length = transfer_array->Length();
for (uint32_t i = 0; i < length; ++i) {
Local<Value> element;
if (transfer_array->Get(context, i).ToLocal(&element)) {
if (!element->IsArrayBuffer()) {
isolate_->ThrowError(
"Transfer array elements must be an ArrayBuffer");
return Nothing<bool>();
}
Local<ArrayBuffer> array_buffer = element.As<ArrayBuffer>();
if (std::find(array_buffers_.begin(), array_buffers_.end(),
array_buffer) != array_buffers_.end()) {
isolate_->ThrowError(
"ArrayBuffer occurs in the transfer array more than once");
return Nothing<bool>();
}
serializer_.TransferArrayBuffer(
static_cast<uint32_t>(array_buffers_.size()), array_buffer);
array_buffers_.emplace_back(isolate_, array_buffer);
} else {
return Nothing<bool>();
}
}
return Just(true);
} else if (transfer->IsUndefined()) {
return Just(true);
} else {
isolate_->ThrowError("Transfer list must be an Array or undefined");
return Nothing<bool>();
}
}
Maybe<bool> FinalizeTransfer() {
for (const auto& global_array_buffer : array_buffers_) {
Local<ArrayBuffer> array_buffer =
Local<ArrayBuffer>::New(isolate_, global_array_buffer);
if (!array_buffer->IsDetachable()) {
isolate_->ThrowError(
"ArrayBuffer is not detachable and could not be transferred");
return Nothing<bool>();
}
auto backing_store = array_buffer->GetBackingStore();
data_->backing_stores_.push_back(std::move(backing_store));
if (array_buffer->Detach(v8::Local<v8::Value>()).IsNothing()) {
return Nothing<bool>();
}
}
return Just(true);
}
// This must come before ValueSerializer as it caches this value.
Isolate* isolate_;
ValueSerializer serializer_;
std::unique_ptr<SerializationData> data_;
std::vector<Global<ArrayBuffer>> array_buffers_;
std::vector<Global<SharedArrayBuffer>> shared_array_buffers_;
std::vector<Global<WasmModuleObject>> wasm_modules_;
std::vector<std::shared_ptr<v8::BackingStore>> backing_stores_;
size_t current_memory_usage_;
};
class Deserializer : public ValueDeserializer::Delegate {
public:
Deserializer(Isolate* isolate, std::unique_ptr<SerializationData> data)
: isolate_(isolate),
deserializer_(isolate, data->data(), data->size(), this),
data_(std::move(data)) {
deserializer_.SetSupportsLegacyWireFormat(true);
}
Deserializer(const Deserializer&) = delete;
Deserializer& operator=(const Deserializer&) = delete;
MaybeLocal<Value> ReadValue(Local<Context> context) {
bool read_header;
if (!deserializer_.ReadHeader(context).To(&read_header)) {
return MaybeLocal<Value>();
}
uint32_t index = 0;
for (const auto& backing_store : data_->backing_stores()) {
Local<ArrayBuffer> array_buffer =
ArrayBuffer::New(isolate_, std::move(backing_store));
deserializer_.TransferArrayBuffer(index++, array_buffer);
}
return deserializer_.ReadValue(context);
}
MaybeLocal<SharedArrayBuffer> GetSharedArrayBufferFromId(
Isolate* isolate, uint32_t clone_id) override {
DCHECK_NOT_NULL(data_);
if (clone_id < data_->sab_backing_stores().size()) {
return SharedArrayBuffer::New(
isolate_, std::move(data_->sab_backing_stores().at(clone_id)));
}
return MaybeLocal<SharedArrayBuffer>();
}
MaybeLocal<WasmModuleObject> GetWasmModuleFromId(
Isolate* isolate, uint32_t transfer_id) override {
DCHECK_NOT_NULL(data_);
if (transfer_id >= data_->compiled_wasm_modules().size()) return {};
return WasmModuleObject::FromCompiledModule(
isolate_, data_->compiled_wasm_modules().at(transfer_id));
}
const SharedValueConveyor* GetSharedValueConveyor(Isolate* isolate) override {
DCHECK_NOT_NULL(data_);
if (data_->shared_value_conveyor()) {
return &data_->shared_value_conveyor().value();
}
return nullptr;
}
private:
Isolate* isolate_;
ValueDeserializer deserializer_;
std::unique_ptr<SerializationData> data_;
};
class D8Testing {
public:
/**
* Get the number of runs of a given test that is required to get the full
* stress coverage.
*/
static int GetStressRuns() {
if (i::v8_flags.stress_runs != 0) return i::v8_flags.stress_runs;
#ifdef DEBUG
// In debug mode the code runs much slower so stressing will only make two
// runs.
return 2;
#else
return 5;
#endif
}
/**
* Force deoptimization of all functions.
*/
static void DeoptimizeAll(Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::HandleScope scope(i_isolate);
i::Deoptimizer::DeoptimizeAll(i_isolate);
}
};
std::unique_ptr<SerializationData> Shell::SerializeValue(
Isolate* isolate, Local<Value> value, Local<Value> transfer) {
bool ok;
Local<Context> context = isolate->GetCurrentContext();
Serializer serializer(isolate);
std::unique_ptr<SerializationData> data;
if (serializer.WriteValue(context, value, transfer).To(&ok)) {
data = serializer.Release();
}
return data;
}
MaybeLocal<Value> Shell::DeserializeValue(
Isolate* isolate, std::unique_ptr<SerializationData> data) {
Local<Context> context = isolate->GetCurrentContext();
Deserializer deserializer(isolate, std::move(data));
return deserializer.ReadValue(context);
}
void Shell::AddRunningWorker(std::shared_ptr<Worker> worker) {
workers_mutex_.Pointer()->AssertHeld(); // caller should hold the mutex.
running_workers_.insert(worker);
}
void Shell::RemoveRunningWorker(const std::shared_ptr<Worker>& worker) {
base::MutexGuard lock_guard(workers_mutex_.Pointer());
auto it = running_workers_.find(worker);
if (it != running_workers_.end()) running_workers_.erase(it);
}
void Shell::WaitForRunningWorkers(const i::ParkedScope& parked) {
// Make a copy of running_workers_, because we don't want to call
// Worker::Terminate while holding the workers_mutex_ lock. Otherwise, if a
// worker is about to create a new Worker, it would deadlock.
std::unordered_set<std::shared_ptr<Worker>> workers_copy;
{
base::MutexGuard lock_guard(workers_mutex_.Pointer());
allow_new_workers_ = false;
workers_copy.swap(running_workers_);
}
for (auto& worker : workers_copy) {
worker->TerminateAndWaitForThread(parked);
}
// Now that all workers are terminated, we can re-enable Worker creation.
base::MutexGuard lock_guard(workers_mutex_.Pointer());
DCHECK(running_workers_.empty());
allow_new_workers_ = true;
}
namespace {
#ifdef V8_OS_POSIX
void d8_sigterm_handler(int signal, siginfo_t* info, void* context) {
// Dump stacktraces when terminating d8 instances with SIGTERM.
// SIGKILL is not intercepted.
if (signal == SIGTERM) {
FATAL("d8: Received SIGTERM signal (likely due to a TIMEOUT)\n");
} else {
UNREACHABLE();
}
}
#endif // V8_OS_POSIX
void d8_install_sigterm_handler() {
#ifdef V8_OS_POSIX
CHECK(!i::v8_flags.fuzzing);
struct sigaction sa;
sa.sa_sigaction = d8_sigterm_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
if (sigaction(SIGTERM, &sa, NULL) == -1) {
FATAL("Could not install SIGTERM handler");
}
#endif // V8_OS_POSIX
}
} // namespace
int Shell::Main(int argc, char* argv[]) {
v8::base::EnsureConsoleOutput();
if (!SetOptions(argc, argv)) return 1;
if (!i::v8_flags.fuzzing) d8_install_sigterm_handler();
v8::V8::InitializeICUDefaultLocation(argv[0], options.icu_data_file);
#ifdef V8_OS_DARWIN
if (options.apply_priority) {
struct task_category_policy category = {.role =
TASK_FOREGROUND_APPLICATION};
task_policy_set(mach_task_self(), TASK_CATEGORY_POLICY,
(task_policy_t)&category, TASK_CATEGORY_POLICY_COUNT);
pthread_set_qos_class_self_np(QOS_CLASS_USER_INTERACTIVE, 0);
}
#endif
#ifdef V8_INTL_SUPPORT
if (options.icu_locale != nullptr) {
icu::Locale locale(options.icu_locale);
UErrorCode error_code = U_ZERO_ERROR;
icu::Locale::setDefault(locale, error_code);
}
#endif // V8_INTL_SUPPORT
v8::platform::InProcessStackDumping in_process_stack_dumping =
options.disable_in_process_stack_traces
? v8::platform::InProcessStackDumping::kDisabled
: v8::platform::InProcessStackDumping::kEnabled;
std::ofstream trace_file;
std::unique_ptr<platform::tracing::TracingController> tracing;
if (options.trace_enabled && !i::v8_flags.verify_predictable) {
tracing = std::make_unique<platform::tracing::TracingController>();
if (!options.enable_etw_stack_walking) {
const char* trace_path =
options.trace_path ? options.trace_path : "v8_trace.json";
trace_file.open(trace_path);
if (!trace_file.good()) {
printf("Cannot open trace file '%s' for writing: %s.\n", trace_path,
strerror(errno));
return 1;
}
}
#ifdef V8_USE_PERFETTO
// Set up the in-process backend that the tracing controller will connect
// to.
perfetto::TracingInitArgs init_args;
init_args.backends = perfetto::BackendType::kInProcessBackend;
perfetto::Tracing::Initialize(init_args);
tracing->InitializeForPerfetto(&trace_file);
#else
platform::tracing::TraceBuffer* trace_buffer = nullptr;
#if defined(V8_ENABLE_SYSTEM_INSTRUMENTATION)
if (options.enable_system_instrumentation) {
trace_buffer =
platform::tracing::TraceBuffer::CreateTraceBufferRingBuffer(
platform::tracing::TraceBuffer::kRingBufferChunks,
platform::tracing::TraceWriter::
CreateSystemInstrumentationTraceWriter());
}
#endif // V8_ENABLE_SYSTEM_INSTRUMENTATION
if (!trace_buffer) {
trace_buffer =
platform::tracing::TraceBuffer::CreateTraceBufferRingBuffer(
platform::tracing::TraceBuffer::kRingBufferChunks,
platform::tracing::TraceWriter::CreateJSONTraceWriter(
trace_file));
}
tracing->Initialize(trace_buffer);
#endif // V8_USE_PERFETTO
}
platform::tracing::TracingController* tracing_controller = tracing.get();
if (i::v8_flags.single_threaded) {
g_platform = v8::platform::NewSingleThreadedDefaultPlatform(
v8::platform::IdleTaskSupport::kEnabled, in_process_stack_dumping,
std::move(tracing));
} else {
g_platform = v8::platform::NewDefaultPlatform(
options.thread_pool_size, v8::platform::IdleTaskSupport::kEnabled,
in_process_stack_dumping, std::move(tracing),
options.apply_priority ? v8::platform::PriorityMode::kApply
: v8::platform::PriorityMode::kDontApply);
}
g_default_platform = g_platform.get();
if (i::v8_flags.predictable) {
g_platform = MakePredictablePlatform(std::move(g_platform));
}
if (options.stress_delay_tasks) {
int64_t random_seed = i::v8_flags.fuzzer_random_seed;
if (!random_seed) random_seed = i::v8_flags.random_seed;
// If random_seed is still 0 here, the {DelayedTasksPlatform} will choose a
// random seed.
g_platform = MakeDelayedTasksPlatform(std::move(g_platform), random_seed);
}
if (i::v8_flags.trace_turbo_cfg_file == nullptr) {
V8::SetFlagsFromString("--trace-turbo-cfg-file=turbo.cfg");
}
if (i::v8_flags.redirect_code_traces_to == nullptr) {
V8::SetFlagsFromString("--redirect-code-traces-to=code.asm");
}
v8::V8::InitializePlatform(g_platform.get());
// Disable flag freezing if we are producing a code cache, because for that we
// modify v8_flags.hash_seed (below).
if (options.code_cache_options != ShellOptions::kNoProduceCache) {
i::v8_flags.freeze_flags_after_init = false;
}
v8::V8::Initialize();
if (options.snapshot_blob) {
v8::V8::InitializeExternalStartupDataFromFile(options.snapshot_blob);
} else {
v8::V8::InitializeExternalStartupData(argv[0]);
}
int result = 0;
Isolate::CreateParams create_params;
ShellArrayBufferAllocator shell_array_buffer_allocator;
MockArrayBufferAllocator mock_arraybuffer_allocator;
const size_t memory_limit =
options.mock_arraybuffer_allocator_limit * options.num_isolates;
MockArrayBufferAllocatiorWithLimit mock_arraybuffer_allocator_with_limit(
memory_limit >= options.mock_arraybuffer_allocator_limit
? memory_limit
: std::numeric_limits<size_t>::max());
#if MULTI_MAPPED_ALLOCATOR_AVAILABLE
MultiMappedAllocator multi_mapped_mock_allocator;
#endif
if (options.mock_arraybuffer_allocator) {
if (memory_limit) {
Shell::array_buffer_allocator = &mock_arraybuffer_allocator_with_limit;
} else {
Shell::array_buffer_allocator = &mock_arraybuffer_allocator;
}
#if MULTI_MAPPED_ALLOCATOR_AVAILABLE
} else if (options.multi_mapped_mock_allocator) {
Shell::array_buffer_allocator = &multi_mapped_mock_allocator;
#endif
} else {
Shell::array_buffer_allocator = &shell_array_buffer_allocator;
}
create_params.array_buffer_allocator = Shell::array_buffer_allocator;
#ifdef ENABLE_VTUNE_JIT_INTERFACE
if (i::v8_flags.enable_vtunejit) {
create_params.code_event_handler = vTune::GetVtuneCodeEventHandler();
}
#endif
create_params.constraints.ConfigureDefaults(
base::SysInfo::AmountOfPhysicalMemory(),
base::SysInfo::AmountOfVirtualMemory());
Shell::counter_map_ = new CounterMap();
if (options.dump_counters || options.dump_counters_nvp ||
i::TracingFlags::is_gc_stats_enabled()) {
create_params.counter_lookup_callback = LookupCounter;
create_params.create_histogram_callback = CreateHistogram;
create_params.add_histogram_sample_callback = AddHistogramSample;
}
#ifdef V8_ENABLE_SANDBOX
if (options.enable_sandbox_crash_filter) {
// Note: this must happen before the Wasm trap handler is installed, so
// that the Wasm trap handler is invoked first (and can handle Wasm OOB
// accesses), then forwards all "real" crashes to the sandbox crash filter.
i::SandboxTesting::InstallSandboxCrashFilter();
}
#endif
#if V8_ENABLE_WEBASSEMBLY
if (V8_TRAP_HANDLER_SUPPORTED && options.wasm_trap_handler) {
constexpr bool kUseDefaultTrapHandler = true;
if (!v8::V8::EnableWebAssemblyTrapHandler(kUseDefaultTrapHandler)) {
FATAL("Could not register trap handler");
}
}
#endif // V8_ENABLE_WEBASSEMBLY
if (i::v8_flags.experimental) {
// This message is printed to stderr so that it is also visible in
// Clusterfuzz reports.
fprintf(stderr,
"V8 is running with experimental features enabled. Stability and "
"security will suffer.\n");
}
Isolate* isolate = Isolate::New(create_params);
#ifdef V8_FUZZILLI
// Let the parent process (Fuzzilli) know we are ready.
if (options.fuzzilli_enable_builtins_coverage) {
cov_init_builtins_edges(static_cast<uint32_t>(
i::BasicBlockProfiler::Get()
->GetCoverageBitmap(reinterpret_cast<i::Isolate*>(isolate))
.size()));
}
char helo[] = "HELO";
if (write(REPRL_CWFD, helo, 4) != 4 || read(REPRL_CRFD, helo, 4) != 4) {
fuzzilli_reprl = false;
}
if (memcmp(helo, "HELO", 4) != 0) {
FATAL("REPRL: Invalid response from parent");
}
#endif // V8_FUZZILLI
{
Isolate::Scope scope(isolate);
D8Console console(isolate);
Initialize(isolate, &console);
PerIsolateData data(isolate);
// Fuzzilli REPRL = read-eval-print-loop
do {
#ifdef V8_FUZZILLI
if (fuzzilli_reprl) {
unsigned action = 0;
ssize_t nread = read(REPRL_CRFD, &action, 4);
if (nread != 4 || action != 'cexe') {
FATAL("REPRL: Unknown action: %u", action);
}
}
#endif // V8_FUZZILLI
result = 0;
if (options.trace_enabled) {
platform::tracing::TraceConfig* trace_config;
if (options.trace_config) {
int size = 0;
char* trace_config_json_str = ReadChars(options.trace_config, &size);
trace_config = tracing::CreateTraceConfigFromJSON(
isolate, trace_config_json_str);
delete[] trace_config_json_str;
} else {
trace_config =
platform::tracing::TraceConfig::CreateDefaultTraceConfig();
if (options.enable_system_instrumentation) {
trace_config->AddIncludedCategory("disabled-by-default-v8.compile");
}
}
tracing_controller->StartTracing(trace_config);
}
CpuProfiler* cpu_profiler;
if (options.cpu_profiler) {
cpu_profiler = CpuProfiler::New(isolate);
cpu_profiler->StartProfiling(String::Empty(isolate),
CpuProfilingOptions{});
}
if (i::v8_flags.stress_runs > 0) {
options.stress_runs = i::v8_flags.stress_runs;
for (int i = 0; i < options.stress_runs && result == 0; i++) {
printf("============ Run %d/%d ============\n", i + 1,
options.stress_runs.get());
bool last_run = i == options.stress_runs - 1;
result = RunMain(isolate, last_run);
}
} else if (options.code_cache_options != ShellOptions::kNoProduceCache) {
// Park the main thread here in case the new isolate wants to perform
// a shared GC to prevent a deadlock.
reinterpret_cast<i::Isolate*>(isolate)
->main_thread_local_isolate()
->BlockMainThreadWhileParked([&result]() {
printf("============ Run: Produce code cache ============\n");
// First run to produce the cache
Isolate::CreateParams create_params2;
create_params2.array_buffer_allocator =
Shell::array_buffer_allocator;
// Use a different hash seed.
i::v8_flags.hash_seed = i::v8_flags.hash_seed ^ 1337;
Isolate* isolate2 = Isolate::New(create_params2);
// Restore old hash seed.
i::v8_flags.hash_seed = i::v8_flags.hash_seed ^ 1337;
{
Isolate::Scope isolate_scope(isolate2);
D8Console console2(isolate2);
Initialize(isolate2, &console2);
PerIsolateData data2(isolate2);
result = RunMain(isolate2, false);
ResetOnProfileEndListener(isolate2);
}
isolate2->Dispose();
});
// Change the options to consume cache
DCHECK(options.compile_options == v8::ScriptCompiler::kEagerCompile ||
options.compile_options ==
v8::ScriptCompiler::kNoCompileOptions);
options.compile_options.Overwrite(
v8::ScriptCompiler::kConsumeCodeCache);
options.code_cache_options.Overwrite(ShellOptions::kNoProduceCache);
printf("============ Run: Consume code cache ============\n");
// Second run to consume the cache in current isolate
result = RunMain(isolate, true);
options.compile_options.Overwrite(
v8::ScriptCompiler::kNoCompileOptions);
} else {
bool last_run = true;
result = RunMain(isolate, last_run);
}
// Run interactive shell if explicitly requested or if no script has been
// executed, but never on --test
if (use_interactive_shell()) {
RunShell(isolate);
}
if (i::v8_flags.trace_ignition_dispatches_output_file != nullptr) {
WriteIgnitionDispatchCountersFile(isolate);
}
if (options.cpu_profiler) {
CpuProfile* profile =
cpu_profiler->StopProfiling(String::Empty(isolate));
if (options.cpu_profiler_print) {
const internal::ProfileNode* root =
reinterpret_cast<const internal::ProfileNode*>(
profile->GetTopDownRoot());
root->Print(0);
}
profile->Delete();
cpu_profiler->Dispose();
}
#ifdef V8_FUZZILLI
// Send result to parent (fuzzilli) and reset edge guards.
if (fuzzilli_reprl) {
int status = result << 8;
std::vector<bool> bitmap;
if (options.fuzzilli_enable_builtins_coverage) {
bitmap = i::BasicBlockProfiler::Get()->GetCoverageBitmap(
reinterpret_cast<i::Isolate*>(isolate));
cov_update_builtins_basic_block_coverage(bitmap);
}
if (options.fuzzilli_coverage_statistics) {
int tot = 0;
for (bool b : bitmap) {
if (b) tot++;
}
static int iteration_counter = 0;
std::ofstream covlog("covlog.txt", std::ios::app);
covlog << iteration_counter << "\t" << tot << "\t"
<< sanitizer_cov_count_discovered_edges() << "\t"
<< bitmap.size() << std::endl;
iteration_counter++;
}
// In REPRL mode, stdout and stderr can be regular files, so they need
// to be flushed after every execution
fflush(stdout);
fflush(stderr);
CHECK_EQ(write(REPRL_CWFD, &status, 4), 4);
sanitizer_cov_reset_edgeguards();
if (options.fuzzilli_enable_builtins_coverage) {
i::BasicBlockProfiler::Get()->ResetCounts(
reinterpret_cast<i::Isolate*>(isolate));
}
}
#endif // V8_FUZZILLI
} while (fuzzilli_reprl);
// Shut down contexts and collect garbage.
cached_code_map_.clear();
evaluation_context_.Reset();
stringify_function_.Reset();
ResetOnProfileEndListener(isolate);
CollectGarbage(isolate);
}
OnExit(isolate, true);
// Delete the platform explicitly here to write the tracing output to the
// tracing file.
if (options.trace_enabled) {
tracing_controller->StopTracing();
}
g_platform.reset();
#ifdef V8_TARGET_OS_WIN
// We need to free the allocated utf8 filenames in
// PreProcessUnicodeFilenameArg.
for (char* utf8_str : utf8_filenames) {
delete[] utf8_str;
}
utf8_filenames.clear();
#endif
return result;
}
} // namespace v8
int main(int argc, char* argv[]) { return v8::Shell::Main(argc, argv); }
#undef CHECK
#undef DCHECK