%PDF- %PDF-
| Direktori : /home2/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/codegen/x64/ |
| Current File : //home2/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/codegen/x64/assembler-x64.cc |
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/codegen/x64/assembler-x64.h"
#include <cstring>
#include "src/utils/utils.h"
#if V8_TARGET_ARCH_X64
#if V8_LIBC_MSVCRT
#include <intrin.h> // _xgetbv()
#endif
#if V8_OS_DARWIN
#include <sys/sysctl.h>
#endif
#include "src/base/bits.h"
#include "src/base/cpu.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/macro-assembler.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/flags/flags.h"
#include "src/init/v8.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Implementation of CpuFeatures
namespace {
#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
V8_INLINE uint64_t xgetbv(unsigned int xcr) {
#if V8_LIBC_MSVCRT
return _xgetbv(xcr);
#else
unsigned eax, edx;
// Check xgetbv; this uses a .byte sequence instead of the instruction
// directly because older assemblers do not include support for xgetbv and
// there is no easy way to conditionally compile based on the assembler
// used.
__asm__ volatile(".byte 0x0F, 0x01, 0xD0" : "=a"(eax), "=d"(edx) : "c"(xcr));
return static_cast<uint64_t>(eax) | (static_cast<uint64_t>(edx) << 32);
#endif
}
bool OSHasAVXSupport() {
#if V8_OS_DARWIN
// Mac OS X up to 10.9 has a bug where AVX transitions were indeed being
// caused by ISRs, so we detect that here and disable AVX in that case.
char buffer[128];
size_t buffer_size = arraysize(buffer);
int ctl_name[] = {CTL_KERN, KERN_OSRELEASE};
if (sysctl(ctl_name, 2, buffer, &buffer_size, nullptr, 0) != 0) {
FATAL("V8 failed to get kernel version");
}
// The buffer now contains a string of the form XX.YY.ZZ, where
// XX is the major kernel version component.
char* period_pos = strchr(buffer, '.');
DCHECK_NOT_NULL(period_pos);
*period_pos = '\0';
long kernel_version_major = strtol(buffer, nullptr, 10); // NOLINT
if (kernel_version_major <= 13) return false;
#endif // V8_OS_DARWIN
// Check whether OS claims to support AVX.
uint64_t feature_mask = xgetbv(0); // XCR_XFEATURE_ENABLED_MASK
return (feature_mask & 0x6) == 0x6;
}
#endif // V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
} // namespace
bool CpuFeatures::SupportsWasmSimd128() {
#if V8_ENABLE_WEBASSEMBLY
if (IsSupported(SSE4_1)) return true;
if (v8_flags.wasm_simd_ssse3_codegen && IsSupported(SSSE3)) return true;
#endif // V8_ENABLE_WEBASSEMBLY
return false;
}
void CpuFeatures::ProbeImpl(bool cross_compile) {
// Only use statically determined features for cross compile (snapshot).
if (cross_compile) return;
#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
base::CPU cpu;
CHECK(cpu.has_sse2()); // SSE2 support is mandatory.
CHECK(cpu.has_cmov()); // CMOV support is mandatory.
if (cpu.has_sse42()) SetSupported(SSE4_2);
if (cpu.has_sse41()) SetSupported(SSE4_1);
if (cpu.has_ssse3()) SetSupported(SSSE3);
if (cpu.has_sse3()) SetSupported(SSE3);
if (cpu.has_avx() && cpu.has_osxsave() && OSHasAVXSupport()) {
SetSupported(AVX);
if (cpu.has_avx2()) SetSupported(AVX2);
if (cpu.has_fma3()) SetSupported(FMA3);
}
// SAHF is not generally available in long mode.
if (cpu.has_sahf() && v8_flags.enable_sahf) SetSupported(SAHF);
if (cpu.has_bmi1() && v8_flags.enable_bmi1) SetSupported(BMI1);
if (cpu.has_bmi2() && v8_flags.enable_bmi2) SetSupported(BMI2);
if (cpu.has_lzcnt() && v8_flags.enable_lzcnt) SetSupported(LZCNT);
if (cpu.has_popcnt() && v8_flags.enable_popcnt) SetSupported(POPCNT);
if (strcmp(v8_flags.mcpu, "auto") == 0) {
if (cpu.is_atom()) SetSupported(INTEL_ATOM);
} else if (strcmp(v8_flags.mcpu, "atom") == 0) {
SetSupported(INTEL_ATOM);
}
// Ensure that supported cpu features make sense. E.g. it is wrong to support
// AVX but not SSE4_2, if we have --enable-avx and --no-enable-sse4-2, the
// code above would set AVX to supported, and SSE4_2 to unsupported, then the
// checks below will set AVX to unsupported.
if (!v8_flags.enable_sse3) SetUnsupported(SSE3);
if (!v8_flags.enable_ssse3 || !IsSupported(SSE3)) SetUnsupported(SSSE3);
if (!v8_flags.enable_sse4_1 || !IsSupported(SSSE3)) SetUnsupported(SSE4_1);
if (!v8_flags.enable_sse4_2 || !IsSupported(SSE4_1)) SetUnsupported(SSE4_2);
if (!v8_flags.enable_avx || !IsSupported(SSE4_2)) SetUnsupported(AVX);
if (!v8_flags.enable_avx2 || !IsSupported(AVX)) SetUnsupported(AVX2);
if (!v8_flags.enable_fma3 || !IsSupported(AVX)) SetUnsupported(FMA3);
// Set a static value on whether Simd is supported.
// This variable is only used for certain archs to query SupportWasmSimd128()
// at runtime in builtins using an extern ref. Other callers should use
// CpuFeatures::SupportWasmSimd128().
CpuFeatures::supports_wasm_simd_128_ = CpuFeatures::SupportsWasmSimd128();
if (cpu.has_cetss()) SetSupported(CETSS);
// The static variable is used for codegen of certain CETSS instructions.
CpuFeatures::supports_cetss_ = IsSupported(CETSS);
#endif // V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
}
void CpuFeatures::PrintTarget() {}
void CpuFeatures::PrintFeatures() {
printf(
"SSE3=%d SSSE3=%d SSE4_1=%d SSE4_2=%d SAHF=%d AVX=%d AVX2=%d FMA3=%d "
"BMI1=%d "
"BMI2=%d "
"LZCNT=%d "
"POPCNT=%d ATOM=%d\n",
CpuFeatures::IsSupported(SSE3), CpuFeatures::IsSupported(SSSE3),
CpuFeatures::IsSupported(SSE4_1), CpuFeatures::IsSupported(SSE4_2),
CpuFeatures::IsSupported(SAHF), CpuFeatures::IsSupported(AVX),
CpuFeatures::IsSupported(AVX2), CpuFeatures::IsSupported(FMA3),
CpuFeatures::IsSupported(BMI1), CpuFeatures::IsSupported(BMI2),
CpuFeatures::IsSupported(LZCNT), CpuFeatures::IsSupported(POPCNT),
CpuFeatures::IsSupported(INTEL_ATOM));
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfo
uint32_t RelocInfo::wasm_call_tag() const {
DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL);
return ReadUnalignedValue<uint32_t>(pc_);
}
// -----------------------------------------------------------------------------
// Implementation of Operand
Operand::Operand(Operand operand, int32_t offset) {
DCHECK_GE(operand.memory().len, 1);
// Operand encodes REX ModR/M [SIB] [Disp].
uint8_t modrm = operand.memory().buf[0];
DCHECK_LT(modrm, 0xC0); // Disallow mode 3 (register target).
bool has_sib = ((modrm & 0x07) == 0x04);
uint8_t mode = modrm & 0xC0;
int disp_offset = has_sib ? 2 : 1;
int base_reg = (has_sib ? operand.memory().buf[1] : modrm) & 0x07;
// Mode 0 with rbp/r13 as ModR/M or SIB base register always has a 32-bit
// displacement.
bool is_baseless = (mode == 0) && (base_reg == 0x05); // No base or RIP base.
int32_t disp_value = 0;
if (mode == 0x80 || is_baseless) {
// Mode 2 or mode 0 with rbp/r13 as base: Word displacement.
disp_value = ReadUnalignedValue<int32_t>(
reinterpret_cast<Address>(&operand.memory().buf[disp_offset]));
} else if (mode == 0x40) {
// Mode 1: Byte displacement.
disp_value = static_cast<signed char>(operand.memory().buf[disp_offset]);
}
// Write new operand with same registers, but with modified displacement.
DCHECK(offset >= 0 ? disp_value + offset > disp_value
: disp_value + offset < disp_value); // No overflow.
disp_value += offset;
memory_.rex = operand.memory().rex;
if (!is_int8(disp_value) || is_baseless) {
// Need 32 bits of displacement, mode 2 or mode 1 with register rbp/r13.
memory_.buf[0] = (modrm & 0x3F) | (is_baseless ? 0x00 : 0x80);
memory_.len = disp_offset + 4;
WriteUnalignedValue(reinterpret_cast<Address>(&memory_.buf[disp_offset]),
disp_value);
} else if (disp_value != 0 || (base_reg == 0x05)) {
// Need 8 bits of displacement.
memory_.buf[0] = (modrm & 0x3F) | 0x40; // Mode 1.
memory_.len = disp_offset + 1;
memory_.buf[disp_offset] = static_cast<uint8_t>(disp_value);
} else {
// Need no displacement.
memory_.buf[0] = (modrm & 0x3F); // Mode 0.
memory_.len = disp_offset;
}
if (has_sib) {
memory_.buf[1] = operand.memory().buf[1];
}
}
bool Operand::AddressUsesRegister(Register reg) const {
DCHECK(!is_label_operand());
int code = reg.code();
DCHECK_NE(memory_.buf[0] & 0xC0, 0xC0);
// Start with only low three bits of base register. Initial decoding
// doesn't distinguish on the REX.B bit.
int base_code = memory_.buf[0] & 0x07;
if (base_code == rsp.code()) {
// SIB byte present in buf_[1].
// Check the index register from the SIB byte + REX.X prefix.
int index_code =
((memory_.buf[1] >> 3) & 0x07) | ((memory_.rex & 0x02) << 2);
// Index code (including REX.X) of 0x04 (rsp) means no index register.
if (index_code != rsp.code() && index_code == code) return true;
// Add REX.B to get the full base register code.
base_code = (memory_.buf[1] & 0x07) | ((memory_.rex & 0x01) << 3);
// A base register of 0x05 (rbp) with mod = 0 means no base register.
if (base_code == rbp.code() && ((memory_.buf[0] & 0xC0) == 0)) return false;
return code == base_code;
} else {
// A base register with low bits of 0x05 (rbp or r13) and mod = 0 means
// no base register.
if (base_code == rbp.code() && ((memory_.buf[0] & 0xC0) == 0)) return false;
base_code |= ((memory_.rex & 0x01) << 3);
return code == base_code;
}
}
void Assembler::AllocateAndInstallRequestedHeapNumbers(LocalIsolate* isolate) {
DCHECK_IMPLIES(isolate == nullptr, heap_number_requests_.empty());
for (auto& request : heap_number_requests_) {
Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset();
Handle<HeapNumber> object =
isolate->factory()->NewHeapNumber<AllocationType::kOld>(
request.heap_number());
WriteUnalignedValue(pc, object);
}
}
// Partial Constant Pool.
bool ConstPool::AddSharedEntry(uint64_t data, int offset) {
auto existing = entries_.find(data);
if (existing == entries_.end()) {
entries_.insert(std::make_pair(data, offset + kMoveImm64Offset));
return false;
}
// Make sure this is called with strictly ascending offsets.
DCHECK_GT(offset + kMoveImm64Offset, existing->second);
entries_.insert(std::make_pair(data, offset + kMoveRipRelativeDispOffset));
return true;
}
bool ConstPool::TryRecordEntry(intptr_t data, RelocInfo::Mode mode) {
if (!v8_flags.partial_constant_pool) return false;
DCHECK_WITH_MSG(
v8_flags.text_is_readable,
"The partial constant pool requires a readable .text section");
if (!RelocInfo::IsShareableRelocMode(mode)) return false;
// Currently, partial constant pool only handles the following kinds of
// RelocInfo.
if (mode != RelocInfo::NO_INFO && mode != RelocInfo::EXTERNAL_REFERENCE &&
mode != RelocInfo::OFF_HEAP_TARGET)
return false;
uint64_t raw_data = static_cast<uint64_t>(data);
int offset = assm_->pc_offset();
return AddSharedEntry(raw_data, offset);
}
bool ConstPool::IsMoveRipRelative(Address instr) {
return (ReadUnalignedValue<uint32_t>(instr) & kMoveRipRelativeMask) ==
kMoveRipRelativeInstr;
}
void ConstPool::Clear() { entries_.clear(); }
void ConstPool::PatchEntries() {
auto iter = entries_.begin();
if (iter == entries_.end()) return;
// Read off the first value/offset pair before starting the loop proper.
std::pair<uint64_t, int> first_entry_of_range = *iter;
while (++iter != entries_.end()) {
// Check if we've entered a new set of values.
if (first_entry_of_range.first != iter->first) {
// Make sure that this iterator is both the (exclusive) end of the
// previous value's equal range, and the start of this value's equal
// range.
DCHECK_EQ(entries_.equal_range(first_entry_of_range.first).second, iter);
DCHECK_EQ(entries_.equal_range(iter->first).first, iter);
first_entry_of_range = *iter;
continue;
}
int constant_entry_offset = first_entry_of_range.second;
DCHECK_GT(constant_entry_offset, 0);
DCHECK_LT(constant_entry_offset, iter->second);
int32_t disp32 =
constant_entry_offset - (iter->second + kRipRelativeDispSize);
Address disp_addr = assm_->addr_at(iter->second);
// Check if the instruction is actually a rip-relative move.
DCHECK(IsMoveRipRelative(disp_addr - kMoveRipRelativeDispOffset));
// The displacement of the rip-relative move should be 0 before patching.
DCHECK(ReadUnalignedValue<uint32_t>(disp_addr) == 0);
WriteUnalignedValue(disp_addr, disp32);
}
Clear();
}
void Assembler::PatchConstPool() {
// There is nothing to do if there are no pending entries.
if (constpool_.IsEmpty()) {
return;
}
constpool_.PatchEntries();
}
bool Assembler::UseConstPoolFor(RelocInfo::Mode rmode) {
if (!v8_flags.partial_constant_pool) return false;
return (rmode == RelocInfo::NO_INFO ||
rmode == RelocInfo::EXTERNAL_REFERENCE ||
rmode == RelocInfo::OFF_HEAP_TARGET);
}
// -----------------------------------------------------------------------------
// Implementation of Assembler.
Assembler::Assembler(const AssemblerOptions& options,
std::unique_ptr<AssemblerBuffer> buffer)
: AssemblerBase(options, std::move(buffer)), constpool_(this) {
reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_);
if (CpuFeatures::IsSupported(SSE4_2)) {
EnableCpuFeature(SSE4_1);
}
if (CpuFeatures::IsSupported(SSE4_1)) {
EnableCpuFeature(SSSE3);
}
if (CpuFeatures::IsSupported(SSSE3)) {
EnableCpuFeature(SSE3);
}
#if defined(V8_OS_WIN_X64)
if (options.collect_win64_unwind_info) {
xdata_encoder_ = std::make_unique<win64_unwindinfo::XdataEncoder>(*this);
}
#endif
}
void Assembler::GetCode(Isolate* isolate, CodeDesc* desc) {
GetCode(isolate->main_thread_local_isolate(), desc);
}
void Assembler::GetCode(LocalIsolate* isolate, CodeDesc* desc,
SafepointTableBuilderBase* safepoint_table_builder,
int handler_table_offset) {
// As a crutch to avoid having to add manual Align calls wherever we use a
// raw workflow to create InstructionStream objects (mostly in tests), add
// another Align call here. It does no harm - the end of the InstructionStream
// object is aligned to the (larger) kCodeAlignment anyways.
// TODO(jgruber): Consider moving responsibility for proper alignment to
// metadata table builders (safepoint, handler, constant pool, code
// comments).
DataAlign(InstructionStream::kMetadataAlignment);
PatchConstPool();
DCHECK(constpool_.IsEmpty());
const int code_comments_size = WriteCodeComments();
// At this point overflow() may be true, but the gap ensures
// that we are still not overlapping instructions and relocation info.
DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap.
AllocateAndInstallRequestedHeapNumbers(isolate);
// Set up code descriptor.
// TODO(jgruber): Reconsider how these offsets and sizes are maintained up to
// this point to make CodeDesc initialization less fiddly.
static constexpr int kConstantPoolSize = 0;
const int instruction_size = pc_offset();
const int code_comments_offset = instruction_size - code_comments_size;
const int constant_pool_offset = code_comments_offset - kConstantPoolSize;
const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable)
? constant_pool_offset
: handler_table_offset;
const int safepoint_table_offset =
(safepoint_table_builder == kNoSafepointTable)
? handler_table_offset2
: safepoint_table_builder->safepoint_table_offset();
const int reloc_info_offset =
static_cast<int>(reloc_info_writer.pos() - buffer_->start());
CodeDesc::Initialize(desc, this, safepoint_table_offset,
handler_table_offset2, constant_pool_offset,
code_comments_offset, reloc_info_offset);
}
void Assembler::FinalizeJumpOptimizationInfo() {
// Collection stage
auto jump_opt = jump_optimization_info();
if (jump_opt && jump_opt->is_collecting()) {
auto& dict = jump_opt->may_optimizable_farjmp;
int num = static_cast<int>(jump_opt->farjmps.size());
if (num && dict.empty()) {
bool can_opt = false;
for (int i = 0; i < num; i++) {
auto jmp_info = jump_opt->farjmps[i];
int disp = long_at(jmp_info.pos + jmp_info.opcode_size);
if (is_int8(disp)) {
jmp_info.distance = disp;
dict[i] = jmp_info;
can_opt = true;
}
}
if (can_opt) {
jump_opt->set_optimizable();
}
}
}
}
#if defined(V8_OS_WIN_X64)
win64_unwindinfo::BuiltinUnwindInfo Assembler::GetUnwindInfo() const {
DCHECK(options().collect_win64_unwind_info);
DCHECK_NOT_NULL(xdata_encoder_);
return xdata_encoder_->unwinding_info();
}
#endif
void Assembler::Align(int m) {
DCHECK(base::bits::IsPowerOfTwo(m));
int delta = (m - (pc_offset() & (m - 1))) & (m - 1);
Nop(delta);
}
void Assembler::CodeTargetAlign() {
Align(16); // Preferred alignment of jump targets on x64.
auto jump_opt = jump_optimization_info();
if (jump_opt && jump_opt->is_collecting()) {
jump_opt->align_pos_size[pc_offset()] = 16;
}
}
void Assembler::LoopHeaderAlign() {
Align(64); // Preferred alignment of loop header on x64.
auto jump_opt = jump_optimization_info();
if (jump_opt && jump_opt->is_collecting()) {
jump_opt->align_pos_size[pc_offset()] = 64;
}
}
bool Assembler::IsNop(Address addr) {
uint8_t* a = reinterpret_cast<uint8_t*>(addr);
while (*a == 0x66) a++;
if (*a == 0x90) return true;
if (a[0] == 0xF && a[1] == 0x1F) return true;
return false;
}
void Assembler::bind_to(Label* L, int pos) {
DCHECK(!L->is_bound()); // Label may only be bound once.
DCHECK(0 <= pos && pos <= pc_offset()); // Position must be valid.
if (L->is_linked()) {
int current = L->pos();
int next = long_at(current);
while (next != current) {
if (current >= 4 && long_at(current - 4) == 0) {
// Absolute address.
intptr_t imm64 = reinterpret_cast<intptr_t>(buffer_start_ + pos);
WriteUnalignedValue(addr_at(current - 4), imm64);
internal_reference_positions_.push_back(current - 4);
} else {
// Relative address, relative to point after address.
int imm32 = pos - (current + sizeof(int32_t));
long_at_put(current, imm32);
}
current = next;
next = long_at(next);
}
// Fix up last fixup on linked list.
if (current >= 4 && long_at(current - 4) == 0) {
// Absolute address.
intptr_t imm64 = reinterpret_cast<intptr_t>(buffer_start_ + pos);
WriteUnalignedValue(addr_at(current - 4), imm64);
internal_reference_positions_.push_back(current - 4);
} else {
// Relative address, relative to point after address.
int imm32 = pos - (current + sizeof(int32_t));
long_at_put(current, imm32);
}
}
while (L->is_near_linked()) {
int fixup_pos = L->near_link_pos();
int offset_to_next =
static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
DCHECK_LE(offset_to_next, 0);
int disp = pos - (fixup_pos + sizeof(int8_t));
CHECK(is_int8(disp));
set_byte_at(fixup_pos, disp);
if (offset_to_next < 0) {
L->link_to(fixup_pos + offset_to_next, Label::kNear);
} else {
L->UnuseNear();
}
}
// Optimization stage
auto jump_opt = jump_optimization_info();
if (jump_opt && jump_opt->is_optimizing()) {
auto it = jump_opt->label_farjmp_maps.find(L);
if (it != jump_opt->label_farjmp_maps.end()) {
auto& pos_vector = it->second;
for (auto fixup_pos : pos_vector) {
int disp = pos - (fixup_pos + sizeof(int8_t));
CHECK(is_int8(disp));
set_byte_at(fixup_pos, disp);
}
jump_opt->label_farjmp_maps.erase(it);
}
}
L->bind_to(pos);
}
void Assembler::bind(Label* L) { bind_to(L, pc_offset()); }
void Assembler::record_farjmp_position(Label* L, int pos) {
auto& pos_vector = jump_optimization_info()->label_farjmp_maps[L];
pos_vector.push_back(pos);
}
bool Assembler::is_optimizable_farjmp(int idx) {
if (predictable_code_size()) return false;
auto jump_opt = jump_optimization_info();
CHECK(jump_opt->is_optimizing());
auto& dict = jump_opt->may_optimizable_farjmp;
if (dict.find(idx) != dict.end()) {
auto record_jmp_info = dict[idx];
int record_pos = record_jmp_info.pos;
// 4 bytes for jmp rel32 operand.
const int operand_size = 4;
int record_dest = record_jmp_info.pos + record_jmp_info.opcode_size +
operand_size + record_jmp_info.distance;
const int max_align_in_jmp_range =
jump_opt->MaxAlignInRange(record_pos, record_dest);
if (max_align_in_jmp_range == 0) {
return true;
}
// ja rel32 -> ja rel8, the opcode size 2bytes -> 1byte
// 0F 87 -> 77
const int saved_opcode_size = record_jmp_info.opcode_size - 1;
// jmp rel32 -> rel8, the operand size 4bytes -> 1byte
constexpr int saved_operand_size = 4 - 1;
// The shorter encoding may further decrease the base address of the
// relative jump, while the jump target could stay in place because of
// alignment.
int cur_jmp_length_max_increase =
(record_pos - pc_offset() + saved_opcode_size + saved_operand_size) %
max_align_in_jmp_range;
if (is_int8(record_jmp_info.distance + cur_jmp_length_max_increase)) {
return true;
}
}
return false;
}
void Assembler::GrowBuffer() {
DCHECK(buffer_overflow());
// Compute new buffer size.
DCHECK_EQ(buffer_start_, buffer_->start());
int old_size = buffer_->size();
int new_size = 2 * old_size;
// Some internal data structures overflow for very large buffers,
// they must ensure that kMaximalBufferSize is not too large.
if (new_size > kMaximalBufferSize) {
V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer");
}
// Set up new buffer.
std::unique_ptr<AssemblerBuffer> new_buffer = buffer_->Grow(new_size);
DCHECK_EQ(new_size, new_buffer->size());
uint8_t* new_start = new_buffer->start();
// Copy the data.
intptr_t pc_delta = new_start - buffer_start_;
intptr_t rc_delta = (new_start + new_size) - (buffer_start_ + old_size);
size_t reloc_size = (buffer_start_ + old_size) - reloc_info_writer.pos();
MemMove(new_start, buffer_start_, pc_offset());
MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
reloc_size);
// Switch buffers.
buffer_ = std::move(new_buffer);
buffer_start_ = new_start;
pc_ += pc_delta;
reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
reloc_info_writer.last_pc() + pc_delta);
// Relocate internal references.
for (auto pos : internal_reference_positions_) {
Address p = reinterpret_cast<Address>(buffer_start_ + pos);
WriteUnalignedValue(p, ReadUnalignedValue<intptr_t>(p) + pc_delta);
}
DCHECK(!buffer_overflow());
}
void Assembler::emit_operand(int code, Operand adr) {
// Redirect to {emit_label_operand} if {adr} contains a label.
if (adr.is_label_operand()) {
emit_label_operand(code, adr.label().label, adr.label().addend);
return;
}
const size_t length = adr.memory().len;
V8_ASSUME(1 <= length && length <= 6);
// Compute the opcode extension to be encoded in the ModR/M byte.
V8_ASSUME(0 <= code && code <= 7);
DCHECK_EQ((adr.memory().buf[0] & 0x38), 0);
uint8_t opcode_extension = code << 3;
// Use an optimized routine for copying the 1-6 bytes into the assembler
// buffer. We execute up to two read and write instructions, while also
// minimizing the number of branches.
Address src = reinterpret_cast<Address>(adr.memory().buf);
Address dst = reinterpret_cast<Address>(pc_);
if (length > 4) {
// Length is 5 or 6.
// Copy range [0, 3] and [len-2, len-1] (might overlap).
uint32_t lower_four_bytes = ReadUnalignedValue<uint32_t>(src);
lower_four_bytes |= opcode_extension;
uint16_t upper_two_bytes = ReadUnalignedValue<uint16_t>(src + length - 2);
WriteUnalignedValue<uint16_t>(dst + length - 2, upper_two_bytes);
WriteUnalignedValue<uint32_t>(dst, lower_four_bytes);
} else {
// Length is in [1, 3].
uint8_t first_byte = ReadUnalignedValue<uint8_t>(src);
first_byte |= opcode_extension;
if (length != 1) {
// Copy bytes [len-2, len-1].
uint16_t upper_two_bytes = ReadUnalignedValue<uint16_t>(src + length - 2);
WriteUnalignedValue<uint16_t>(dst + length - 2, upper_two_bytes);
}
WriteUnalignedValue<uint8_t>(dst, first_byte);
}
pc_ += length;
}
void Assembler::emit_label_operand(int code, Label* label, int addend) {
DCHECK(addend == 0 || (is_int8(addend) && label->is_bound()));
V8_ASSUME(0 <= code && code <= 7);
*pc_++ = 5 | (code << 3);
if (label->is_bound()) {
int offset = label->pos() - pc_offset() - sizeof(int32_t) + addend;
DCHECK_GE(0, offset);
emitl(offset);
} else if (label->is_linked()) {
emitl(label->pos());
label->link_to(pc_offset() - sizeof(int32_t));
} else {
DCHECK(label->is_unused());
int32_t current = pc_offset();
emitl(current);
label->link_to(current);
}
}
// Assembler Instruction implementations.
void Assembler::arithmetic_op(uint8_t opcode, Register reg, Operand op,
int size) {
EnsureSpace ensure_space(this);
emit_rex(reg, op, size);
emit(opcode);
emit_operand(reg, op);
}
void Assembler::arithmetic_op(uint8_t opcode, Register reg, Register rm_reg,
int size) {
EnsureSpace ensure_space(this);
DCHECK_EQ(opcode & 0xC6, 2);
if (rm_reg.low_bits() == 4) { // Forces SIB byte.
// Swap reg and rm_reg and change opcode operand order.
emit_rex(rm_reg, reg, size);
emit(opcode ^ 0x02);
emit_modrm(rm_reg, reg);
} else {
emit_rex(reg, rm_reg, size);
emit(opcode);
emit_modrm(reg, rm_reg);
}
}
void Assembler::arithmetic_op_16(uint8_t opcode, Register reg,
Register rm_reg) {
EnsureSpace ensure_space(this);
DCHECK_EQ(opcode & 0xC6, 2);
if (rm_reg.low_bits() == 4) { // Forces SIB byte.
// Swap reg and rm_reg and change opcode operand order.
emit(0x66);
emit_optional_rex_32(rm_reg, reg);
emit(opcode ^ 0x02);
emit_modrm(rm_reg, reg);
} else {
emit(0x66);
emit_optional_rex_32(reg, rm_reg);
emit(opcode);
emit_modrm(reg, rm_reg);
}
}
void Assembler::arithmetic_op_16(uint8_t opcode, Register reg, Operand rm_reg) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(reg, rm_reg);
emit(opcode);
emit_operand(reg, rm_reg);
}
void Assembler::arithmetic_op_8(uint8_t opcode, Register reg, Operand op) {
EnsureSpace ensure_space(this);
if (!reg.is_byte_register()) {
emit_rex_32(reg, op);
} else {
emit_optional_rex_32(reg, op);
}
emit(opcode);
emit_operand(reg, op);
}
void Assembler::arithmetic_op_8(uint8_t opcode, Register reg, Register rm_reg) {
EnsureSpace ensure_space(this);
DCHECK_EQ(opcode & 0xC6, 2);
if (rm_reg.low_bits() == 4) { // Forces SIB byte.
// Swap reg and rm_reg and change opcode operand order.
if (!rm_reg.is_byte_register() || !reg.is_byte_register()) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(rm_reg, reg);
}
emit(opcode ^ 0x02);
emit_modrm(rm_reg, reg);
} else {
if (!reg.is_byte_register() || !rm_reg.is_byte_register()) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(reg, rm_reg);
}
emit(opcode);
emit_modrm(reg, rm_reg);
}
}
void Assembler::immediate_arithmetic_op(uint8_t subcode, Register dst,
Immediate src, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, size);
if (is_int8(src.value_) && RelocInfo::IsNoInfo(src.rmode_)) {
emit(0x83);
emit_modrm(subcode, dst);
emit(src.value_);
} else if (dst == rax) {
emit(0x05 | (subcode << 3));
emit(src);
} else {
emit(0x81);
emit_modrm(subcode, dst);
emit(src);
}
}
void Assembler::immediate_arithmetic_op(uint8_t subcode, Operand dst,
Immediate src, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, size);
if (is_int8(src.value_) && RelocInfo::IsNoInfo(src.rmode_)) {
emit(0x83);
emit_operand(subcode, dst);
emit(src.value_);
} else {
emit(0x81);
emit_operand(subcode, dst);
emit(src);
}
}
void Assembler::immediate_arithmetic_op_16(uint8_t subcode, Register dst,
Immediate src) {
EnsureSpace ensure_space(this);
emit(0x66); // Operand size override prefix.
emit_optional_rex_32(dst);
if (is_int8(src.value_)) {
emit(0x83);
emit_modrm(subcode, dst);
emit(src.value_);
} else if (dst == rax) {
emit(0x05 | (subcode << 3));
emitw(src.value_);
} else {
emit(0x81);
emit_modrm(subcode, dst);
emitw(src.value_);
}
}
void Assembler::immediate_arithmetic_op_16(uint8_t subcode, Operand dst,
Immediate src) {
EnsureSpace ensure_space(this);
emit(0x66); // Operand size override prefix.
emit_optional_rex_32(dst);
if (is_int8(src.value_)) {
emit(0x83);
emit_operand(subcode, dst);
emit(src.value_);
} else {
emit(0x81);
emit_operand(subcode, dst);
emitw(src.value_);
}
}
void Assembler::immediate_arithmetic_op_8(uint8_t subcode, Operand dst,
Immediate src) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst);
DCHECK(is_int8(src.value_) || is_uint8(src.value_));
emit(0x80);
emit_operand(subcode, dst);
emit(src.value_);
}
void Assembler::immediate_arithmetic_op_8(uint8_t subcode, Register dst,
Immediate src) {
EnsureSpace ensure_space(this);
if (!dst.is_byte_register()) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(dst);
}
DCHECK(is_int8(src.value_) || is_uint8(src.value_));
emit(0x80);
emit_modrm(subcode, dst);
emit(src.value_);
}
void Assembler::shift(Register dst, Immediate shift_amount, int subcode,
int size) {
EnsureSpace ensure_space(this);
DCHECK(size == kInt64Size ? is_uint6(shift_amount.value_)
: is_uint5(shift_amount.value_));
if (shift_amount.value_ == 1) {
emit_rex(dst, size);
emit(0xD1);
emit_modrm(subcode, dst);
} else {
emit_rex(dst, size);
emit(0xC1);
emit_modrm(subcode, dst);
emit(shift_amount.value_);
}
}
void Assembler::shift(Operand dst, Immediate shift_amount, int subcode,
int size) {
EnsureSpace ensure_space(this);
DCHECK(size == kInt64Size ? is_uint6(shift_amount.value_)
: is_uint5(shift_amount.value_));
if (shift_amount.value_ == 1) {
emit_rex(dst, size);
emit(0xD1);
emit_operand(subcode, dst);
} else {
emit_rex(dst, size);
emit(0xC1);
emit_operand(subcode, dst);
emit(shift_amount.value_);
}
}
void Assembler::shift(Register dst, int subcode, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, size);
emit(0xD3);
emit_modrm(subcode, dst);
}
void Assembler::shift(Operand dst, int subcode, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, size);
emit(0xD3);
emit_operand(subcode, dst);
}
void Assembler::bswapl(Register dst) {
EnsureSpace ensure_space(this);
emit_rex_32(dst);
emit(0x0F);
emit(0xC8 + dst.low_bits());
}
void Assembler::bswapq(Register dst) {
EnsureSpace ensure_space(this);
emit_rex_64(dst);
emit(0x0F);
emit(0xC8 + dst.low_bits());
}
void Assembler::btq(Operand dst, Register src) {
EnsureSpace ensure_space(this);
emit_rex_64(src, dst);
emit(0x0F);
emit(0xA3);
emit_operand(src, dst);
}
void Assembler::btsq(Operand dst, Register src) {
EnsureSpace ensure_space(this);
emit_rex_64(src, dst);
emit(0x0F);
emit(0xAB);
emit_operand(src, dst);
}
void Assembler::btsq(Register dst, Immediate imm8) {
EnsureSpace ensure_space(this);
emit_rex_64(dst);
emit(0x0F);
emit(0xBA);
emit_modrm(0x5, dst);
emit(imm8.value_);
}
void Assembler::btrq(Register dst, Immediate imm8) {
EnsureSpace ensure_space(this);
emit_rex_64(dst);
emit(0x0F);
emit(0xBA);
emit_modrm(0x6, dst);
emit(imm8.value_);
}
void Assembler::bsrl(Register dst, Register src) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xBD);
emit_modrm(dst, src);
}
void Assembler::bsrl(Register dst, Operand src) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xBD);
emit_operand(dst, src);
}
void Assembler::bsrq(Register dst, Register src) {
EnsureSpace ensure_space(this);
emit_rex_64(dst, src);
emit(0x0F);
emit(0xBD);
emit_modrm(dst, src);
}
void Assembler::bsrq(Register dst, Operand src) {
EnsureSpace ensure_space(this);
emit_rex_64(dst, src);
emit(0x0F);
emit(0xBD);
emit_operand(dst, src);
}
void Assembler::bsfl(Register dst, Register src) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xBC);
emit_modrm(dst, src);
}
void Assembler::bsfl(Register dst, Operand src) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xBC);
emit_operand(dst, src);
}
void Assembler::bsfq(Register dst, Register src) {
EnsureSpace ensure_space(this);
emit_rex_64(dst, src);
emit(0x0F);
emit(0xBC);
emit_modrm(dst, src);
}
void Assembler::bsfq(Register dst, Operand src) {
EnsureSpace ensure_space(this);
emit_rex_64(dst, src);
emit(0x0F);
emit(0xBC);
emit_operand(dst, src);
}
void Assembler::pblendw(XMMRegister dst, Operand src, uint8_t mask) {
sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x0E);
emit(mask);
}
void Assembler::pblendw(XMMRegister dst, XMMRegister src, uint8_t mask) {
sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x0E);
emit(mask);
}
void Assembler::palignr(XMMRegister dst, Operand src, uint8_t mask) {
ssse3_instr(dst, src, 0x66, 0x0F, 0x3A, 0x0F);
emit(mask);
}
void Assembler::palignr(XMMRegister dst, XMMRegister src, uint8_t mask) {
ssse3_instr(dst, src, 0x66, 0x0F, 0x3A, 0x0F);
emit(mask);
}
void Assembler::call(Label* L) {
EnsureSpace ensure_space(this);
// 1110 1000 #32-bit disp.
emit(0xE8);
if (L->is_bound()) {
int offset = L->pos() - pc_offset() - sizeof(int32_t);
DCHECK_LE(offset, 0);
emitl(offset);
} else if (L->is_linked()) {
emitl(L->pos());
L->link_to(pc_offset() - sizeof(int32_t));
} else {
DCHECK(L->is_unused());
int32_t current = pc_offset();
emitl(current);
L->link_to(current);
}
}
void Assembler::call(Handle<Code> target, RelocInfo::Mode rmode) {
DCHECK(RelocInfo::IsCodeTarget(rmode));
EnsureSpace ensure_space(this);
// 1110 1000 #32-bit disp.
emit(0xE8);
RecordRelocInfo(rmode);
int code_target_index = AddCodeTarget(target);
emitl(code_target_index);
}
void Assembler::near_call(intptr_t disp, RelocInfo::Mode rmode) {
EnsureSpace ensure_space(this);
// 1110 1000 #32-bit disp.
emit(0xE8);
DCHECK(is_int32(disp));
RecordRelocInfo(rmode);
emitl(static_cast<int32_t>(disp));
}
void Assembler::near_jmp(intptr_t disp, RelocInfo::Mode rmode) {
EnsureSpace ensure_space(this);
// 1110 1001 #32-bit disp.
emit(0xE9);
DCHECK(is_int32(disp));
if (!RelocInfo::IsNoInfo(rmode)) RecordRelocInfo(rmode);
emitl(static_cast<int32_t>(disp));
}
void Assembler::near_j(Condition cc, intptr_t disp, RelocInfo::Mode rmode) {
EnsureSpace ensure_space(this);
// 0000 1111 1000 tttn #32-bit disp.
emit(0x0F);
emit(0x80 | cc);
DCHECK(is_int32(disp));
if (!RelocInfo::IsNoInfo(rmode)) RecordRelocInfo(rmode);
emitl(static_cast<int32_t>(disp));
}
void Assembler::call(Register adr) {
EnsureSpace ensure_space(this);
// Opcode: FF /2 r64.
emit_optional_rex_32(adr);
emit(0xFF);
emit_modrm(0x2, adr);
}
void Assembler::call(Operand op) {
EnsureSpace ensure_space(this);
// Opcode: FF /2 m64.
emit_optional_rex_32(op);
emit(0xFF);
emit_operand(0x2, op);
}
void Assembler::clc() {
EnsureSpace ensure_space(this);
emit(0xF8);
}
void Assembler::cld() {
EnsureSpace ensure_space(this);
emit(0xFC);
}
void Assembler::cdq() {
EnsureSpace ensure_space(this);
emit(0x99);
}
void Assembler::cmovq(Condition cc, Register dst, Register src) {
EnsureSpace ensure_space(this);
// Opcode: REX.W 0f 40 + cc /r.
emit_rex_64(dst, src);
emit(0x0F);
emit(0x40 + cc);
emit_modrm(dst, src);
}
void Assembler::cmovq(Condition cc, Register dst, Operand src) {
EnsureSpace ensure_space(this);
// Opcode: REX.W 0f 40 + cc /r.
emit_rex_64(dst, src);
emit(0x0F);
emit(0x40 + cc);
emit_operand(dst, src);
}
void Assembler::cmovl(Condition cc, Register dst, Register src) {
EnsureSpace ensure_space(this);
// Opcode: 0f 40 + cc /r.
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x40 + cc);
emit_modrm(dst, src);
}
void Assembler::cmovl(Condition cc, Register dst, Operand src) {
EnsureSpace ensure_space(this);
// Opcode: 0f 40 + cc /r.
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x40 + cc);
emit_operand(dst, src);
}
void Assembler::cmpb_al(Immediate imm8) {
DCHECK(is_int8(imm8.value_) || is_uint8(imm8.value_));
EnsureSpace ensure_space(this);
emit(0x3C);
emit(imm8.value_);
}
void Assembler::lock() {
EnsureSpace ensure_space(this);
emit(0xF0);
}
void Assembler::xaddb(Operand dst, Register src) {
EnsureSpace ensure_space(this);
emit_optional_rex_8(src, dst);
emit(0x0F);
emit(0xC0);
emit_operand(src, dst);
}
void Assembler::xaddw(Operand dst, Register src) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(src, dst);
emit(0x0F);
emit(0xC1);
emit_operand(src, dst);
}
void Assembler::xaddl(Operand dst, Register src) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(src, dst);
emit(0x0F);
emit(0xC1);
emit_operand(src, dst);
}
void Assembler::xaddq(Operand dst, Register src) {
EnsureSpace ensure_space(this);
emit_rex(src, dst, kInt64Size);
emit(0x0F);
emit(0xC1);
emit_operand(src, dst);
}
void Assembler::cmpxchgb(Operand dst, Register src) {
EnsureSpace ensure_space(this);
if (!src.is_byte_register()) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(src, dst);
} else {
emit_optional_rex_32(src, dst);
}
emit(0x0F);
emit(0xB0);
emit_operand(src, dst);
}
void Assembler::cmpxchgw(Operand dst, Register src) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(src, dst);
emit(0x0F);
emit(0xB1);
emit_operand(src, dst);
}
void Assembler::emit_cmpxchg(Operand dst, Register src, int size) {
EnsureSpace ensure_space(this);
emit_rex(src, dst, size);
emit(0x0F);
emit(0xB1);
emit_operand(src, dst);
}
void Assembler::mfence() {
EnsureSpace ensure_space(this);
emit(0x0F);
emit(0xAE);
emit(0xF0);
}
void Assembler::lfence() {
EnsureSpace ensure_space(this);
emit(0x0F);
emit(0xAE);
emit(0xE8);
}
void Assembler::cpuid() {
EnsureSpace ensure_space(this);
emit(0x0F);
emit(0xA2);
}
void Assembler::cqo() {
EnsureSpace ensure_space(this);
emit_rex_64();
emit(0x99);
}
void Assembler::emit_dec(Register dst, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, size);
emit(0xFF);
emit_modrm(0x1, dst);
}
void Assembler::emit_dec(Operand dst, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, size);
emit(0xFF);
emit_operand(1, dst);
}
void Assembler::decb(Register dst) {
EnsureSpace ensure_space(this);
if (!dst.is_byte_register()) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(dst);
}
emit(0xFE);
emit_modrm(0x1, dst);
}
void Assembler::decb(Operand dst) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst);
emit(0xFE);
emit_operand(1, dst);
}
void Assembler::hlt() {
EnsureSpace ensure_space(this);
emit(0xF4);
}
void Assembler::emit_idiv(Register src, int size) {
EnsureSpace ensure_space(this);
emit_rex(src, size);
emit(0xF7);
emit_modrm(0x7, src);
}
void Assembler::emit_div(Register src, int size) {
EnsureSpace ensure_space(this);
emit_rex(src, size);
emit(0xF7);
emit_modrm(0x6, src);
}
void Assembler::emit_imul(Register src, int size) {
EnsureSpace ensure_space(this);
emit_rex(src, size);
emit(0xF7);
emit_modrm(0x5, src);
}
void Assembler::emit_imul(Operand src, int size) {
EnsureSpace ensure_space(this);
emit_rex(src, size);
emit(0xF7);
emit_operand(0x5, src);
}
void Assembler::emit_imul(Register dst, Register src, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, src, size);
emit(0x0F);
emit(0xAF);
emit_modrm(dst, src);
}
void Assembler::emit_imul(Register dst, Operand src, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, src, size);
emit(0x0F);
emit(0xAF);
emit_operand(dst, src);
}
void Assembler::emit_imul(Register dst, Register src, Immediate imm, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, src, size);
if (is_int8(imm.value_)) {
emit(0x6B);
emit_modrm(dst, src);
emit(imm.value_);
} else {
emit(0x69);
emit_modrm(dst, src);
emitl(imm.value_);
}
}
void Assembler::emit_imul(Register dst, Operand src, Immediate imm, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, src, size);
if (is_int8(imm.value_)) {
emit(0x6B);
emit_operand(dst, src);
emit(imm.value_);
} else {
emit(0x69);
emit_operand(dst, src);
emitl(imm.value_);
}
}
void Assembler::emit_inc(Register dst, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, size);
emit(0xFF);
emit_modrm(0x0, dst);
}
void Assembler::emit_inc(Operand dst, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, size);
emit(0xFF);
emit_operand(0, dst);
}
void Assembler::int3() {
EnsureSpace ensure_space(this);
emit(0xCC);
}
void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
EnsureSpace ensure_space(this);
DCHECK(is_uint4(cc));
if (L->is_bound()) {
const int short_size = 2;
const int long_size = 6;
int offs = L->pos() - pc_offset();
DCHECK_LE(offs, 0);
// Determine whether we can use 1-byte offsets for backwards branches,
// which have a max range of 128 bytes.
// We also need to check predictable_code_size() flag here, because on x64,
// when the full code generator recompiles code for debugging, some places
// need to be padded out to a certain size. The debugger is keeping track of
// how often it did this so that it can adjust return addresses on the
// stack, but if the size of jump instructions can also change, that's not
// enough and the calculated offsets would be incorrect.
if (is_int8(offs - short_size) && !predictable_code_size()) {
// 0111 tttn #8-bit disp.
emit(0x70 | cc);
emit((offs - short_size) & 0xFF);
} else {
// 0000 1111 1000 tttn #32-bit disp.
emit(0x0F);
emit(0x80 | cc);
emitl(offs - long_size);
}
} else if (distance == Label::kNear) {
// 0111 tttn #8-bit disp
emit(0x70 | cc);
uint8_t disp = 0x00;
if (L->is_near_linked()) {
int offset = L->near_link_pos() - pc_offset();
DCHECK(is_int8(offset));
disp = static_cast<uint8_t>(offset & 0xFF);
}
L->link_to(pc_offset(), Label::kNear);
emit(disp);
} else {
auto jump_opt = jump_optimization_info();
if (V8_UNLIKELY(jump_opt)) {
if (jump_opt->is_optimizing() &&
is_optimizable_farjmp(jump_opt->farjmp_num++)) {
// 0111 tttn #8-bit disp
emit(0x70 | cc);
record_farjmp_position(L, pc_offset());
emit(0);
return;
}
if (jump_opt->is_collecting()) {
jump_opt->farjmps.push_back({pc_offset(), 2, 0});
}
}
if (L->is_linked()) {
// 0000 1111 1000 tttn #32-bit disp.
emit(0x0F);
emit(0x80 | cc);
emitl(L->pos());
L->link_to(pc_offset() - sizeof(int32_t));
} else {
// If this fires a near label is reused for a far jump, missing an
// optimization opportunity.
DCHECK(!L->is_near_linked());
DCHECK(L->is_unused());
emit(0x0F);
emit(0x80 | cc);
int32_t current = pc_offset();
emitl(current);
L->link_to(current);
}
}
}
void Assembler::j(Condition cc, Address entry, RelocInfo::Mode rmode) {
DCHECK(RelocInfo::IsWasmStubCall(rmode));
EnsureSpace ensure_space(this);
DCHECK(is_uint4(cc));
emit(0x0F);
emit(0x80 | cc);
RecordRelocInfo(rmode);
emitl(static_cast<int32_t>(entry));
}
void Assembler::j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode) {
EnsureSpace ensure_space(this);
DCHECK(is_uint4(cc));
// 0000 1111 1000 tttn #32-bit disp.
emit(0x0F);
emit(0x80 | cc);
DCHECK(RelocInfo::IsCodeTarget(rmode));
RecordRelocInfo(rmode);
int code_target_index = AddCodeTarget(target);
emitl(code_target_index);
}
void Assembler::jmp_rel(int32_t offset) {
EnsureSpace ensure_space(this);
// The offset is encoded relative to the next instruction.
constexpr int32_t kShortJmpDisplacement = 1 + sizeof(int8_t);
constexpr int32_t kNearJmpDisplacement = 1 + sizeof(int32_t);
DCHECK_LE(std::numeric_limits<int32_t>::min() + kNearJmpDisplacement, offset);
if (is_int8(offset - kShortJmpDisplacement) && !predictable_code_size()) {
// 0xEB #8-bit disp.
emit(0xEB);
emit(offset - kShortJmpDisplacement);
} else {
// 0xE9 #32-bit disp.
emit(0xE9);
emitl(offset - kNearJmpDisplacement);
}
}
void Assembler::jmp(Label* L, Label::Distance distance) {
const int long_size = sizeof(int32_t);
if (L->is_bound()) {
int offset = L->pos() - pc_offset();
DCHECK_LE(offset, 0); // backward jump.
jmp_rel(offset);
return;
}
EnsureSpace ensure_space(this);
if (distance == Label::kNear) {
emit(0xEB);
uint8_t disp = 0x00;
if (L->is_near_linked()) {
int offset = L->near_link_pos() - pc_offset();
DCHECK(is_int8(offset));
disp = static_cast<uint8_t>(offset & 0xFF);
}
L->link_to(pc_offset(), Label::kNear);
emit(disp);
} else {
auto jump_opt = jump_optimization_info();
if (V8_UNLIKELY(jump_opt)) {
if (jump_opt->is_optimizing() &&
is_optimizable_farjmp(jump_opt->farjmp_num++)) {
emit(0xEB);
record_farjmp_position(L, pc_offset());
emit(0);
return;
}
if (jump_opt->is_collecting()) {
jump_opt->farjmps.push_back({pc_offset(), 1, 0});
}
}
if (L->is_linked()) {
// 1110 1001 #32-bit disp.
emit(0xE9);
emitl(L->pos());
L->link_to(pc_offset() - long_size);
} else {
// 1110 1001 #32-bit disp.
// If this fires a near label is reused for a far jump, missing an
// optimization opportunity.
DCHECK(!L->is_near_linked());
DCHECK(L->is_unused());
emit(0xE9);
int32_t current = pc_offset();
emitl(current);
L->link_to(current);
}
}
}
void Assembler::jmp(Handle<Code> target, RelocInfo::Mode rmode) {
DCHECK(RelocInfo::IsCodeTarget(rmode));
EnsureSpace ensure_space(this);
// 1110 1001 #32-bit disp.
emit(0xE9);
RecordRelocInfo(rmode);
int code_target_index = AddCodeTarget(target);
emitl(code_target_index);
}
void Assembler::jmp(Register target) {
EnsureSpace ensure_space(this);
// Opcode FF/4 r64.
emit_optional_rex_32(target);
emit(0xFF);
emit_modrm(0x4, target);
}
void Assembler::jmp(Operand src) {
EnsureSpace ensure_space(this);
// Opcode FF/4 m64.
emit_optional_rex_32(src);
emit(0xFF);
emit_operand(0x4, src);
}
void Assembler::emit_lea(Register dst, Operand src, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, src, size);
emit(0x8D);
emit_operand(dst, src);
}
void Assembler::load_rax(Address value, RelocInfo::Mode mode) {
EnsureSpace ensure_space(this);
emit(0x48); // REX.W
emit(0xA1);
emit(Immediate64(value, mode));
}
void Assembler::load_rax(ExternalReference ref) {
load_rax(ref.address(), RelocInfo::EXTERNAL_REFERENCE);
}
void Assembler::leave() {
EnsureSpace ensure_space(this);
emit(0xC9);
}
void Assembler::movb(Register dst, Operand src) {
EnsureSpace ensure_space(this);
if (!dst.is_byte_register()) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(dst, src);
} else {
emit_optional_rex_32(dst, src);
}
emit(0x8A);
emit_operand(dst, src);
}
void Assembler::movb(Register dst, Immediate imm) {
EnsureSpace ensure_space(this);
if (!dst.is_byte_register()) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(dst);
}
emit(0xB0 + dst.low_bits());
emit(imm.value_);
}
void Assembler::movb(Operand dst, Register src) {
EnsureSpace ensure_space(this);
if (!src.is_byte_register()) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(src, dst);
} else {
emit_optional_rex_32(src, dst);
}
emit(0x88);
emit_operand(src, dst);
}
void Assembler::movb(Operand dst, Immediate imm) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst);
emit(0xC6);
emit_operand(0x0, dst);
emit(static_cast<uint8_t>(imm.value_));
}
void Assembler::movw(Register dst, Operand src) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(dst, src);
emit(0x8B);
emit_operand(dst, src);
}
void Assembler::movw(Operand dst, Register src) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(src, dst);
emit(0x89);
emit_operand(src, dst);
}
void Assembler::movw(Operand dst, Immediate imm) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(dst);
emit(0xC7);
emit_operand(0x0, dst);
emit(static_cast<uint8_t>(imm.value_ & 0xFF));
emit(static_cast<uint8_t>(imm.value_ >> 8));
}
void Assembler::emit_mov(Register dst, Operand src, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, src, size);
emit(0x8B);
emit_operand(dst, src);
}
void Assembler::emit_mov(Register dst, Register src, int size) {
EnsureSpace ensure_space(this);
if (src.low_bits() == 4) {
emit_rex(src, dst, size);
emit(0x89);
emit_modrm(src, dst);
} else {
emit_rex(dst, src, size);
emit(0x8B);
emit_modrm(dst, src);
}
#if defined(V8_OS_WIN_X64)
if (xdata_encoder_ && dst == rbp && src == rsp) {
xdata_encoder_->onMovRbpRsp();
}
#endif
}
void Assembler::emit_mov(Operand dst, Register src, int size) {
EnsureSpace ensure_space(this);
emit_rex(src, dst, size);
emit(0x89);
emit_operand(src, dst);
}
void Assembler::emit_mov(Register dst, Immediate value, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, size);
if (size == kInt64Size) {
emit(0xC7);
emit_modrm(0x0, dst);
} else {
DCHECK_EQ(size, kInt32Size);
emit(0xB8 + dst.low_bits());
}
emit(value);
}
void Assembler::emit_mov(Operand dst, Immediate value, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, size);
emit(0xC7);
emit_operand(0x0, dst);
emit(value);
}
void Assembler::emit_mov(Register dst, Immediate64 value, int size) {
DCHECK_EQ(size, kInt64Size);
if (constpool_.TryRecordEntry(value.value_, value.rmode_)) {
// Emit rip-relative move with offset = 0
Label label;
emit_mov(dst, Operand(&label, 0), size);
bind(&label);
} else {
EnsureSpace ensure_space(this);
emit_rex(dst, size);
emit(0xB8 | dst.low_bits());
emit(value);
}
}
void Assembler::movq_imm64(Register dst, int64_t value) {
EnsureSpace ensure_space(this);
emit_rex(dst, kInt64Size);
emit(0xB8 | dst.low_bits());
emitq(static_cast<uint64_t>(value));
}
void Assembler::movq_heap_number(Register dst, double value) {
EnsureSpace ensure_space(this);
emit_rex(dst, kInt64Size);
emit(0xB8 | dst.low_bits());
RequestHeapNumber(HeapNumberRequest(value));
emit(Immediate64(kNullAddress, RelocInfo::FULL_EMBEDDED_OBJECT));
}
// Loads the ip-relative location of the src label into the target location
// (as a 32-bit offset sign extended to 64-bit).
void Assembler::movl(Operand dst, Label* src) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst);
emit(0xC7);
emit_operand(0, dst);
if (src->is_bound()) {
int offset = src->pos() - pc_offset() - sizeof(int32_t);
DCHECK_LE(offset, 0);
emitl(offset);
} else if (src->is_linked()) {
emitl(src->pos());
src->link_to(pc_offset() - sizeof(int32_t));
} else {
DCHECK(src->is_unused());
int32_t current = pc_offset();
emitl(current);
src->link_to(current);
}
}
void Assembler::movsxbl(Register dst, Register src) {
EnsureSpace ensure_space(this);
if (!src.is_byte_register()) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(dst, src);
} else {
emit_optional_rex_32(dst, src);
}
emit(0x0F);
emit(0xBE);
emit_modrm(dst, src);
}
void Assembler::movsxbl(Register dst, Operand src) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xBE);
emit_operand(dst, src);
}
void Assembler::movsxbq(Register dst, Operand src) {
EnsureSpace ensure_space(this);
emit_rex_64(dst, src);
emit(0x0F);
emit(0xBE);
emit_operand(dst, src);
}
void Assembler::movsxbq(Register dst, Register src) {
EnsureSpace ensure_space(this);
emit_rex_64(dst, src);
emit(0x0F);
emit(0xBE);
emit_modrm(dst, src);
}
void Assembler::movsxwl(Register dst, Register src) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xBF);
emit_modrm(dst, src);
}
void Assembler::movsxwl(Register dst, Operand src) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xBF);
emit_operand(dst, src);
}
void Assembler::movsxwq(Register dst, Operand src) {
EnsureSpace ensure_space(this);
emit_rex_64(dst, src);
emit(0x0F);
emit(0xBF);
emit_operand(dst, src);
}
void Assembler::movsxwq(Register dst, Register src) {
EnsureSpace ensure_space(this);
emit_rex_64(dst, src);
emit(0x0F);
emit(0xBF);
emit_modrm(dst, src);
}
void Assembler::movsxlq(Register dst, Register src) {
EnsureSpace ensure_space(this);
emit_rex_64(dst, src);
emit(0x63);
emit_modrm(dst, src);
}
void Assembler::movsxlq(Register dst, Operand src) {
EnsureSpace ensure_space(this);
emit_rex_64(dst, src);
emit(0x63);
emit_operand(dst, src);
}
void Assembler::emit_movzxb(Register dst, Operand src, int size) {
EnsureSpace ensure_space(this);
// 32 bit operations zero the top 32 bits of 64 bit registers. Therefore
// there is no need to make this a 64 bit operation.
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xB6);
emit_operand(dst, src);
}
void Assembler::emit_movzxb(Register dst, Register src, int size) {
EnsureSpace ensure_space(this);
// 32 bit operations zero the top 32 bits of 64 bit registers. Therefore
// there is no need to make this a 64 bit operation.
if (!src.is_byte_register()) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(dst, src);
} else {
emit_optional_rex_32(dst, src);
}
emit(0x0F);
emit(0xB6);
emit_modrm(dst, src);
}
void Assembler::emit_movzxw(Register dst, Operand src, int size) {
EnsureSpace ensure_space(this);
// 32 bit operations zero the top 32 bits of 64 bit registers. Therefore
// there is no need to make this a 64 bit operation.
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xB7);
emit_operand(dst, src);
}
void Assembler::emit_movzxw(Register dst, Register src, int size) {
EnsureSpace ensure_space(this);
// 32 bit operations zero the top 32 bits of 64 bit registers. Therefore
// there is no need to make this a 64 bit operation.
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xB7);
emit_modrm(dst, src);
}
void Assembler::repmovsb() {
EnsureSpace ensure_space(this);
emit(0xF3);
emit(0xA4);
}
void Assembler::repmovsw() {
EnsureSpace ensure_space(this);
emit(0x66); // Operand size override.
emit(0xF3);
emit(0xA4);
}
void Assembler::emit_repmovs(int size) {
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex(size);
emit(0xA5);
}
void Assembler::repstosl() {
EnsureSpace ensure_space(this);
emit(0xF3);
emit(0xAB);
}
void Assembler::repstosq() {
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex_64();
emit(0xAB);
}
void Assembler::mull(Register src) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(src);
emit(0xF7);
emit_modrm(0x4, src);
}
void Assembler::mull(Operand src) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(src);
emit(0xF7);
emit_operand(0x4, src);
}
void Assembler::mulq(Register src) {
EnsureSpace ensure_space(this);
emit_rex_64(src);
emit(0xF7);
emit_modrm(0x4, src);
}
void Assembler::mulq(Operand src) {
EnsureSpace ensure_space(this);
emit_rex_64(src);
emit(0xF7);
emit_operand(0x4, src);
}
void Assembler::negb(Register reg) {
EnsureSpace ensure_space(this);
emit_optional_rex_8(reg);
emit(0xF6);
emit_modrm(0x3, reg);
}
void Assembler::negw(Register reg) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(reg);
emit(0xF7);
emit_modrm(0x3, reg);
}
void Assembler::negl(Register reg) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(reg);
emit(0xF7);
emit_modrm(0x3, reg);
}
void Assembler::negq(Register reg) {
EnsureSpace ensure_space(this);
emit_rex_64(reg);
emit(0xF7);
emit_modrm(0x3, reg);
}
void Assembler::negb(Operand op) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(op);
emit(0xF6);
emit_operand(0x3, op);
}
void Assembler::negw(Operand op) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(op);
emit(0xF7);
emit_operand(0x3, op);
}
void Assembler::negl(Operand op) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(op);
emit(0xF7);
emit_operand(0x3, op);
}
void Assembler::negq(Operand op) {
EnsureSpace ensure_space(this);
emit_rex_64(op);
emit(0xF7);
emit_operand(0x3, op);
}
void Assembler::nop() {
EnsureSpace ensure_space(this);
emit(0x90);
}
void Assembler::emit_not(Register dst, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, size);
emit(0xF7);
emit_modrm(0x2, dst);
}
void Assembler::emit_not(Operand dst, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, size);
emit(0xF7);
emit_operand(2, dst);
}
void Assembler::Nop(int n) {
DCHECK_LE(0, n);
// The recommended muti-byte sequences of NOP instructions from the Intel 64
// and IA-32 Architectures Software Developer's Manual.
//
// Len Assembly Byte Sequence
// 2 66 NOP 66 90H
// 3 NOP DWORD ptr [EAX] 0F 1F 00H
// 4 NOP DWORD ptr [EAX + 00H] 0F 1F 40 00H
// 5 NOP DWORD ptr [EAX + EAX*1 + 00H] 0F 1F 44 00 00H
// 6 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 0F 1F 44 00 00H
// 7 NOP DWORD ptr [EAX + 00000000H] 0F 1F 80 00 00 00 00H
// 8 NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0F 1F 84 00 00 00 00 00H
// 9 66 NOP DWORD ptr [EAX + EAX*1 + 00000000H] 66 0F 1F 84 00 00 00 00 00H
constexpr const char* kNopSequences =
"\x66\x90" // length 1 (@1) / 2 (@0)
"\x0F\x1F\x00" // length 3 (@2)
"\x0F\x1F\x40\x00" // length 4 (@5)
"\x66\x0F\x1F\x44\x00\x00" // length 5 (@10) / 6 (@9)
"\x0F\x1F\x80\x00\x00\x00\x00" // length 7 (@15)
"\x66\x0F\x1F\x84\x00\x00\x00\x00\x00"; // length 8 (@23) / 9 (@22)
constexpr int8_t kNopOffsets[10] = {0, 1, 0, 2, 5, 10, 9, 15, 23, 22};
do {
EnsureSpace ensure_space(this);
int nop_bytes = std::min(n, 9);
const char* sequence = kNopSequences + kNopOffsets[nop_bytes];
memcpy(pc_, sequence, nop_bytes);
pc_ += nop_bytes;
n -= nop_bytes;
} while (n);
}
void Assembler::emit_trace_instruction(Immediate markid) {
EnsureSpace ensure_space(this);
if (v8_flags.wasm_trace_native != nullptr &&
!strcmp(v8_flags.wasm_trace_native, "cpuid")) {
// This is the optionally selected cpuid sequence which computes a magic
// number based upon the markid. The low 16 bits of the magic number are
// 0x4711 and the high 16 bits are the low 16 bits of the markid. This
// magic number gets moved into the eax register.
uint32_t magic_num = 0x4711 | (static_cast<uint32_t>(markid.value_) << 16);
pushq(rax);
pushq(rbx);
pushq(rcx);
pushq(rdx);
movl(rax, Immediate(magic_num));
cpuid();
popq(rdx);
popq(rcx);
popq(rbx);
popq(rax);
} else {
// This is the default triple-nop sequence, an sscmark. The markid is moved
// into the ebx register and then the triple-nop sequence is executed. The
// three nops are prefixed by prefix.64 and prefix.67. The entire sequence
// becomes "prefix.64 prefix.67 nop nop nop".
pushq(rbx);
movl(rbx, markid);
emit(0x64);
emit(0x67);
nop();
nop();
nop();
popq(rbx);
}
}
void Assembler::popq(Register dst) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst);
emit(0x58 | dst.low_bits());
}
void Assembler::popq(Operand dst) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst);
emit(0x8F);
emit_operand(0, dst);
}
void Assembler::popfq() {
EnsureSpace ensure_space(this);
emit(0x9D);
}
void Assembler::pushq(Register src) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(src);
emit(0x50 | src.low_bits());
#if defined(V8_OS_WIN_X64)
if (xdata_encoder_ && src == rbp) {
xdata_encoder_->onPushRbp();
}
#endif
}
void Assembler::pushq(Operand src) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(src);
emit(0xFF);
emit_operand(6, src);
}
void Assembler::pushq(Immediate value) {
EnsureSpace ensure_space(this);
if (is_int8(value.value_)) {
emit(0x6A);
emit(value.value_); // Emit low byte of value.
} else {
emit(0x68);
emitl(value.value_);
}
}
void Assembler::pushq_imm32(int32_t imm32) {
EnsureSpace ensure_space(this);
emit(0x68);
emitl(imm32);
}
void Assembler::pushfq() {
EnsureSpace ensure_space(this);
emit(0x9C);
}
void Assembler::incsspq(Register number_of_words) {
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex_64(number_of_words);
emit(0x0F);
emit(0xAE);
emit(0xE8 | number_of_words.low_bits());
}
void Assembler::ret(int imm16) {
EnsureSpace ensure_space(this);
DCHECK(is_uint16(imm16));
if (imm16 == 0) {
emit(0xC3);
} else {
emit(0xC2);
emit(imm16 & 0xFF);
emit((imm16 >> 8) & 0xFF);
}
}
void Assembler::ud2() {
EnsureSpace ensure_space(this);
emit(0x0F);
emit(0x0B);
}
void Assembler::setcc(Condition cc, Register reg) {
EnsureSpace ensure_space(this);
DCHECK(is_uint4(cc));
if (!reg.is_byte_register()) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(reg);
}
emit(0x0F);
emit(0x90 | cc);
emit_modrm(0x0, reg);
}
void Assembler::shld(Register dst, Register src) {
EnsureSpace ensure_space(this);
emit_rex_64(src, dst);
emit(0x0F);
emit(0xA5);
emit_modrm(src, dst);
}
void Assembler::shrd(Register dst, Register src) {
EnsureSpace ensure_space(this);
emit_rex_64(src, dst);
emit(0x0F);
emit(0xAD);
emit_modrm(src, dst);
}
void Assembler::xchgb(Register reg, Operand op) {
EnsureSpace ensure_space(this);
if (!reg.is_byte_register()) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(reg, op);
} else {
emit_optional_rex_32(reg, op);
}
emit(0x86);
emit_operand(reg, op);
}
void Assembler::xchgw(Register reg, Operand op) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(reg, op);
emit(0x87);
emit_operand(reg, op);
}
void Assembler::emit_xchg(Register dst, Register src, int size) {
EnsureSpace ensure_space(this);
if (src == rax || dst == rax) { // Single-byte encoding
Register other = src == rax ? dst : src;
emit_rex(other, size);
emit(0x90 | other.low_bits());
} else if (dst.low_bits() == 4) {
emit_rex(dst, src, size);
emit(0x87);
emit_modrm(dst, src);
} else {
emit_rex(src, dst, size);
emit(0x87);
emit_modrm(src, dst);
}
}
void Assembler::emit_xchg(Register dst, Operand src, int size) {
EnsureSpace ensure_space(this);
emit_rex(dst, src, size);
emit(0x87);
emit_operand(dst, src);
}
void Assembler::store_rax(Address dst, RelocInfo::Mode mode) {
EnsureSpace ensure_space(this);
emit(0x48); // REX.W
emit(0xA3);
emit(Immediate64(dst, mode));
}
void Assembler::store_rax(ExternalReference ref) {
store_rax(ref.address(), RelocInfo::EXTERNAL_REFERENCE);
}
void Assembler::sub_sp_32(uint32_t imm) {
emit_rex_64();
emit(0x81); // using a literal 32-bit immediate.
emit_modrm(0x5, rsp);
emitl(imm);
}
void Assembler::testb(Register dst, Register src) {
EnsureSpace ensure_space(this);
emit_test(dst, src, sizeof(int8_t));
}
void Assembler::testb(Register reg, Immediate mask) {
DCHECK(is_int8(mask.value_) || is_uint8(mask.value_));
emit_test(reg, mask, sizeof(int8_t));
}
void Assembler::testb(Operand op, Immediate mask) {
DCHECK(is_int8(mask.value_) || is_uint8(mask.value_));
emit_test(op, mask, sizeof(int8_t));
}
void Assembler::testb(Operand op, Register reg) {
emit_test(op, reg, sizeof(int8_t));
}
void Assembler::testw(Register dst, Register src) {
emit_test(dst, src, sizeof(uint16_t));
}
void Assembler::testw(Register reg, Immediate mask) {
emit_test(reg, mask, sizeof(int16_t));
}
void Assembler::testw(Operand op, Immediate mask) {
emit_test(op, mask, sizeof(int16_t));
}
void Assembler::testw(Operand op, Register reg) {
emit_test(op, reg, sizeof(int16_t));
}
void Assembler::emit_test(Register dst, Register src, int size) {
EnsureSpace ensure_space(this);
if (src.low_bits() == 4) std::swap(dst, src);
if (size == sizeof(int16_t)) {
emit(0x66);
size = sizeof(int32_t);
}
bool byte_operand = size == sizeof(int8_t);
if (byte_operand) {
size = sizeof(int32_t);
if (!src.is_byte_register() || !dst.is_byte_register()) {
emit_rex_32(dst, src);
}
} else {
emit_rex(dst, src, size);
}
emit(byte_operand ? 0x84 : 0x85);
emit_modrm(dst, src);
}
void Assembler::emit_test(Register reg, Immediate mask, int size) {
if (is_uint8(mask.value_)) {
size = sizeof(int8_t);
} else if (is_uint16(mask.value_)) {
size = sizeof(int16_t);
}
EnsureSpace ensure_space(this);
bool half_word = size == sizeof(int16_t);
if (half_word) {
emit(0x66);
size = sizeof(int32_t);
}
bool byte_operand = size == sizeof(int8_t);
if (byte_operand) {
size = sizeof(int32_t);
if (!reg.is_byte_register()) emit_rex_32(reg);
} else {
emit_rex(reg, size);
}
if (reg == rax) {
emit(byte_operand ? 0xA8 : 0xA9);
} else {
emit(byte_operand ? 0xF6 : 0xF7);
emit_modrm(0x0, reg);
}
if (byte_operand) {
emit(mask.value_);
} else if (half_word) {
emitw(mask.value_);
} else {
emit(mask);
}
}
void Assembler::emit_test(Operand op, Immediate mask, int size) {
if (is_uint8(mask.value_)) {
size = sizeof(int8_t);
} else if (is_uint16(mask.value_)) {
size = sizeof(int16_t);
}
EnsureSpace ensure_space(this);
bool half_word = size == sizeof(int16_t);
if (half_word) {
emit(0x66);
size = sizeof(int32_t);
}
bool byte_operand = size == sizeof(int8_t);
if (byte_operand) {
size = sizeof(int32_t);
}
emit_rex(rax, op, size);
emit(byte_operand ? 0xF6 : 0xF7);
emit_operand(rax, op); // Operation code 0
if (byte_operand) {
emit(mask.value_);
} else if (half_word) {
emitw(mask.value_);
} else {
emit(mask);
}
}
void Assembler::emit_test(Operand op, Register reg, int size) {
EnsureSpace ensure_space(this);
if (size == sizeof(int16_t)) {
emit(0x66);
size = sizeof(int32_t);
}
bool byte_operand = size == sizeof(int8_t);
if (byte_operand) {
size = sizeof(int32_t);
if (!reg.is_byte_register()) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(reg, op);
} else {
emit_optional_rex_32(reg, op);
}
} else {
emit_rex(reg, op, size);
}
emit(byte_operand ? 0x84 : 0x85);
emit_operand(reg, op);
}
// FPU instructions.
void Assembler::fld(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xD9, 0xC0, i);
}
void Assembler::fld1() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xE8);
}
void Assembler::fldz() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xEE);
}
void Assembler::fldpi() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xEB);
}
void Assembler::fldln2() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xED);
}
void Assembler::fld_s(Operand adr) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(adr);
emit(0xD9);
emit_operand(0, adr);
}
void Assembler::fld_d(Operand adr) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(adr);
emit(0xDD);
emit_operand(0, adr);
}
void Assembler::fstp_s(Operand adr) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(adr);
emit(0xD9);
emit_operand(3, adr);
}
void Assembler::fstp_d(Operand adr) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(adr);
emit(0xDD);
emit_operand(3, adr);
}
void Assembler::fstp(int index) {
DCHECK(is_uint3(index));
EnsureSpace ensure_space(this);
emit_farith(0xDD, 0xD8, index);
}
void Assembler::fild_s(Operand adr) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(adr);
emit(0xDB);
emit_operand(0, adr);
}
void Assembler::fild_d(Operand adr) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(adr);
emit(0xDF);
emit_operand(5, adr);
}
void Assembler::fistp_s(Operand adr) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(adr);
emit(0xDB);
emit_operand(3, adr);
}
void Assembler::fisttp_s(Operand adr) {
DCHECK(IsEnabled(SSE3));
EnsureSpace ensure_space(this);
emit_optional_rex_32(adr);
emit(0xDB);
emit_operand(1, adr);
}
void Assembler::fisttp_d(Operand adr) {
DCHECK(IsEnabled(SSE3));
EnsureSpace ensure_space(this);
emit_optional_rex_32(adr);
emit(0xDD);
emit_operand(1, adr);
}
void Assembler::fist_s(Operand adr) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(adr);
emit(0xDB);
emit_operand(2, adr);
}
void Assembler::fistp_d(Operand adr) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(adr);
emit(0xDF);
emit_operand(7, adr);
}
void Assembler::fabs() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xE1);
}
void Assembler::fchs() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xE0);
}
void Assembler::fcos() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xFF);
}
void Assembler::fsin() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xFE);
}
void Assembler::fptan() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xF2);
}
void Assembler::fyl2x() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xF1);
}
void Assembler::f2xm1() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xF0);
}
void Assembler::fscale() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xFD);
}
void Assembler::fninit() {
EnsureSpace ensure_space(this);
emit(0xDB);
emit(0xE3);
}
void Assembler::fadd(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDC, 0xC0, i);
}
void Assembler::fsub(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDC, 0xE8, i);
}
void Assembler::fisub_s(Operand adr) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(adr);
emit(0xDA);
emit_operand(4, adr);
}
void Assembler::fmul(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDC, 0xC8, i);
}
void Assembler::fdiv(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDC, 0xF8, i);
}
void Assembler::faddp(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDE, 0xC0, i);
}
void Assembler::fsubp(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDE, 0xE8, i);
}
void Assembler::fsubrp(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDE, 0xE0, i);
}
void Assembler::fmulp(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDE, 0xC8, i);
}
void Assembler::fdivp(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDE, 0xF8, i);
}
void Assembler::fprem() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xF8);
}
void Assembler::fprem1() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xF5);
}
void Assembler::fxch(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xD9, 0xC8, i);
}
void Assembler::fincstp() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xF7);
}
void Assembler::ffree(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDD, 0xC0, i);
}
void Assembler::ftst() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xE4);
}
void Assembler::fucomp(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDD, 0xE8, i);
}
void Assembler::fucompp() {
EnsureSpace ensure_space(this);
emit(0xDA);
emit(0xE9);
}
void Assembler::fucomi(int i) {
EnsureSpace ensure_space(this);
emit(0xDB);
emit(0xE8 + i);
}
void Assembler::fucomip() {
EnsureSpace ensure_space(this);
emit(0xDF);
emit(0xE9);
}
void Assembler::fcompp() {
EnsureSpace ensure_space(this);
emit(0xDE);
emit(0xD9);
}
void Assembler::fnstsw_ax() {
EnsureSpace ensure_space(this);
emit(0xDF);
emit(0xE0);
}
void Assembler::fwait() {
EnsureSpace ensure_space(this);
emit(0x9B);
}
void Assembler::frndint() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xFC);
}
void Assembler::fnclex() {
EnsureSpace ensure_space(this);
emit(0xDB);
emit(0xE2);
}
void Assembler::sahf() {
// TODO(X64): Test for presence. Not all 64-bit intel CPU's have sahf
// in 64-bit mode. Test CpuID.
DCHECK(IsEnabled(SAHF));
EnsureSpace ensure_space(this);
emit(0x9E);
}
void Assembler::emit_farith(int b1, int b2, int i) {
DCHECK(is_uint8(b1) && is_uint8(b2)); // wrong opcode
DCHECK(is_uint3(i)); // illegal stack offset
emit(b1);
emit(b2 + i);
}
// SSE 2 operations.
void Assembler::movd(XMMRegister dst, Register src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x6E);
emit_sse_operand(dst, src);
}
void Assembler::movd(XMMRegister dst, Operand src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x6E);
emit_sse_operand(dst, src);
}
void Assembler::movd(Register dst, XMMRegister src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(src, dst);
emit(0x0F);
emit(0x7E);
emit_sse_operand(src, dst);
}
void Assembler::movq(XMMRegister dst, Register src) {
// Mixing AVX and non-AVX is expensive, catch those cases
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0x66);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x6E);
emit_sse_operand(dst, src);
}
void Assembler::movq(XMMRegister dst, Operand src) {
// Mixing AVX and non-AVX is expensive, catch those cases
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0x66);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x6E);
emit_sse_operand(dst, src);
}
void Assembler::movq(Register dst, XMMRegister src) {
// Mixing AVX and non-AVX is expensive, catch those cases
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0x66);
emit_rex_64(src, dst);
emit(0x0F);
emit(0x7E);
emit_sse_operand(src, dst);
}
void Assembler::movq(XMMRegister dst, XMMRegister src) {
// Mixing AVX and non-AVX is expensive, catch those cases
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
if (dst.low_bits() == 4) {
// Avoid unnecessary SIB byte.
emit(0xF3);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x7E);
emit_sse_operand(dst, src);
} else {
emit(0x66);
emit_optional_rex_32(src, dst);
emit(0x0F);
emit(0xD6);
emit_sse_operand(src, dst);
}
}
void Assembler::movdqa(Operand dst, XMMRegister src) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_rex_64(src, dst);
emit(0x0F);
emit(0x7F);
emit_sse_operand(src, dst);
}
void Assembler::movdqa(XMMRegister dst, Operand src) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x6F);
emit_sse_operand(dst, src);
}
void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_rex_64(src, dst);
emit(0x0F);
emit(0x7F);
emit_sse_operand(src, dst);
}
void Assembler::movdqu(Operand dst, XMMRegister src) {
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex_64(src, dst);
emit(0x0F);
emit(0x7F);
emit_sse_operand(src, dst);
}
void Assembler::movdqu(XMMRegister dst, Operand src) {
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x6F);
emit_sse_operand(dst, src);
}
void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x6F);
emit_sse_operand(dst, src);
}
void Assembler::pinsrw(XMMRegister dst, Register src, uint8_t imm8) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xC4);
emit_sse_operand(dst, src);
emit(imm8);
}
void Assembler::pinsrw(XMMRegister dst, Operand src, uint8_t imm8) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xC4);
emit_sse_operand(dst, src);
emit(imm8);
}
void Assembler::pextrq(Register dst, XMMRegister src, int8_t imm8) {
DCHECK(IsEnabled(SSE4_1));
EnsureSpace ensure_space(this);
emit(0x66);
emit_rex_64(src, dst);
emit(0x0F);
emit(0x3A);
emit(0x16);
emit_sse_operand(src, dst);
emit(imm8);
}
void Assembler::pinsrq(XMMRegister dst, Register src, uint8_t imm8) {
DCHECK(IsEnabled(SSE4_1));
EnsureSpace ensure_space(this);
emit(0x66);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x3A);
emit(0x22);
emit_sse_operand(dst, src);
emit(imm8);
}
void Assembler::pinsrq(XMMRegister dst, Operand src, uint8_t imm8) {
DCHECK(IsEnabled(SSE4_1));
EnsureSpace ensure_space(this);
emit(0x66);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x3A);
emit(0x22);
emit_sse_operand(dst, src);
emit(imm8);
}
void Assembler::pinsrd(XMMRegister dst, Register src, uint8_t imm8) {
sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x22, imm8);
}
void Assembler::pinsrd(XMMRegister dst, Operand src, uint8_t imm8) {
sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x22);
emit(imm8);
}
void Assembler::pinsrb(XMMRegister dst, Register src, uint8_t imm8) {
sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x20, imm8);
}
void Assembler::pinsrb(XMMRegister dst, Operand src, uint8_t imm8) {
sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x20);
emit(imm8);
}
void Assembler::insertps(XMMRegister dst, XMMRegister src, uint8_t imm8) {
DCHECK(is_uint8(imm8));
sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x21);
emit(imm8);
}
void Assembler::insertps(XMMRegister dst, Operand src, uint8_t imm8) {
DCHECK(is_uint8(imm8));
sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x21);
emit(imm8);
}
void Assembler::movsd(Operand dst, XMMRegister src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF2); // double
emit_optional_rex_32(src, dst);
emit(0x0F);
emit(0x11); // store
emit_sse_operand(src, dst);
}
void Assembler::movsd(XMMRegister dst, XMMRegister src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF2); // double
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x10); // load
emit_sse_operand(dst, src);
}
void Assembler::movsd(XMMRegister dst, Operand src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF2); // double
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x10); // load
emit_sse_operand(dst, src);
}
void Assembler::movaps(XMMRegister dst, XMMRegister src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
if (src.low_bits() == 4) {
// Try to avoid an unnecessary SIB byte.
emit_optional_rex_32(src, dst);
emit(0x0F);
emit(0x29);
emit_sse_operand(src, dst);
} else {
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x28);
emit_sse_operand(dst, src);
}
}
void Assembler::movaps(XMMRegister dst, Operand src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x28);
emit_sse_operand(dst, src);
}
void Assembler::shufps(XMMRegister dst, XMMRegister src, uint8_t imm8) {
DCHECK(is_uint8(imm8));
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xC6);
emit_sse_operand(dst, src);
emit(imm8);
}
void Assembler::movapd(XMMRegister dst, XMMRegister src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
if (src.low_bits() == 4) {
// Try to avoid an unnecessary SIB byte.
emit(0x66);
emit_optional_rex_32(src, dst);
emit(0x0F);
emit(0x29);
emit_sse_operand(src, dst);
} else {
emit(0x66);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x28);
emit_sse_operand(dst, src);
}
}
void Assembler::movupd(XMMRegister dst, Operand src) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x10);
emit_sse_operand(dst, src);
}
void Assembler::movupd(Operand dst, XMMRegister src) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(src, dst);
emit(0x0F);
emit(0x11);
emit_sse_operand(src, dst);
}
void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x2E);
emit_sse_operand(dst, src);
}
void Assembler::ucomiss(XMMRegister dst, Operand src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x2E);
emit_sse_operand(dst, src);
}
void Assembler::movss(XMMRegister dst, XMMRegister src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF3); // single
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x10); // load
emit_sse_operand(dst, src);
}
void Assembler::movss(XMMRegister dst, Operand src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF3); // single
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x10); // load
emit_sse_operand(dst, src);
}
void Assembler::movss(Operand src, XMMRegister dst) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF3); // single
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x11); // store
emit_sse_operand(dst, src);
}
void Assembler::movlps(XMMRegister dst, Operand src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x12);
emit_sse_operand(dst, src);
}
void Assembler::movlps(Operand src, XMMRegister dst) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x13);
emit_sse_operand(dst, src);
}
void Assembler::movhps(XMMRegister dst, Operand src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x16);
emit_sse_operand(dst, src);
}
void Assembler::movhps(Operand src, XMMRegister dst) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x17);
emit_sse_operand(dst, src);
}
void Assembler::cmpps(XMMRegister dst, XMMRegister src, int8_t cmp) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xC2);
emit_sse_operand(dst, src);
emit(cmp);
}
void Assembler::cmpps(XMMRegister dst, Operand src, int8_t cmp) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xC2);
emit_sse_operand(dst, src);
emit(cmp);
}
void Assembler::cmppd(XMMRegister dst, XMMRegister src, int8_t cmp) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xC2);
emit_sse_operand(dst, src);
emit(cmp);
}
void Assembler::cmppd(XMMRegister dst, Operand src, int8_t cmp) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xC2);
emit_sse_operand(dst, src);
emit(cmp);
}
void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
sse2_instr(dst, src, 0xF3, 0x0F, 0xE6);
}
void Assembler::cvttss2si(Register dst, Operand src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x2C);
emit_operand(dst, src);
}
void Assembler::cvttss2si(Register dst, XMMRegister src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x2C);
emit_sse_operand(dst, src);
}
void Assembler::cvttsd2si(Register dst, Operand src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x2C);
emit_operand(dst, src);
}
void Assembler::cvttsd2si(Register dst, XMMRegister src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x2C);
emit_sse_operand(dst, src);
}
void Assembler::cvttss2siq(Register dst, XMMRegister src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x2C);
emit_sse_operand(dst, src);
}
void Assembler::cvttss2siq(Register dst, Operand src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x2C);
emit_sse_operand(dst, src);
}
void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF2);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x2C);
emit_sse_operand(dst, src);
}
void Assembler::cvttsd2siq(Register dst, Operand src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF2);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x2C);
emit_sse_operand(dst, src);
}
void Assembler::cvttps2dq(XMMRegister dst, Operand src) {
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x5B);
emit_sse_operand(dst, src);
}
void Assembler::cvttps2dq(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x5B);
emit_sse_operand(dst, src);
}
void Assembler::cvtlsi2sd(XMMRegister dst, Operand src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x2A);
emit_sse_operand(dst, src);
}
void Assembler::cvtlsi2sd(XMMRegister dst, Register src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x2A);
emit_sse_operand(dst, src);
}
void Assembler::cvtlsi2ss(XMMRegister dst, Operand src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x2A);
emit_sse_operand(dst, src);
}
void Assembler::cvtlsi2ss(XMMRegister dst, Register src) {
EnsureSpace ensure_space(this);
emit(0xF3);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x2A);
emit_sse_operand(dst, src);
}
void Assembler::cvtqsi2ss(XMMRegister dst, Operand src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x2A);
emit_sse_operand(dst, src);
}
void Assembler::cvtqsi2ss(XMMRegister dst, Register src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x2A);
emit_sse_operand(dst, src);
}
void Assembler::cvtqsi2sd(XMMRegister dst, Operand src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF2);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x2A);
emit_sse_operand(dst, src);
}
void Assembler::cvtqsi2sd(XMMRegister dst, Register src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF2);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x2A);
emit_sse_operand(dst, src);
}
void Assembler::cvtsd2si(Register dst, XMMRegister src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x2D);
emit_sse_operand(dst, src);
}
void Assembler::cvtsd2siq(Register dst, XMMRegister src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF2);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x2D);
emit_sse_operand(dst, src);
}
void Assembler::haddps(XMMRegister dst, XMMRegister src) {
DCHECK(IsEnabled(SSE3));
EnsureSpace ensure_space(this);
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x7C);
emit_sse_operand(dst, src);
}
void Assembler::haddps(XMMRegister dst, Operand src) {
DCHECK(IsEnabled(SSE3));
EnsureSpace ensure_space(this);
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x7C);
emit_sse_operand(dst, src);
}
void Assembler::cmpeqss(XMMRegister dst, XMMRegister src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xC2);
emit_sse_operand(dst, src);
emit(0x00); // EQ == 0
}
void Assembler::cmpeqsd(XMMRegister dst, XMMRegister src) {
DCHECK(!IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xC2);
emit_sse_operand(dst, src);
emit(0x00); // EQ == 0
}
void Assembler::cmpltsd(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xC2);
emit_sse_operand(dst, src);
emit(0x01); // LT == 1
}
void Assembler::roundss(XMMRegister dst, XMMRegister src, RoundingMode mode) {
DCHECK(!IsEnabled(AVX));
sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x0A);
// Mask precision exception.
emit(static_cast<uint8_t>(mode) | 0x8);
}
void Assembler::roundss(XMMRegister dst, Operand src, RoundingMode mode) {
DCHECK(!IsEnabled(AVX));
sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x0A);
// Mask precision exception.
emit(static_cast<uint8_t>(mode) | 0x8);
}
void Assembler::roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode) {
DCHECK(!IsEnabled(AVX));
sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x0B);
// Mask precision exception.
emit(static_cast<uint8_t>(mode) | 0x8);
}
void Assembler::roundsd(XMMRegister dst, Operand src, RoundingMode mode) {
DCHECK(!IsEnabled(AVX));
sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x0B);
// Mask precision exception.
emit(static_cast<uint8_t>(mode) | 0x8);
}
void Assembler::roundps(XMMRegister dst, XMMRegister src, RoundingMode mode) {
DCHECK(!IsEnabled(AVX));
sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x08);
// Mask precision exception.
emit(static_cast<uint8_t>(mode) | 0x8);
}
void Assembler::roundpd(XMMRegister dst, XMMRegister src, RoundingMode mode) {
DCHECK(!IsEnabled(AVX));
sse4_instr(dst, src, 0x66, 0x0F, 0x3A, 0x09);
// Mask precision exception.
emit(static_cast<uint8_t>(mode) | 0x8);
}
void Assembler::movmskpd(Register dst, XMMRegister src) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x50);
emit_sse_operand(dst, src);
}
void Assembler::movmskps(Register dst, XMMRegister src) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x50);
emit_sse_operand(dst, src);
}
void Assembler::pmovmskb(Register dst, XMMRegister src) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xD7);
emit_sse_operand(dst, src);
}
// AVX instructions
#define VMOV_DUP(SIMDRegister, length) \
void Assembler::vmovddup(SIMDRegister dst, SIMDRegister src) { \
DCHECK(IsEnabled(AVX)); \
EnsureSpace ensure_space(this); \
emit_vex_prefix(dst, xmm0, src, k##length, kF2, k0F, kWIG); \
emit(0x12); \
emit_sse_operand(dst, src); \
} \
\
void Assembler::vmovddup(SIMDRegister dst, Operand src) { \
DCHECK(IsEnabled(AVX)); \
EnsureSpace ensure_space(this); \
emit_vex_prefix(dst, xmm0, src, k##length, kF2, k0F, kWIG); \
emit(0x12); \
emit_sse_operand(dst, src); \
} \
\
void Assembler::vmovshdup(SIMDRegister dst, SIMDRegister src) { \
DCHECK(IsEnabled(AVX)); \
EnsureSpace ensure_space(this); \
emit_vex_prefix(dst, xmm0, src, k##length, kF3, k0F, kWIG); \
emit(0x16); \
emit_sse_operand(dst, src); \
}
VMOV_DUP(XMMRegister, L128)
VMOV_DUP(YMMRegister, L256)
#undef VMOV_DUP
#define BROADCAST(suffix, SIMDRegister, length, opcode) \
void Assembler::vbroadcast##suffix(SIMDRegister dst, Operand src) { \
DCHECK(IsEnabled(AVX)); \
EnsureSpace ensure_space(this); \
emit_vex_prefix(dst, xmm0, src, k##length, k66, k0F38, kW0); \
emit(0x##opcode); \
emit_sse_operand(dst, src); \
} \
void Assembler::vbroadcast##suffix(SIMDRegister dst, XMMRegister src) { \
DCHECK(IsEnabled(AVX2)); \
EnsureSpace ensure_space(this); \
emit_vex_prefix(dst, xmm0, src, k##length, k66, k0F38, kW0); \
emit(0x##opcode); \
emit_sse_operand(dst, src); \
}
BROADCAST(ss, XMMRegister, L128, 18)
BROADCAST(ss, YMMRegister, L256, 18)
BROADCAST(sd, YMMRegister, L256, 19)
#undef BROADCAST
void Assembler::vinserti128(YMMRegister dst, YMMRegister src1, XMMRegister src2,
uint8_t imm8) {
DCHECK(IsEnabled(AVX2));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, src1, src2, kL256, k66, k0F3A, kW0);
emit(0x38);
emit_sse_operand(dst, src2);
emit(imm8);
}
void Assembler::vperm2f128(YMMRegister dst, YMMRegister src1, YMMRegister src2,
uint8_t imm8) {
DCHECK(IsEnabled(AVX));
DCHECK(is_uint8(imm8));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, src1, src2, kL256, k66, k0F3A, kW0);
emit(0x06);
emit_sse_operand(dst, src2);
emit(imm8);
}
void Assembler::vextractf128(XMMRegister dst, YMMRegister src, uint8_t imm8) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(src, xmm0, dst, kL256, k66, k0F3A, kW0);
emit(0x19);
emit_sse_operand(src, dst);
emit(imm8);
}
void Assembler::fma_instr(uint8_t op, XMMRegister dst, XMMRegister src1,
XMMRegister src2, VectorLength l, SIMDPrefix pp,
LeadingOpcode m, VexW w) {
DCHECK(IsEnabled(FMA3));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, src1, src2, l, pp, m, w);
emit(op);
emit_sse_operand(dst, src2);
}
void Assembler::fma_instr(uint8_t op, XMMRegister dst, XMMRegister src1,
Operand src2, VectorLength l, SIMDPrefix pp,
LeadingOpcode m, VexW w) {
DCHECK(IsEnabled(FMA3));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, src1, src2, l, pp, m, w);
emit(op);
emit_sse_operand(dst, src2);
}
void Assembler::vmovd(XMMRegister dst, Register src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
XMMRegister isrc = XMMRegister::from_code(src.code());
emit_vex_prefix(dst, xmm0, isrc, kL128, k66, k0F, kW0);
emit(0x6E);
emit_sse_operand(dst, src);
}
void Assembler::vmovd(XMMRegister dst, Operand src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, xmm0, src, kL128, k66, k0F, kW0);
emit(0x6E);
emit_sse_operand(dst, src);
}
void Assembler::vmovd(Register dst, XMMRegister src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
XMMRegister idst = XMMRegister::from_code(dst.code());
emit_vex_prefix(src, xmm0, idst, kL128, k66, k0F, kW0);
emit(0x7E);
emit_sse_operand(src, dst);
}
void Assembler::vmovq(XMMRegister dst, Register src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
XMMRegister isrc = XMMRegister::from_code(src.code());
emit_vex_prefix(dst, xmm0, isrc, kL128, k66, k0F, kW1);
emit(0x6E);
emit_sse_operand(dst, src);
}
void Assembler::vmovq(XMMRegister dst, Operand src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, xmm0, src, kL128, k66, k0F, kW1);
emit(0x6E);
emit_sse_operand(dst, src);
}
void Assembler::vmovq(Register dst, XMMRegister src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
XMMRegister idst = XMMRegister::from_code(dst.code());
emit_vex_prefix(src, xmm0, idst, kL128, k66, k0F, kW1);
emit(0x7E);
emit_sse_operand(src, dst);
}
void Assembler::vmovdqa(XMMRegister dst, Operand src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, xmm0, src, kL128, k66, k0F, kWIG);
emit(0x6F);
emit_sse_operand(dst, src);
}
void Assembler::vmovdqa(XMMRegister dst, XMMRegister src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, xmm0, src, kL128, k66, k0F, kWIG);
emit(0x6F);
emit_sse_operand(dst, src);
}
void Assembler::vmovdqa(YMMRegister dst, Operand src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, ymm0, src, kL256, k66, k0F, kWIG);
emit(0x6F);
emit_sse_operand(dst, src);
}
void Assembler::vmovdqa(YMMRegister dst, YMMRegister src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, ymm0, src, kL256, k66, k0F, kWIG);
emit(0x6F);
emit_sse_operand(dst, src);
}
void Assembler::vmovdqu(XMMRegister dst, Operand src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, xmm0, src, kL128, kF3, k0F, kWIG);
emit(0x6F);
emit_sse_operand(dst, src);
}
void Assembler::vmovdqu(Operand dst, XMMRegister src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(src, xmm0, dst, kL128, kF3, k0F, kWIG);
emit(0x7F);
emit_sse_operand(src, dst);
}
void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(src, xmm0, dst, kL128, kF3, k0F, kWIG);
emit(0x7F);
emit_sse_operand(src, dst);
}
void Assembler::vmovdqu(YMMRegister dst, Operand src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, ymm0, src, kL256, kF3, k0F, kWIG);
emit(0x6F);
emit_sse_operand(dst, src);
}
void Assembler::vmovdqu(Operand dst, YMMRegister src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(src, ymm0, dst, kL256, kF3, k0F, kWIG);
emit(0x7F);
emit_sse_operand(src, dst);
}
void Assembler::vmovdqu(YMMRegister dst, YMMRegister src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(src, ymm0, dst, kL256, kF3, k0F, kWIG);
emit(0x7F);
emit_sse_operand(src, dst);
}
void Assembler::vmovlps(XMMRegister dst, XMMRegister src1, Operand src2) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, src1, src2, kL128, kNoPrefix, k0F, kWIG);
emit(0x12);
emit_sse_operand(dst, src2);
}
void Assembler::vmovlps(Operand dst, XMMRegister src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(src, xmm0, dst, kL128, kNoPrefix, k0F, kWIG);
emit(0x13);
emit_sse_operand(src, dst);
}
void Assembler::vmovhps(XMMRegister dst, XMMRegister src1, Operand src2) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, src1, src2, kL128, kNoPrefix, k0F, kWIG);
emit(0x16);
emit_sse_operand(dst, src2);
}
void Assembler::vmovhps(Operand dst, XMMRegister src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(src, xmm0, dst, kL128, kNoPrefix, k0F, kWIG);
emit(0x17);
emit_sse_operand(src, dst);
}
void Assembler::vinstr(uint8_t op, XMMRegister dst, XMMRegister src1,
XMMRegister src2, SIMDPrefix pp, LeadingOpcode m, VexW w,
CpuFeature feature) {
DCHECK(IsEnabled(feature));
DCHECK(feature == AVX || feature == AVX2);
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, src1, src2, kLIG, pp, m, w);
emit(op);
emit_sse_operand(dst, src2);
}
void Assembler::vinstr(uint8_t op, XMMRegister dst, XMMRegister src1,
Operand src2, SIMDPrefix pp, LeadingOpcode m, VexW w,
CpuFeature feature) {
DCHECK(IsEnabled(feature));
DCHECK(feature == AVX || feature == AVX2);
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, src1, src2, kLIG, pp, m, w);
emit(op);
emit_sse_operand(dst, src2);
}
template <typename Reg1, typename Reg2, typename Op>
void Assembler::vinstr(uint8_t op, Reg1 dst, Reg2 src1, Op src2, SIMDPrefix pp,
LeadingOpcode m, VexW w, CpuFeature feature) {
DCHECK(IsEnabled(feature));
DCHECK(feature == AVX || feature == AVX2);
DCHECK(
(std::is_same_v<Reg1, YMMRegister> || std::is_same_v<Reg2, YMMRegister>));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, src1, src2, kL256, pp, m, w);
emit(op);
emit_sse_operand(dst, src2);
}
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void Assembler::vinstr(
uint8_t op, YMMRegister dst, YMMRegister src1, YMMRegister src2,
SIMDPrefix pp, LeadingOpcode m, VexW w, CpuFeature feature);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void Assembler::vinstr(
uint8_t op, YMMRegister dst, XMMRegister src1, XMMRegister src2,
SIMDPrefix pp, LeadingOpcode m, VexW w, CpuFeature feature);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void Assembler::vinstr(
uint8_t op, YMMRegister dst, YMMRegister src1, Operand src2, SIMDPrefix pp,
LeadingOpcode m, VexW w, CpuFeature feature);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void Assembler::vinstr(
uint8_t op, YMMRegister dst, YMMRegister src1, XMMRegister src2,
SIMDPrefix pp, LeadingOpcode m, VexW w, CpuFeature feature);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void Assembler::vinstr(
uint8_t op, YMMRegister dst, XMMRegister src1, Operand src2, SIMDPrefix pp,
LeadingOpcode m, VexW w, CpuFeature feature);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void Assembler::vinstr(
uint8_t op, YMMRegister dst, XMMRegister src1, YMMRegister src2,
SIMDPrefix pp, LeadingOpcode m, VexW w, CpuFeature feature);
void Assembler::vps(uint8_t op, XMMRegister dst, XMMRegister src1,
XMMRegister src2) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, src1, src2, kL128, kNoPrefix, k0F, kWIG);
emit(op);
emit_sse_operand(dst, src2);
}
void Assembler::vps(uint8_t op, YMMRegister dst, YMMRegister src1,
YMMRegister src2) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, src1, src2, kL256, kNoPrefix, k0F, kWIG);
emit(op);
emit_sse_operand(dst, src2);
}
void Assembler::vps(uint8_t op, XMMRegister dst, XMMRegister src1,
Operand src2) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, src1, src2, kL128, kNoPrefix, k0F, kWIG);
emit(op);
emit_sse_operand(dst, src2);
}
void Assembler::vps(uint8_t op, YMMRegister dst, YMMRegister src1,
Operand src2) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, src1, src2, kL256, kNoPrefix, k0F, kWIG);
emit(op);
emit_sse_operand(dst, src2);
}
void Assembler::vps(uint8_t op, XMMRegister dst, XMMRegister src1,
XMMRegister src2, uint8_t imm8) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, src1, src2, kL128, kNoPrefix, k0F, kWIG);
emit(op);
emit_sse_operand(dst, src2);
emit(imm8);
}
void Assembler::vps(uint8_t op, YMMRegister dst, YMMRegister src1,
YMMRegister src2, uint8_t imm8) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, src1, src2, kL256, kNoPrefix, k0F, kWIG);
emit(op);
emit_sse_operand(dst, src2);
emit(imm8);
}
#define VPD(DSTRegister, SRCRegister, length) \
void Assembler::vpd(uint8_t op, DSTRegister dst, SRCRegister src1, \
SRCRegister src2) { \
DCHECK(IsEnabled(AVX)); \
EnsureSpace ensure_space(this); \
emit_vex_prefix(dst, src1, src2, k##length, k66, k0F, kWIG); \
emit(op); \
emit_sse_operand(dst, src2); \
} \
\
void Assembler::vpd(uint8_t op, DSTRegister dst, SRCRegister src1, \
Operand src2) { \
DCHECK(IsEnabled(AVX)); \
EnsureSpace ensure_space(this); \
emit_vex_prefix(dst, src1, src2, k##length, k66, k0F, kWIG); \
emit(op); \
emit_sse_operand(dst, src2); \
}
VPD(XMMRegister, XMMRegister, L128)
VPD(XMMRegister, YMMRegister, L256)
VPD(YMMRegister, YMMRegister, L256)
#undef VPD
void Assembler::vucomiss(XMMRegister dst, XMMRegister src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, xmm0, src, kLIG, kNoPrefix, k0F, kWIG);
emit(0x2E);
emit_sse_operand(dst, src);
}
void Assembler::vucomiss(XMMRegister dst, Operand src) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, xmm0, src, kLIG, kNoPrefix, k0F, kWIG);
emit(0x2E);
emit_sse_operand(dst, src);
}
void Assembler::vpmovmskb(Register dst, XMMRegister src) {
XMMRegister idst = XMMRegister::from_code(dst.code());
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(idst, xmm0, src, kL128, k66, k0F, kWIG);
emit(0xD7);
emit_sse_operand(idst, src);
}
void Assembler::vss(uint8_t op, XMMRegister dst, XMMRegister src1,
XMMRegister src2) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, src1, src2, kLIG, kF3, k0F, kWIG);
emit(op);
emit_sse_operand(dst, src2);
}
void Assembler::vss(uint8_t op, XMMRegister dst, XMMRegister src1,
Operand src2) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, src1, src2, kLIG, kF3, k0F, kWIG);
emit(op);
emit_sse_operand(dst, src2);
}
void Assembler::bmi1q(uint8_t op, Register reg, Register vreg, Register rm) {
DCHECK(IsEnabled(BMI1));
EnsureSpace ensure_space(this);
emit_vex_prefix(reg, vreg, rm, kLZ, kNoPrefix, k0F38, kW1);
emit(op);
emit_modrm(reg, rm);
}
void Assembler::bmi1q(uint8_t op, Register reg, Register vreg, Operand rm) {
DCHECK(IsEnabled(BMI1));
EnsureSpace ensure_space(this);
emit_vex_prefix(reg, vreg, rm, kLZ, kNoPrefix, k0F38, kW1);
emit(op);
emit_operand(reg, rm);
}
void Assembler::bmi1l(uint8_t op, Register reg, Register vreg, Register rm) {
DCHECK(IsEnabled(BMI1));
EnsureSpace ensure_space(this);
emit_vex_prefix(reg, vreg, rm, kLZ, kNoPrefix, k0F38, kW0);
emit(op);
emit_modrm(reg, rm);
}
void Assembler::bmi1l(uint8_t op, Register reg, Register vreg, Operand rm) {
DCHECK(IsEnabled(BMI1));
EnsureSpace ensure_space(this);
emit_vex_prefix(reg, vreg, rm, kLZ, kNoPrefix, k0F38, kW0);
emit(op);
emit_operand(reg, rm);
}
void Assembler::tzcntq(Register dst, Register src) {
DCHECK(IsEnabled(BMI1));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex_64(dst, src);
emit(0x0F);
emit(0xBC);
emit_modrm(dst, src);
}
void Assembler::tzcntq(Register dst, Operand src) {
DCHECK(IsEnabled(BMI1));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex_64(dst, src);
emit(0x0F);
emit(0xBC);
emit_operand(dst, src);
}
void Assembler::tzcntl(Register dst, Register src) {
DCHECK(IsEnabled(BMI1));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xBC);
emit_modrm(dst, src);
}
void Assembler::tzcntl(Register dst, Operand src) {
DCHECK(IsEnabled(BMI1));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xBC);
emit_operand(dst, src);
}
void Assembler::lzcntq(Register dst, Register src) {
DCHECK(IsEnabled(LZCNT));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex_64(dst, src);
emit(0x0F);
emit(0xBD);
emit_modrm(dst, src);
}
void Assembler::lzcntq(Register dst, Operand src) {
DCHECK(IsEnabled(LZCNT));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex_64(dst, src);
emit(0x0F);
emit(0xBD);
emit_operand(dst, src);
}
void Assembler::lzcntl(Register dst, Register src) {
DCHECK(IsEnabled(LZCNT));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xBD);
emit_modrm(dst, src);
}
void Assembler::lzcntl(Register dst, Operand src) {
DCHECK(IsEnabled(LZCNT));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xBD);
emit_operand(dst, src);
}
void Assembler::popcntq(Register dst, Register src) {
DCHECK(IsEnabled(POPCNT));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex_64(dst, src);
emit(0x0F);
emit(0xB8);
emit_modrm(dst, src);
}
void Assembler::popcntq(Register dst, Operand src) {
DCHECK(IsEnabled(POPCNT));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_rex_64(dst, src);
emit(0x0F);
emit(0xB8);
emit_operand(dst, src);
}
void Assembler::popcntl(Register dst, Register src) {
DCHECK(IsEnabled(POPCNT));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xB8);
emit_modrm(dst, src);
}
void Assembler::popcntl(Register dst, Operand src) {
DCHECK(IsEnabled(POPCNT));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xB8);
emit_operand(dst, src);
}
void Assembler::bmi2q(SIMDPrefix pp, uint8_t op, Register reg, Register vreg,
Register rm) {
DCHECK(IsEnabled(BMI2));
EnsureSpace ensure_space(this);
emit_vex_prefix(reg, vreg, rm, kLZ, pp, k0F38, kW1);
emit(op);
emit_modrm(reg, rm);
}
void Assembler::bmi2q(SIMDPrefix pp, uint8_t op, Register reg, Register vreg,
Operand rm) {
DCHECK(IsEnabled(BMI2));
EnsureSpace ensure_space(this);
emit_vex_prefix(reg, vreg, rm, kLZ, pp, k0F38, kW1);
emit(op);
emit_operand(reg, rm);
}
void Assembler::bmi2l(SIMDPrefix pp, uint8_t op, Register reg, Register vreg,
Register rm) {
DCHECK(IsEnabled(BMI2));
EnsureSpace ensure_space(this);
emit_vex_prefix(reg, vreg, rm, kLZ, pp, k0F38, kW0);
emit(op);
emit_modrm(reg, rm);
}
void Assembler::bmi2l(SIMDPrefix pp, uint8_t op, Register reg, Register vreg,
Operand rm) {
DCHECK(IsEnabled(BMI2));
EnsureSpace ensure_space(this);
emit_vex_prefix(reg, vreg, rm, kLZ, pp, k0F38, kW0);
emit(op);
emit_operand(reg, rm);
}
void Assembler::rorxq(Register dst, Register src, uint8_t imm8) {
DCHECK(IsEnabled(BMI2));
DCHECK(is_uint8(imm8));
Register vreg = Register::from_code(0); // VEX.vvvv unused
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, vreg, src, kLZ, kF2, k0F3A, kW1);
emit(0xF0);
emit_modrm(dst, src);
emit(imm8);
}
void Assembler::rorxq(Register dst, Operand src, uint8_t imm8) {
DCHECK(IsEnabled(BMI2));
DCHECK(is_uint8(imm8));
Register vreg = Register::from_code(0); // VEX.vvvv unused
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, vreg, src, kLZ, kF2, k0F3A, kW1);
emit(0xF0);
emit_operand(dst, src);
emit(imm8);
}
void Assembler::rorxl(Register dst, Register src, uint8_t imm8) {
DCHECK(IsEnabled(BMI2));
DCHECK(is_uint8(imm8));
Register vreg = Register::from_code(0); // VEX.vvvv unused
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, vreg, src, kLZ, kF2, k0F3A, kW0);
emit(0xF0);
emit_modrm(dst, src);
emit(imm8);
}
void Assembler::rorxl(Register dst, Operand src, uint8_t imm8) {
DCHECK(IsEnabled(BMI2));
DCHECK(is_uint8(imm8));
Register vreg = Register::from_code(0); // VEX.vvvv unused
EnsureSpace ensure_space(this);
emit_vex_prefix(dst, vreg, src, kLZ, kF2, k0F3A, kW0);
emit(0xF0);
emit_operand(dst, src);
emit(imm8);
}
void Assembler::pause() {
emit(0xF3);
emit(0x90);
}
void Assembler::movups(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
if (src.low_bits() == 4) {
// Try to avoid an unnecessary SIB byte.
emit_optional_rex_32(src, dst);
emit(0x0F);
emit(0x11);
emit_sse_operand(src, dst);
} else {
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x10);
emit_sse_operand(dst, src);
}
}
void Assembler::movups(XMMRegister dst, Operand src) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x10);
emit_sse_operand(dst, src);
}
void Assembler::movups(Operand dst, XMMRegister src) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(src, dst);
emit(0x0F);
emit(0x11);
emit_sse_operand(src, dst);
}
void Assembler::sse_instr(XMMRegister dst, XMMRegister src, uint8_t escape,
uint8_t opcode) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(escape);
emit(opcode);
emit_sse_operand(dst, src);
}
void Assembler::sse_instr(XMMRegister dst, Operand src, uint8_t escape,
uint8_t opcode) {
EnsureSpace ensure_space(this);
emit_optional_rex_32(dst, src);
emit(escape);
emit(opcode);
emit_sse_operand(dst, src);
}
void Assembler::sse2_instr(XMMRegister dst, XMMRegister src, uint8_t prefix,
uint8_t escape, uint8_t opcode) {
EnsureSpace ensure_space(this);
emit(prefix);
emit_optional_rex_32(dst, src);
emit(escape);
emit(opcode);
emit_sse_operand(dst, src);
}
void Assembler::sse2_instr(XMMRegister dst, Operand src, uint8_t prefix,
uint8_t escape, uint8_t opcode) {
EnsureSpace ensure_space(this);
emit(prefix);
emit_optional_rex_32(dst, src);
emit(escape);
emit(opcode);
emit_sse_operand(dst, src);
}
void Assembler::ssse3_instr(XMMRegister dst, XMMRegister src, uint8_t prefix,
uint8_t escape1, uint8_t escape2, uint8_t opcode) {
DCHECK(IsEnabled(SSSE3));
EnsureSpace ensure_space(this);
emit(prefix);
emit_optional_rex_32(dst, src);
emit(escape1);
emit(escape2);
emit(opcode);
emit_sse_operand(dst, src);
}
void Assembler::ssse3_instr(XMMRegister dst, Operand src, uint8_t prefix,
uint8_t escape1, uint8_t escape2, uint8_t opcode) {
DCHECK(IsEnabled(SSSE3));
EnsureSpace ensure_space(this);
emit(prefix);
emit_optional_rex_32(dst, src);
emit(escape1);
emit(escape2);
emit(opcode);
emit_sse_operand(dst, src);
}
void Assembler::sse4_instr(XMMRegister dst, Register src, uint8_t prefix,
uint8_t escape1, uint8_t escape2, uint8_t opcode,
int8_t imm8) {
DCHECK(is_uint8(imm8));
DCHECK(IsEnabled(SSE4_1));
EnsureSpace ensure_space(this);
emit(prefix);
emit_optional_rex_32(dst, src);
emit(escape1);
emit(escape2);
emit(opcode);
emit_sse_operand(dst, src);
emit(imm8);
}
void Assembler::sse4_instr(XMMRegister dst, XMMRegister src, uint8_t prefix,
uint8_t escape1, uint8_t escape2, uint8_t opcode) {
DCHECK(IsEnabled(SSE4_1));
EnsureSpace ensure_space(this);
emit(prefix);
emit_optional_rex_32(dst, src);
emit(escape1);
emit(escape2);
emit(opcode);
emit_sse_operand(dst, src);
}
void Assembler::sse4_instr(XMMRegister dst, Operand src, uint8_t prefix,
uint8_t escape1, uint8_t escape2, uint8_t opcode) {
DCHECK(IsEnabled(SSE4_1));
EnsureSpace ensure_space(this);
emit(prefix);
emit_optional_rex_32(dst, src);
emit(escape1);
emit(escape2);
emit(opcode);
emit_sse_operand(dst, src);
}
void Assembler::sse4_instr(Register dst, XMMRegister src, uint8_t prefix,
uint8_t escape1, uint8_t escape2, uint8_t opcode,
int8_t imm8) {
DCHECK(is_uint8(imm8));
DCHECK(IsEnabled(SSE4_1));
EnsureSpace ensure_space(this);
emit(prefix);
emit_optional_rex_32(src, dst);
emit(escape1);
emit(escape2);
emit(opcode);
emit_sse_operand(src, dst);
emit(imm8);
}
void Assembler::sse4_instr(Operand dst, XMMRegister src, uint8_t prefix,
uint8_t escape1, uint8_t escape2, uint8_t opcode,
int8_t imm8) {
DCHECK(is_uint8(imm8));
DCHECK(IsEnabled(SSE4_1));
EnsureSpace ensure_space(this);
emit(prefix);
emit_optional_rex_32(src, dst);
emit(escape1);
emit(escape2);
emit(opcode);
emit_sse_operand(src, dst);
emit(imm8);
}
void Assembler::sse4_2_instr(XMMRegister dst, XMMRegister src, uint8_t prefix,
uint8_t escape1, uint8_t escape2, uint8_t opcode) {
DCHECK(IsEnabled(SSE4_2));
EnsureSpace ensure_space(this);
emit(prefix);
emit_optional_rex_32(dst, src);
emit(escape1);
emit(escape2);
emit(opcode);
emit_sse_operand(dst, src);
}
void Assembler::sse4_2_instr(XMMRegister dst, Operand src, uint8_t prefix,
uint8_t escape1, uint8_t escape2, uint8_t opcode) {
DCHECK(IsEnabled(SSE4_2));
EnsureSpace ensure_space(this);
emit(prefix);
emit_optional_rex_32(dst, src);
emit(escape1);
emit(escape2);
emit(opcode);
emit_sse_operand(dst, src);
}
void Assembler::lddqu(XMMRegister dst, Operand src) {
DCHECK(IsEnabled(SSE3));
EnsureSpace ensure_space(this);
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xF0);
emit_sse_operand(dst, src);
}
void Assembler::movddup(XMMRegister dst, XMMRegister src) {
DCHECK(IsEnabled(SSE3));
EnsureSpace ensure_space(this);
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x12);
emit_sse_operand(dst, src);
}
void Assembler::movddup(XMMRegister dst, Operand src) {
DCHECK(IsEnabled(SSE3));
EnsureSpace ensure_space(this);
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x12);
emit_sse_operand(dst, src);
}
void Assembler::movshdup(XMMRegister dst, XMMRegister src) {
DCHECK(IsEnabled(SSE3));
EnsureSpace ensure_space(this);
emit(0xF3);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x16);
emit_sse_operand(dst, src);
}
void Assembler::psrldq(XMMRegister dst, uint8_t shift) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(dst);
emit(0x0F);
emit(0x73);
emit_sse_operand(dst);
emit(shift);
}
void Assembler::pshufhw(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
EnsureSpace ensure_space(this);
emit(0xF3);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x70);
emit_sse_operand(dst, src);
emit(shuffle);
}
void Assembler::pshufhw(XMMRegister dst, Operand src, uint8_t shuffle) {
EnsureSpace ensure_space(this);
emit(0xF3);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x70);
emit_sse_operand(dst, src);
emit(shuffle);
}
void Assembler::pshuflw(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
EnsureSpace ensure_space(this);
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x70);
emit_sse_operand(dst, src);
emit(shuffle);
}
void Assembler::pshuflw(XMMRegister dst, Operand src, uint8_t shuffle) {
EnsureSpace ensure_space(this);
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x70);
emit_sse_operand(dst, src);
emit(shuffle);
}
void Assembler::pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x70);
emit_sse_operand(dst, src);
emit(shuffle);
}
void Assembler::pshufd(XMMRegister dst, Operand src, uint8_t shuffle) {
EnsureSpace ensure_space(this);
emit(0x66);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x70);
emit_sse_operand(dst, src);
emit(shuffle);
}
void Assembler::emit_sse_operand(XMMRegister reg, Operand adr) {
Register ireg = Register::from_code(reg.code());
emit_operand(ireg, adr);
}
void Assembler::emit_sse_operand(Register reg, Operand adr) {
emit_operand(reg, adr);
}
void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
emit(0xC0 | (dst.low_bits() << 3) | src.low_bits());
}
void Assembler::emit_sse_operand(XMMRegister dst, Register src) {
emit(0xC0 | (dst.low_bits() << 3) | src.low_bits());
}
void Assembler::emit_sse_operand(Register dst, XMMRegister src) {
emit(0xC0 | (dst.low_bits() << 3) | src.low_bits());
}
void Assembler::emit_sse_operand(XMMRegister dst) {
emit(0xD8 | dst.low_bits());
}
void Assembler::db(uint8_t data) {
EnsureSpace ensure_space(this);
emit(data);
}
void Assembler::dd(uint32_t data) {
EnsureSpace ensure_space(this);
emitl(data);
}
void Assembler::dq(uint64_t data) {
EnsureSpace ensure_space(this);
emitq(data);
}
void Assembler::dq(Label* label) {
EnsureSpace ensure_space(this);
if (label->is_bound()) {
internal_reference_positions_.push_back(pc_offset());
emit(Immediate64(reinterpret_cast<Address>(buffer_start_) + label->pos(),
RelocInfo::INTERNAL_REFERENCE));
} else {
RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
emitl(0); // Zero for the first 32bit marks it as 64bit absolute address.
if (label->is_linked()) {
emitl(label->pos());
label->link_to(pc_offset() - sizeof(int32_t));
} else {
DCHECK(label->is_unused());
int32_t current = pc_offset();
emitl(current);
label->link_to(current);
}
}
}
void Assembler::WriteBuiltinJumpTableEntry(Label* label, const int table_pos) {
EnsureSpace ensure_space(this);
CHECK(label->is_bound());
int32_t value = label->pos() - table_pos;
RecordRelocInfo(RelocInfo::RELATIVE_SWITCH_TABLE_ENTRY, label->pos());
emitl(value);
}
// Relocation information implementations.
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
if (!ShouldRecordRelocInfo(rmode)) return;
RelocInfo rinfo(reinterpret_cast<Address>(pc_), rmode, data);
reloc_info_writer.Write(&rinfo);
}
const int RelocInfo::kApplyMask =
RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
RelocInfo::ModeMask(RelocInfo::NEAR_BUILTIN_ENTRY) |
RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
RelocInfo::ModeMask(RelocInfo::WASM_CALL) |
RelocInfo::ModeMask(RelocInfo::WASM_STUB_CALL);
bool RelocInfo::IsCodedSpecially() {
// The deserializer needs to know whether a pointer is specially coded. Being
// specially coded on x64 means that it is a relative 32 bit address, as used
// by branch instructions.
return (1 << rmode_) & kApplyMask;
}
bool RelocInfo::IsInConstantPool() { return false; }
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_X64