%PDF- %PDF-
| Direktori : /home2/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/builtins/x64/ |
| Current File : //home2/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/builtins/x64/builtins-x64.cc |
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X64
#include "src/api/api-arguments.h"
#include "src/base/bits-iterator.h"
#include "src/base/iterator.h"
#include "src/builtins/builtins-descriptors.h"
#include "src/codegen/code-factory.h"
#include "src/codegen/interface-descriptors-inl.h"
// For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop.
#include "src/codegen/macro-assembler-inl.h"
#include "src/codegen/register-configuration.h"
#include "src/codegen/x64/assembler-x64.h"
#include "src/common/globals.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/frame-constants.h"
#include "src/execution/frames.h"
#include "src/heap/heap-inl.h"
#include "src/logging/counters.h"
#include "src/objects/cell.h"
#include "src/objects/code.h"
#include "src/objects/debug-objects.h"
#include "src/objects/foreign.h"
#include "src/objects/heap-number.h"
#include "src/objects/js-generator.h"
#include "src/objects/objects-inl.h"
#include "src/objects/smi.h"
#if V8_ENABLE_WEBASSEMBLY
#include "src/wasm/baseline/liftoff-assembler-defs.h"
#include "src/wasm/object-access.h"
#include "src/wasm/stacks.h"
#include "src/wasm/wasm-constants.h"
#include "src/wasm/wasm-linkage.h"
#include "src/wasm/wasm-objects.h"
#endif // V8_ENABLE_WEBASSEMBLY
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) {
__ LoadAddress(kJavaScriptCallExtraArg1Register,
ExternalReference::Create(address));
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
RelocInfo::CODE_TARGET);
}
namespace {
constexpr int kReceiverOnStackSize = kSystemPointerSize;
enum class ArgumentsElementType {
kRaw, // Push arguments as they are.
kHandle // Dereference arguments before pushing.
};
void Generate_PushArguments(MacroAssembler* masm, Register array, Register argc,
Register scratch,
ArgumentsElementType element_type) {
DCHECK(!AreAliased(array, argc, scratch, kScratchRegister));
Register counter = scratch;
Label loop, entry;
__ leaq(counter, Operand(argc, -kJSArgcReceiverSlots));
__ jmp(&entry);
__ bind(&loop);
Operand value(array, counter, times_system_pointer_size, 0);
if (element_type == ArgumentsElementType::kHandle) {
__ movq(kScratchRegister, value);
value = Operand(kScratchRegister, 0);
}
__ Push(value);
__ bind(&entry);
__ decq(counter);
__ j(greater_equal, &loop, Label::kNear);
}
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax: number of arguments
// -- rdi: constructor function
// -- rdx: new target
// -- rsi: context
// -----------------------------------
Label stack_overflow;
__ StackOverflowCheck(rax, &stack_overflow, Label::kFar);
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ SmiTag(rcx, rax);
__ Push(rsi);
__ Push(rcx);
// TODO(victorgomes): When the arguments adaptor is completely removed, we
// should get the formal parameter count and copy the arguments in its
// correct position (including any undefined), instead of delaying this to
// InvokeFunction.
// Set up pointer to first argument (skip receiver).
__ leaq(rbx, Operand(rbp, StandardFrameConstants::kFixedFrameSizeAboveFp +
kSystemPointerSize));
// Copy arguments to the expression stack.
// rbx: Pointer to start of arguments.
// rax: Number of arguments.
Generate_PushArguments(masm, rbx, rax, rcx, ArgumentsElementType::kRaw);
// The receiver for the builtin/api call.
__ PushRoot(RootIndex::kTheHoleValue);
// Call the function.
// rax: number of arguments (untagged)
// rdi: constructor function
// rdx: new target
__ InvokeFunction(rdi, rdx, rax, InvokeType::kCall);
// Restore smi-tagged arguments count from the frame.
__ movq(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ DropArguments(rbx, rcx, MacroAssembler::kCountIsSmi,
MacroAssembler::kCountIncludesReceiver);
__ ret(0);
__ bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3(); // This should be unreachable.
}
}
} // namespace
// The construct stub for ES5 constructor functions and ES6 class constructors.
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax: number of arguments (untagged)
// -- rdi: constructor function
// -- rdx: new target
// -- rsi: context
// -- sp[...]: constructor arguments
// -----------------------------------
FrameScope scope(masm, StackFrame::MANUAL);
// Enter a construct frame.
__ EnterFrame(StackFrame::CONSTRUCT);
Label post_instantiation_deopt_entry, not_create_implicit_receiver;
// Preserve the incoming parameters on the stack.
__ SmiTag(rcx, rax);
__ Push(rsi);
__ Push(rcx);
__ Push(rdi);
__ PushRoot(RootIndex::kTheHoleValue);
__ Push(rdx);
// ----------- S t a t e -------------
// -- sp[0*kSystemPointerSize]: new target
// -- sp[1*kSystemPointerSize]: padding
// -- rdi and sp[2*kSystemPointerSize]: constructor function
// -- sp[3*kSystemPointerSize]: argument count
// -- sp[4*kSystemPointerSize]: context
// -----------------------------------
const TaggedRegister shared_function_info(rbx);
__ LoadTaggedField(shared_function_info,
FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movl(rbx,
FieldOperand(shared_function_info, SharedFunctionInfo::kFlagsOffset));
__ DecodeField<SharedFunctionInfo::FunctionKindBits>(rbx);
__ JumpIfIsInRange(
rbx, static_cast<uint32_t>(FunctionKind::kDefaultDerivedConstructor),
static_cast<uint32_t>(FunctionKind::kDerivedConstructor),
¬_create_implicit_receiver, Label::kNear);
// If not derived class constructor: Allocate the new receiver object.
__ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET);
__ jmp(&post_instantiation_deopt_entry, Label::kNear);
// Else: use TheHoleValue as receiver for constructor call
__ bind(¬_create_implicit_receiver);
__ LoadRoot(rax, RootIndex::kTheHoleValue);
// ----------- S t a t e -------------
// -- rax implicit receiver
// -- Slot 4 / sp[0*kSystemPointerSize] new target
// -- Slot 3 / sp[1*kSystemPointerSize] padding
// -- Slot 2 / sp[2*kSystemPointerSize] constructor function
// -- Slot 1 / sp[3*kSystemPointerSize] number of arguments (tagged)
// -- Slot 0 / sp[4*kSystemPointerSize] context
// -----------------------------------
// Deoptimizer enters here.
masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
masm->pc_offset());
__ bind(&post_instantiation_deopt_entry);
// Restore new target.
__ Pop(rdx);
// Push the allocated receiver to the stack.
__ Push(rax);
// We need two copies because we may have to return the original one
// and the calling conventions dictate that the called function pops the
// receiver. The second copy is pushed after the arguments, we saved in r8
// since rax needs to store the number of arguments before
// InvokingFunction.
__ movq(r8, rax);
// Set up pointer to first argument (skip receiver).
__ leaq(rbx, Operand(rbp, StandardFrameConstants::kFixedFrameSizeAboveFp +
kSystemPointerSize));
// Restore constructor function and argument count.
__ movq(rdi, Operand(rbp, ConstructFrameConstants::kConstructorOffset));
__ SmiUntagUnsigned(rax,
Operand(rbp, ConstructFrameConstants::kLengthOffset));
// Check if we have enough stack space to push all arguments.
// Argument count in rax.
Label stack_overflow;
__ StackOverflowCheck(rax, &stack_overflow);
// TODO(victorgomes): When the arguments adaptor is completely removed, we
// should get the formal parameter count and copy the arguments in its
// correct position (including any undefined), instead of delaying this to
// InvokeFunction.
// Copy arguments to the expression stack.
// rbx: Pointer to start of arguments.
// rax: Number of arguments.
Generate_PushArguments(masm, rbx, rax, rcx, ArgumentsElementType::kRaw);
// Push implicit receiver.
__ Push(r8);
// Call the function.
__ InvokeFunction(rdi, rdx, rax, InvokeType::kCall);
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, do_throw, leave_and_return, check_result;
// If the result is undefined, we'll use the implicit receiver. Otherwise we
// do a smi check and fall through to check if the return value is a valid
// receiver.
__ JumpIfNotRoot(rax, RootIndex::kUndefinedValue, &check_result,
Label::kNear);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ movq(rax, Operand(rsp, 0 * kSystemPointerSize));
__ JumpIfRoot(rax, RootIndex::kTheHoleValue, &do_throw, Label::kNear);
__ bind(&leave_and_return);
// Restore the arguments count.
__ movq(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset));
__ LeaveFrame(StackFrame::CONSTRUCT);
// Remove caller arguments from the stack and return.
__ DropArguments(rbx, rcx, MacroAssembler::kCountIsSmi,
MacroAssembler::kCountIncludesReceiver);
__ ret(0);
// If the result is a smi, it is *not* an object in the ECMA sense.
__ bind(&check_result);
__ JumpIfSmi(rax, &use_receiver, Label::kNear);
// Check if the type of the result is not an object in the ECMA sense.
__ JumpIfJSAnyIsNotPrimitive(rax, rcx, &leave_and_return, Label::kNear);
__ jmp(&use_receiver);
__ bind(&do_throw);
// Restore context from the frame.
__ movq(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
// We don't return here.
__ int3();
__ bind(&stack_overflow);
// Restore the context from the frame.
__ movq(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rdi);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
namespace {
// Called with the native C calling convention. The corresponding function
// signature is either:
// using JSEntryFunction = GeneratedCode<Address(
// Address root_register_value, Address new_target, Address target,
// Address receiver, intptr_t argc, Address** argv)>;
// or
// using JSEntryFunction = GeneratedCode<Address(
// Address root_register_value, MicrotaskQueue* microtask_queue)>;
void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
Builtin entry_trampoline) {
Label invoke, handler_entry, exit;
Label not_outermost_js, not_outermost_js_2;
{
NoRootArrayScope uninitialized_root_register(masm);
// Set up the frame.
//
// Note: at this point we are entering V8-generated code from C++ and thus
// rbp can be an arbitrary value (-fomit-frame-pointer). Since V8 still
// needs to know where the next interesting frame is for the purpose of
// stack walks, we instead push the stored EXIT frame fp
// (IsolateAddressId::kCEntryFPAddress) below to a dedicated slot.
__ pushq(rbp);
__ movq(rbp, rsp);
// Push the stack frame type.
__ Push(Immediate(StackFrame::TypeToMarker(type)));
// Reserve a slot for the context. It is filled after the root register has
// been set up.
__ AllocateStackSpace(kSystemPointerSize);
// Save callee-saved registers (X64/X32/Win64 calling conventions).
__ pushq(r12);
__ pushq(r13);
__ pushq(r14);
__ pushq(r15);
#ifdef V8_TARGET_OS_WIN
__ pushq(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
__ pushq(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
#endif
__ pushq(rbx);
#ifdef V8_TARGET_OS_WIN
// On Win64 XMM6-XMM15 are callee-save.
__ AllocateStackSpace(EntryFrameConstants::kXMMRegistersBlockSize);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15);
static_assert(EntryFrameConstants::kCalleeSaveXMMRegisters == 10);
static_assert(EntryFrameConstants::kXMMRegistersBlockSize ==
EntryFrameConstants::kXMMRegisterSize *
EntryFrameConstants::kCalleeSaveXMMRegisters);
#endif
// Initialize the root register.
// C calling convention. The first argument is passed in arg_reg_1.
__ movq(kRootRegister, arg_reg_1);
#ifdef V8_COMPRESS_POINTERS
// Initialize the pointer cage base register.
__ LoadRootRelative(kPtrComprCageBaseRegister,
IsolateData::cage_base_offset());
#endif
}
// Save copies of the top frame descriptor on the stack.
ExternalReference c_entry_fp = ExternalReference::Create(
IsolateAddressId::kCEntryFPAddress, masm->isolate());
{
// Keep this static_assert to preserve a link between the offset constant
// and the code location it refers to.
#ifdef V8_TARGET_OS_WIN
static_assert(EntryFrameConstants::kNextExitFrameFPOffset ==
-3 * kSystemPointerSize + -7 * kSystemPointerSize -
EntryFrameConstants::kXMMRegistersBlockSize);
#else
static_assert(EntryFrameConstants::kNextExitFrameFPOffset ==
-3 * kSystemPointerSize + -5 * kSystemPointerSize);
#endif // V8_TARGET_OS_WIN
Operand c_entry_fp_operand = masm->ExternalReferenceAsOperand(c_entry_fp);
__ Push(c_entry_fp_operand);
// Clear c_entry_fp, now we've pushed its previous value to the stack.
// If the c_entry_fp is not already zero and we don't clear it, the
// StackFrameIteratorForProfiler will assume we are executing C++ and miss
// the JS frames on top.
__ Move(c_entry_fp_operand, 0);
}
// Store the context address in the previously-reserved slot.
ExternalReference context_address = ExternalReference::Create(
IsolateAddressId::kContextAddress, masm->isolate());
__ Load(kScratchRegister, context_address);
static constexpr int kOffsetToContextSlot = -2 * kSystemPointerSize;
__ movq(Operand(rbp, kOffsetToContextSlot), kScratchRegister);
// If this is the outermost JS call, set js_entry_sp value.
ExternalReference js_entry_sp = ExternalReference::Create(
IsolateAddressId::kJSEntrySPAddress, masm->isolate());
__ Load(rax, js_entry_sp);
__ testq(rax, rax);
__ j(not_zero, ¬_outermost_js);
__ Push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ movq(rax, rbp);
__ Store(js_entry_sp, rax);
Label cont;
__ jmp(&cont);
__ bind(¬_outermost_js);
__ Push(Immediate(StackFrame::INNER_JSENTRY_FRAME));
__ bind(&cont);
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ jmp(&invoke);
__ bind(&handler_entry);
// Store the current pc as the handler offset. It's used later to create the
// handler table.
masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos());
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel.
ExternalReference pending_exception = ExternalReference::Create(
IsolateAddressId::kPendingExceptionAddress, masm->isolate());
__ Store(pending_exception, rax);
__ LoadRoot(rax, RootIndex::kException);
__ jmp(&exit);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
__ PushStackHandler();
// Invoke the function by calling through JS entry trampoline builtin and
// pop the faked function when we return.
Handle<Code> trampoline_code =
masm->isolate()->builtins()->code_handle(entry_trampoline);
__ Call(trampoline_code, RelocInfo::CODE_TARGET);
// Unlink this frame from the handler chain.
__ PopStackHandler();
__ bind(&exit);
// Check if the current stack frame is marked as the outermost JS frame.
__ Pop(rbx);
__ cmpq(rbx, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ j(not_equal, ¬_outermost_js_2);
__ Move(kScratchRegister, js_entry_sp);
__ movq(Operand(kScratchRegister, 0), Immediate(0));
__ bind(¬_outermost_js_2);
// Restore the top frame descriptor from the stack.
{
Operand c_entry_fp_operand = masm->ExternalReferenceAsOperand(c_entry_fp);
__ Pop(c_entry_fp_operand);
}
// Restore callee-saved registers (X64 conventions).
#ifdef V8_TARGET_OS_WIN
// On Win64 XMM6-XMM15 are callee-save
__ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0));
__ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1));
__ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2));
__ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3));
__ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4));
__ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5));
__ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6));
__ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7));
__ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8));
__ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9));
__ addq(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
#endif
__ popq(rbx);
#ifdef V8_TARGET_OS_WIN
// Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
__ popq(rsi);
__ popq(rdi);
#endif
__ popq(r15);
__ popq(r14);
__ popq(r13);
__ popq(r12);
__ addq(rsp, Immediate(2 * kSystemPointerSize)); // remove markers
// Restore frame pointer and return.
__ popq(rbp);
__ ret(0);
}
} // namespace
void Builtins::Generate_JSEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtin::kJSEntryTrampoline);
}
void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY,
Builtin::kJSConstructEntryTrampoline);
}
void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::ENTRY,
Builtin::kRunMicrotasksTrampoline);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Expects six C++ function parameters.
// - Address root_register_value
// - Address new_target (tagged Object pointer)
// - Address function (tagged JSFunction pointer)
// - Address receiver (tagged Object pointer)
// - intptr_t argc
// - Address** argv (pointer to array of tagged Object pointers)
// (see Handle::Invoke in execution.cc).
// Open a C++ scope for the FrameScope.
{
// Platform specific argument handling. After this, the stack contains
// an internal frame and the pushed function and receiver, and
// register rax and rbx holds the argument count and argument array,
// while rdi holds the function pointer, rsi the context, and rdx the
// new.target.
// MSVC parameters in:
// rcx : root_register_value
// rdx : new_target
// r8 : function
// r9 : receiver
// [rsp+0x20] : argc
// [rsp+0x28] : argv
//
// GCC parameters in:
// rdi : root_register_value
// rsi : new_target
// rdx : function
// rcx : receiver
// r8 : argc
// r9 : argv
__ movq(rdi, arg_reg_3);
__ Move(rdx, arg_reg_2);
// rdi : function
// rdx : new_target
// Clear the context before we push it when entering the internal frame.
__ Move(rsi, 0);
// Enter an internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address = ExternalReference::Create(
IsolateAddressId::kContextAddress, masm->isolate());
__ movq(rsi, masm->ExternalReferenceAsOperand(context_address));
// Push the function onto the stack.
__ Push(rdi);
#ifdef V8_TARGET_OS_WIN
// Load the previous frame pointer to access C arguments on stack
__ movq(kScratchRegister, Operand(rbp, 0));
// Load the number of arguments and setup pointer to the arguments.
__ movq(rax, Operand(kScratchRegister, EntryFrameConstants::kArgcOffset));
__ movq(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset));
#else // V8_TARGET_OS_WIN
// Load the number of arguments and setup pointer to the arguments.
__ movq(rax, r8);
__ movq(rbx, r9);
__ movq(r9, arg_reg_4); // Temporarily saving the receiver.
#endif // V8_TARGET_OS_WIN
// Current stack contents:
// [rsp + kSystemPointerSize] : Internal frame
// [rsp] : function
// Current register contents:
// rax : argc
// rbx : argv
// rsi : context
// rdi : function
// rdx : new.target
// r9 : receiver
// Check if we have enough stack space to push all arguments.
// Argument count in rax.
Label enough_stack_space, stack_overflow;
__ StackOverflowCheck(rax, &stack_overflow, Label::kNear);
__ jmp(&enough_stack_space, Label::kNear);
__ bind(&stack_overflow);
__ CallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
__ bind(&enough_stack_space);
// Copy arguments to the stack.
// Register rbx points to array of pointers to handle locations.
// Push the values of these handles.
// rbx: Pointer to start of arguments.
// rax: Number of arguments.
Generate_PushArguments(masm, rbx, rax, rcx, ArgumentsElementType::kHandle);
// Push the receiver.
__ Push(r9);
// Invoke the builtin code.
Handle<Code> builtin = is_construct
? BUILTIN_CODE(masm->isolate(), Construct)
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the internal frame. Notice that this also removes the empty
// context and the function left on the stack by the code
// invocation.
}
__ ret(0);
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) {
// arg_reg_2: microtask_queue
__ movq(RunMicrotasksDescriptor::MicrotaskQueueRegister(), arg_reg_2);
__ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET);
}
static void AssertCodeIsBaselineAllowClobber(MacroAssembler* masm,
Register code, Register scratch) {
// Verify that the code kind is baseline code via the CodeKind.
__ movl(scratch, FieldOperand(code, Code::kFlagsOffset));
__ DecodeField<Code::KindField>(scratch);
__ cmpl(scratch, Immediate(static_cast<int>(CodeKind::BASELINE)));
__ Assert(equal, AbortReason::kExpectedBaselineData);
}
static void AssertCodeIsBaseline(MacroAssembler* masm, Register code,
Register scratch) {
DCHECK(!AreAliased(code, scratch));
return AssertCodeIsBaselineAllowClobber(masm, code, scratch);
}
static void GetSharedFunctionInfoBytecodeOrBaseline(MacroAssembler* masm,
Register sfi_data,
Register scratch1,
Label* is_baseline) {
ASM_CODE_COMMENT(masm);
Label done;
__ LoadMap(scratch1, sfi_data);
#ifndef V8_JITLESS
__ CmpInstanceType(scratch1, CODE_TYPE);
if (v8_flags.debug_code) {
Label not_baseline;
__ j(not_equal, ¬_baseline);
AssertCodeIsBaseline(masm, sfi_data, scratch1);
__ j(equal, is_baseline);
__ bind(¬_baseline);
} else {
__ j(equal, is_baseline);
}
#endif // !V8_JITLESS
__ CmpInstanceType(scratch1, INTERPRETER_DATA_TYPE);
__ j(not_equal, &done, Label::kNear);
__ LoadTaggedField(
sfi_data, FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
__ bind(&done);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the value to pass to the generator
// -- rdx : the JSGeneratorObject to resume
// -- rsp[0] : return address
// -----------------------------------
// Store input value into generator object.
__ StoreTaggedField(
FieldOperand(rdx, JSGeneratorObject::kInputOrDebugPosOffset), rax);
Register object = WriteBarrierDescriptor::ObjectRegister();
__ Move(object, rdx);
__ RecordWriteField(object, JSGeneratorObject::kInputOrDebugPosOffset, rax,
WriteBarrierDescriptor::SlotAddressRegister(),
SaveFPRegsMode::kIgnore);
// Check that rdx is still valid, RecordWrite might have clobbered it.
__ AssertGeneratorObject(rdx);
Register decompr_scratch1 = COMPRESS_POINTERS_BOOL ? r8 : no_reg;
// Load suspended function and context.
__ LoadTaggedField(rdi,
FieldOperand(rdx, JSGeneratorObject::kFunctionOffset));
__ LoadTaggedField(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
Operand debug_hook_operand = masm->ExternalReferenceAsOperand(debug_hook);
__ cmpb(debug_hook_operand, Immediate(0));
__ j(not_equal, &prepare_step_in_if_stepping);
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
Operand debug_suspended_generator_operand =
masm->ExternalReferenceAsOperand(debug_suspended_generator);
__ cmpq(rdx, debug_suspended_generator_operand);
__ j(equal, &prepare_step_in_suspended_generator);
__ bind(&stepping_prepared);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label stack_overflow;
__ cmpq(rsp, __ StackLimitAsOperand(StackLimitKind::kRealStackLimit));
__ j(below, &stack_overflow);
// Pop return address.
__ PopReturnAddressTo(rax);
// ----------- S t a t e -------------
// -- rax : return address
// -- rdx : the JSGeneratorObject to resume
// -- rdi : generator function
// -- rsi : generator context
// -----------------------------------
// Copy the function arguments from the generator object's register file.
__ LoadTaggedField(rcx,
FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movzxwq(
rcx, FieldOperand(rcx, SharedFunctionInfo::kFormalParameterCountOffset));
__ decq(rcx); // Exclude receiver.
__ LoadTaggedField(
rbx, FieldOperand(rdx, JSGeneratorObject::kParametersAndRegistersOffset));
{
Label done_loop, loop;
__ bind(&loop);
__ decq(rcx);
__ j(less, &done_loop, Label::kNear);
__ PushTaggedField(
FieldOperand(rbx, rcx, times_tagged_size, FixedArray::kHeaderSize),
decompr_scratch1);
__ jmp(&loop);
__ bind(&done_loop);
// Push the receiver.
__ PushTaggedField(FieldOperand(rdx, JSGeneratorObject::kReceiverOffset),
decompr_scratch1);
}
// Underlying function needs to have bytecode available.
if (v8_flags.debug_code) {
Label is_baseline, ok;
__ LoadTaggedField(
rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ LoadTaggedField(
rcx, FieldOperand(rcx, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecodeOrBaseline(masm, rcx, kScratchRegister,
&is_baseline);
__ IsObjectType(rcx, BYTECODE_ARRAY_TYPE, rcx);
__ Assert(equal, AbortReason::kMissingBytecodeArray);
__ jmp(&ok);
__ bind(&is_baseline);
__ IsObjectType(rcx, CODE_TYPE, rcx);
__ Assert(equal, AbortReason::kMissingBytecodeArray);
__ bind(&ok);
}
// Resume (Ignition/TurboFan) generator object.
{
__ PushReturnAddressFrom(rax);
__ LoadTaggedField(
rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movzxwq(rax, FieldOperand(
rax, SharedFunctionInfo::kFormalParameterCountOffset));
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
__ JumpJSFunction(rdi);
}
__ bind(&prepare_step_in_if_stepping);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rdx);
__ Push(rdi);
// Push hole as receiver since we do not use it for stepping.
__ PushRoot(RootIndex::kTheHoleValue);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(rdx);
__ LoadTaggedField(rdi,
FieldOperand(rdx, JSGeneratorObject::kFunctionOffset));
}
__ jmp(&stepping_prepared);
__ bind(&prepare_step_in_suspended_generator);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rdx);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(rdx);
__ LoadTaggedField(rdi,
FieldOperand(rdx, JSGeneratorObject::kFunctionOffset));
}
__ jmp(&stepping_prepared);
__ bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3(); // This should be unreachable.
}
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
Register scratch2) {
ASM_CODE_COMMENT(masm);
Register params_size = scratch1;
// Get the size of the formal parameters (in bytes).
__ movq(params_size,
Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ movl(params_size,
FieldOperand(params_size, BytecodeArray::kParameterSizeOffset));
Register actual_params_size = scratch2;
// Compute the size of the actual parameters (in bytes).
__ movq(actual_params_size,
Operand(rbp, StandardFrameConstants::kArgCOffset));
__ leaq(actual_params_size,
Operand(actual_params_size, times_system_pointer_size, 0));
// If actual is bigger than formal, then we should use it to free up the stack
// arguments.
Label corrected_args_count;
__ cmpq(params_size, actual_params_size);
__ j(greater_equal, &corrected_args_count, Label::kNear);
__ movq(params_size, actual_params_size);
__ bind(&corrected_args_count);
// Leave the frame (also dropping the register file).
__ leave();
// Drop receiver + arguments.
__ DropArguments(params_size, scratch2, MacroAssembler::kCountIsBytes,
MacroAssembler::kCountIncludesReceiver);
}
// Tail-call |function_id| if |actual_state| == |expected_state|
// Advance the current bytecode offset. This simulates what all bytecode
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode. Will not advance
// the bytecode offset if the current bytecode is a JumpLoop, instead just
// re-executing the JumpLoop to jump to the correct bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
Register bytecode_array,
Register bytecode_offset,
Register bytecode, Register scratch1,
Register scratch2, Label* if_return) {
ASM_CODE_COMMENT(masm);
Register bytecode_size_table = scratch1;
// The bytecode offset value will be increased by one in wide and extra wide
// cases. In the case of having a wide or extra wide JumpLoop bytecode, we
// will restore the original bytecode. In order to simplify the code, we have
// a backup of it.
Register original_bytecode_offset = scratch2;
DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode,
bytecode_size_table, original_bytecode_offset));
__ movq(original_bytecode_offset, bytecode_offset);
__ Move(bytecode_size_table,
ExternalReference::bytecode_size_table_address());
// Check if the bytecode is a Wide or ExtraWide prefix bytecode.
Label process_bytecode, extra_wide;
static_assert(0 == static_cast<int>(interpreter::Bytecode::kWide));
static_assert(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
static_assert(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
static_assert(3 ==
static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
__ cmpb(bytecode, Immediate(0x3));
__ j(above, &process_bytecode, Label::kNear);
// The code to load the next bytecode is common to both wide and extra wide.
// We can hoist them up here. incl has to happen before testb since it
// modifies the ZF flag.
__ incl(bytecode_offset);
__ testb(bytecode, Immediate(0x1));
__ movzxbq(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0));
__ j(not_equal, &extra_wide, Label::kNear);
// Update table to the wide scaled table.
__ addq(bytecode_size_table,
Immediate(kByteSize * interpreter::Bytecodes::kBytecodeCount));
__ jmp(&process_bytecode, Label::kNear);
__ bind(&extra_wide);
// Update table to the extra wide scaled table.
__ addq(bytecode_size_table,
Immediate(2 * kByteSize * interpreter::Bytecodes::kBytecodeCount));
__ bind(&process_bytecode);
// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME) \
__ cmpb(bytecode, \
Immediate(static_cast<int>(interpreter::Bytecode::k##NAME))); \
__ j(equal, if_return, Label::kFar);
RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL
// If this is a JumpLoop, re-execute it to perform the jump to the beginning
// of the loop.
Label end, not_jump_loop;
__ cmpb(bytecode,
Immediate(static_cast<int>(interpreter::Bytecode::kJumpLoop)));
__ j(not_equal, ¬_jump_loop, Label::kNear);
// We need to restore the original bytecode_offset since we might have
// increased it to skip the wide / extra-wide prefix bytecode.
__ movq(bytecode_offset, original_bytecode_offset);
__ jmp(&end, Label::kNear);
__ bind(¬_jump_loop);
// Otherwise, load the size of the current bytecode and advance the offset.
__ movzxbl(kScratchRegister,
Operand(bytecode_size_table, bytecode, times_1, 0));
__ addl(bytecode_offset, kScratchRegister);
__ bind(&end);
}
namespace {
void ResetSharedFunctionInfoAge(MacroAssembler* masm, Register sfi) {
__ movw(FieldOperand(sfi, SharedFunctionInfo::kAgeOffset), Immediate(0));
}
void ResetJSFunctionAge(MacroAssembler* masm, Register js_function) {
const Register shared_function_info(kScratchRegister);
__ LoadTaggedField(
shared_function_info,
FieldOperand(js_function, JSFunction::kSharedFunctionInfoOffset));
ResetSharedFunctionInfoAge(masm, shared_function_info);
}
void ResetFeedbackVectorOsrUrgency(MacroAssembler* masm,
Register feedback_vector, Register scratch) {
__ movb(scratch,
FieldOperand(feedback_vector, FeedbackVector::kOsrStateOffset));
__ andb(scratch, Immediate(~FeedbackVector::OsrUrgencyBits::kMask));
__ movb(FieldOperand(feedback_vector, FeedbackVector::kOsrStateOffset),
scratch);
}
} // namespace
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right.
//
// The live registers are:
// o rax: actual argument count
// o rdi: the JS function object being called
// o rdx: the incoming new target or generator object
// o rsi: our context
// o rbp: the caller's frame pointer
// o rsp: stack pointer (pointing to return address)
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frame-constants.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(
MacroAssembler* masm, InterpreterEntryTrampolineMode mode) {
Register closure = rdi;
// Get the bytecode array from the function object and load it into
// kInterpreterBytecodeArrayRegister.
const Register shared_function_info(kScratchRegister);
__ LoadTaggedField(
shared_function_info,
FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset));
ResetSharedFunctionInfoAge(masm, shared_function_info);
__ LoadTaggedField(kInterpreterBytecodeArrayRegister,
FieldOperand(shared_function_info,
SharedFunctionInfo::kFunctionDataOffset));
Label is_baseline;
GetSharedFunctionInfoBytecodeOrBaseline(
masm, kInterpreterBytecodeArrayRegister, kScratchRegister, &is_baseline);
// The bytecode array could have been flushed from the shared function info,
// if so, call into CompileLazy.
Label compile_lazy;
__ IsObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
kScratchRegister);
__ j(not_equal, &compile_lazy);
Label push_stack_frame;
Register feedback_vector = rbx;
__ LoadFeedbackVector(feedback_vector, closure, &push_stack_frame,
Label::kNear);
#ifndef V8_JITLESS
// If feedback vector is valid, check for optimized code and update invocation
// count.
Label flags_need_processing;
__ CheckFeedbackVectorFlagsAndJumpIfNeedsProcessing(
feedback_vector, CodeKind::INTERPRETED_FUNCTION, &flags_need_processing);
ResetFeedbackVectorOsrUrgency(masm, feedback_vector, kScratchRegister);
// Increment invocation count for the function.
__ incl(
FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset));
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
#else
// Note: By omitting the above code in jitless mode we also disable:
// - kFlagsLogNextExecution: only used for logging/profiling; and
// - kInvocationCountOffset: only used for tiering heuristics and code
// coverage.
#endif // !V8_JITLESS
__ bind(&push_stack_frame);
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ pushq(rbp); // Caller's frame pointer.
__ movq(rbp, rsp);
__ Push(kContextRegister); // Callee's context.
__ Push(kJavaScriptCallTargetRegister); // Callee's JS function.
__ Push(kJavaScriptCallArgCountRegister); // Actual argument count.
// Load initial bytecode offset.
__ Move(kInterpreterBytecodeOffsetRegister,
BytecodeArray::kHeaderSize - kHeapObjectTag);
// Push bytecode array and Smi tagged bytecode offset.
__ Push(kInterpreterBytecodeArrayRegister);
__ SmiTag(rcx, kInterpreterBytecodeOffsetRegister);
__ Push(rcx);
// Push feedback vector.
__ Push(feedback_vector);
// Allocate the local and temporary register file on the stack.
Label stack_overflow;
{
// Load frame size from the BytecodeArray object.
__ movl(rcx, FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
__ movq(rax, rsp);
__ subq(rax, rcx);
__ cmpq(rax, __ StackLimitAsOperand(StackLimitKind::kRealStackLimit));
__ j(below, &stack_overflow);
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
__ jmp(&loop_check, Label::kNear);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ Push(kInterpreterAccumulatorRegister);
// Continue loop if not done.
__ bind(&loop_check);
__ subq(rcx, Immediate(kSystemPointerSize));
__ j(greater_equal, &loop_header, Label::kNear);
}
// If the bytecode array has a valid incoming new target or generator object
// register, initialize it with incoming value which was passed in rdx.
Label no_incoming_new_target_or_generator_register;
__ movsxlq(
rcx,
FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
__ testl(rcx, rcx);
__ j(zero, &no_incoming_new_target_or_generator_register, Label::kNear);
__ movq(Operand(rbp, rcx, times_system_pointer_size, 0), rdx);
__ bind(&no_incoming_new_target_or_generator_register);
// Perform interrupt stack check.
// TODO(solanes): Merge with the real stack limit check above.
Label stack_check_interrupt, after_stack_check_interrupt;
__ cmpq(rsp, __ StackLimitAsOperand(StackLimitKind::kInterruptStackLimit));
__ j(below, &stack_check_interrupt);
__ bind(&after_stack_check_interrupt);
// The accumulator is already loaded with undefined.
// Load the dispatch table into a register and dispatch to the bytecode
// handler at the current bytecode offset.
Label do_dispatch;
__ bind(&do_dispatch);
__ Move(
kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
__ movzxbq(kScratchRegister,
Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ movq(kJavaScriptCallCodeStartRegister,
Operand(kInterpreterDispatchTableRegister, kScratchRegister,
times_system_pointer_size, 0));
__ call(kJavaScriptCallCodeStartRegister);
__ RecordComment("--- InterpreterEntryReturnPC point ---");
if (mode == InterpreterEntryTrampolineMode::kDefault) {
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(
masm->pc_offset());
} else {
DCHECK_EQ(mode, InterpreterEntryTrampolineMode::kForProfiling);
// Both versions must be the same up to this point otherwise the builtins
// will not be interchangable.
CHECK_EQ(
masm->isolate()->heap()->interpreter_entry_return_pc_offset().value(),
masm->pc_offset());
}
// Any returns to the entry trampoline are either due to the return bytecode
// or the interpreter tail calling a builtin and then a dispatch.
// Get bytecode array and bytecode offset from the stack frame.
__ movq(kInterpreterBytecodeArrayRegister,
Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ SmiUntagUnsigned(
kInterpreterBytecodeOffsetRegister,
Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
// Either return, or advance to the next bytecode and dispatch.
Label do_return;
__ movzxbq(rbx, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, rbx, rcx,
r8, &do_return);
__ jmp(&do_dispatch);
__ bind(&do_return);
// The return value is in rax.
LeaveInterpreterFrame(masm, rbx, rcx);
__ ret(0);
__ bind(&stack_check_interrupt);
// Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset
// for the call to the StackGuard.
__ Move(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp),
Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag +
kFunctionEntryBytecodeOffset));
__ CallRuntime(Runtime::kStackGuard);
// After the call, restore the bytecode array, bytecode offset and accumulator
// registers again. Also, restore the bytecode offset in the stack to its
// previous value.
__ movq(kInterpreterBytecodeArrayRegister,
Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ Move(kInterpreterBytecodeOffsetRegister,
BytecodeArray::kHeaderSize - kHeapObjectTag);
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
__ SmiTag(rcx, kInterpreterBytecodeArrayRegister);
__ movq(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp), rcx);
__ jmp(&after_stack_check_interrupt);
__ bind(&compile_lazy);
__ GenerateTailCallToReturnedCode(Runtime::kCompileLazy);
__ int3(); // Should not return.
#ifndef V8_JITLESS
__ bind(&flags_need_processing);
__ OptimizeCodeOrTailCallOptimizedCodeSlot(feedback_vector, closure,
JumpMode::kJump);
__ bind(&is_baseline);
{
// Load the feedback vector from the closure.
TaggedRegister feedback_cell(feedback_vector);
__ LoadTaggedField(feedback_cell,
FieldOperand(closure, JSFunction::kFeedbackCellOffset));
__ LoadTaggedField(feedback_vector,
FieldOperand(feedback_cell, FeedbackCell::kValueOffset));
Label install_baseline_code;
// Check if feedback vector is valid. If not, call prepare for baseline to
// allocate it.
__ IsObjectType(feedback_vector, FEEDBACK_VECTOR_TYPE, rcx);
__ j(not_equal, &install_baseline_code);
// Check the tiering state.
__ CheckFeedbackVectorFlagsAndJumpIfNeedsProcessing(
feedback_vector, CodeKind::BASELINE, &flags_need_processing);
// Load the baseline code into the closure.
__ Move(rcx, kInterpreterBytecodeArrayRegister);
static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
__ ReplaceClosureCodeWithOptimizedCode(
rcx, closure, kInterpreterBytecodeArrayRegister,
WriteBarrierDescriptor::SlotAddressRegister());
__ JumpCodeObject(rcx);
__ bind(&install_baseline_code);
__ GenerateTailCallToReturnedCode(Runtime::kInstallBaselineCode);
}
#endif // !V8_JITLESS
__ bind(&stack_overflow);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3(); // Should not return.
}
static void GenerateInterpreterPushArgs(MacroAssembler* masm, Register num_args,
Register start_address,
Register scratch) {
ASM_CODE_COMMENT(masm);
// Find the argument with lowest address.
__ movq(scratch, num_args);
__ negq(scratch);
__ leaq(start_address,
Operand(start_address, scratch, times_system_pointer_size,
kSystemPointerSize));
// Push the arguments.
__ PushArray(start_address, num_args, scratch,
MacroAssembler::PushArrayOrder::kReverse);
}
// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
MacroAssembler* masm, ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
// ----------- S t a t e -------------
// -- rax : the number of arguments
// -- rbx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- rdi : the target to call (can be any Object).
// -----------------------------------
Label stack_overflow;
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// The spread argument should not be pushed.
__ decl(rax);
}
__ movl(rcx, rax);
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
__ decl(rcx); // Exclude receiver.
}
// Add a stack check before pushing arguments.
__ StackOverflowCheck(rcx, &stack_overflow);
// Pop return address to allow tail-call after pushing arguments.
__ PopReturnAddressTo(kScratchRegister);
// rbx and rdx will be modified.
GenerateInterpreterPushArgs(masm, rcx, rbx, rdx);
// Push "undefined" as the receiver arg if we need to.
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
__ PushRoot(RootIndex::kUndefinedValue);
}
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Pass the spread in the register rbx.
// rbx already points to the penultime argument, the spread
// is below that.
__ movq(rbx, Operand(rbx, -kSystemPointerSize));
}
// Call the target.
__ PushReturnAddressFrom(kScratchRegister); // Re-push return address.
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
RelocInfo::CODE_TARGET);
} else {
__ Jump(masm->isolate()->builtins()->Call(receiver_mode),
RelocInfo::CODE_TARGET);
}
// Throw stack overflow exception.
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
}
// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- rax : the number of arguments
// -- rdx : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -- rdi : the constructor to call (can be any Object)
// -- rbx : the allocation site feedback if available, undefined otherwise
// -- rcx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -----------------------------------
Label stack_overflow;
// Add a stack check before pushing arguments.
__ StackOverflowCheck(rax, &stack_overflow);
// Pop return address to allow tail-call after pushing arguments.
__ PopReturnAddressTo(kScratchRegister);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// The spread argument should not be pushed.
__ decl(rax);
}
// rcx and r8 will be modified.
Register argc_without_receiver = r11;
__ leaq(argc_without_receiver, Operand(rax, -kJSArgcReceiverSlots));
GenerateInterpreterPushArgs(masm, argc_without_receiver, rcx, r8);
// Push slot for the receiver to be constructed.
__ Push(Immediate(0));
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Pass the spread in the register rbx.
__ movq(rbx, Operand(rcx, -kSystemPointerSize));
// Push return address in preparation for the tail-call.
__ PushReturnAddressFrom(kScratchRegister);
} else {
__ PushReturnAddressFrom(kScratchRegister);
__ AssertUndefinedOrAllocationSite(rbx);
}
if (mode == InterpreterPushArgsMode::kArrayFunction) {
// Tail call to the array construct stub (still in the caller
// context at this point).
__ AssertFunction(rdi);
// Jump to the constructor function (rax, rbx, rdx passed on).
__ Jump(BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl),
RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Call the constructor (rax, rdx, rdi passed on).
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
// Call the constructor (rax, rdx, rdi passed on).
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
// Throw stack overflow exception.
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
}
namespace {
void NewImplicitReceiver(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments
// -- rdx : the new target
// -- rdi : the constructor to call (checked to be a JSFunction)
//
// Stack:
// -- Implicit Receiver
// -- [arguments without receiver]
// -- Implicit Receiver
// -- Context
// -- FastConstructMarker
// -- FramePointer
// -----------------------------------
Register implicit_receiver = rcx;
// Save live registers.
__ SmiTag(rax);
__ Push(rax); // Number of arguments
__ Push(rdx); // NewTarget
__ Push(rdi); // Target
__ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET);
// Save result.
__ movq(implicit_receiver, rax);
// Restore live registers.
__ Pop(rdi);
__ Pop(rdx);
__ Pop(rax);
__ SmiUntagUnsigned(rax);
// Patch implicit receiver (in arguments)
__ movq(Operand(rsp, 0 /* first argument */), implicit_receiver);
// Patch second implicit (in construct frame)
__ movq(Operand(rbp, FastConstructFrameConstants::kImplicitReceiverOffset),
implicit_receiver);
// Restore context.
__ movq(rsi, Operand(rbp, FastConstructFrameConstants::kContextOffset));
}
} // namespace
// static
void Builtins::Generate_InterpreterPushArgsThenFastConstructFunction(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments
// -- rdx : the new target
// -- rdi : the constructor to call (checked to be a JSFunction)
// -- rcx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -----------------------------------
__ AssertFunction(rdi);
// Check if target has a [[Construct]] internal method.
Label non_constructor;
__ LoadMap(kScratchRegister, rdi);
__ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
Immediate(Map::Bits1::IsConstructorBit::kMask));
__ j(zero, &non_constructor);
// Add a stack check before pushing arguments.
Label stack_overflow;
__ StackOverflowCheck(rax, &stack_overflow);
// Enter a construct frame.
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::FAST_CONSTRUCT);
__ Push(rsi);
// Implicit receiver stored in the construct frame.
__ PushRoot(RootIndex::kTheHoleValue);
// Push arguments + implicit receiver.
Register argc_without_receiver = r11;
__ leaq(argc_without_receiver, Operand(rax, -kJSArgcReceiverSlots));
GenerateInterpreterPushArgs(masm, argc_without_receiver, rcx, r12);
// Implicit receiver as part of the arguments (patched later if needed).
__ PushRoot(RootIndex::kTheHoleValue);
// Check if it is a builtin call.
Label builtin_call;
const TaggedRegister shared_function_info(kScratchRegister);
__ LoadTaggedField(shared_function_info,
FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ testl(FieldOperand(shared_function_info, SharedFunctionInfo::kFlagsOffset),
Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
__ j(not_zero, &builtin_call);
// Check if we need to create an implicit receiver.
Label not_create_implicit_receiver;
__ movl(kScratchRegister,
FieldOperand(shared_function_info, SharedFunctionInfo::kFlagsOffset));
__ DecodeField<SharedFunctionInfo::FunctionKindBits>(kScratchRegister);
__ JumpIfIsInRange(
kScratchRegister,
static_cast<uint32_t>(FunctionKind::kDefaultDerivedConstructor),
static_cast<uint32_t>(FunctionKind::kDerivedConstructor),
¬_create_implicit_receiver, Label::kNear);
NewImplicitReceiver(masm);
__ bind(¬_create_implicit_receiver);
// Call the function.
__ InvokeFunction(rdi, rdx, rax, InvokeType::kCall);
// ----------- S t a t e -------------
// -- rax constructor result
//
// Stack:
// -- Implicit Receiver
// -- Context
// -- FastConstructMarker
// -- FramePointer
// -----------------------------------
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
masm->pc_offset());
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, do_throw, leave_and_return, check_result;
// If the result is undefined, we'll use the implicit receiver. Otherwise we
// do a smi check and fall through to check if the return value is a valid
// receiver.
__ JumpIfNotRoot(rax, RootIndex::kUndefinedValue, &check_result,
Label::kNear);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ movq(rax,
Operand(rbp, FastConstructFrameConstants::kImplicitReceiverOffset));
__ JumpIfRoot(rax, RootIndex::kTheHoleValue, &do_throw, Label::kNear);
__ bind(&leave_and_return);
__ LeaveFrame(StackFrame::FAST_CONSTRUCT);
__ ret(0);
// If the result is a smi, it is *not* an object in the ECMA sense.
__ bind(&check_result);
__ JumpIfSmi(rax, &use_receiver, Label::kNear);
// Check if the type of the result is not an object in the ECMA sense.
__ JumpIfJSAnyIsNotPrimitive(rax, rcx, &leave_and_return, Label::kNear);
__ jmp(&use_receiver);
__ bind(&do_throw);
__ movq(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
// We don't return here.
__ int3();
__ bind(&builtin_call);
// TODO(victorgomes): Check the possibility to turn this into a tailcall.
__ InvokeFunction(rdi, rdx, rax, InvokeType::kCall);
__ LeaveFrame(StackFrame::FAST_CONSTRUCT);
__ ret(0);
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
RelocInfo::CODE_TARGET);
// Throw stack overflow exception.
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Label builtin_trampoline, trampoline_loaded;
Tagged<Smi> interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero());
// If the SFI function_data is an InterpreterData, the function will have a
// custom copy of the interpreter entry trampoline for profiling. If so,
// get the custom trampoline, otherwise grab the entry address of the global
// trampoline.
__ movq(rbx, Operand(rbp, StandardFrameConstants::kFunctionOffset));
const TaggedRegister shared_function_info(rbx);
__ LoadTaggedField(shared_function_info,
FieldOperand(rbx, JSFunction::kSharedFunctionInfoOffset));
__ LoadTaggedField(rbx,
FieldOperand(shared_function_info,
SharedFunctionInfo::kFunctionDataOffset));
__ IsObjectType(rbx, INTERPRETER_DATA_TYPE, kScratchRegister);
__ j(not_equal, &builtin_trampoline, Label::kNear);
__ LoadTaggedField(
rbx, FieldOperand(rbx, InterpreterData::kInterpreterTrampolineOffset));
__ LoadCodeInstructionStart(rbx, rbx);
__ jmp(&trampoline_loaded, Label::kNear);
__ bind(&builtin_trampoline);
// TODO(jgruber): Replace this by a lookup in the builtin entry table.
__ movq(rbx,
__ ExternalReferenceAsOperand(
ExternalReference::
address_of_interpreter_entry_trampoline_instruction_start(
masm->isolate()),
kScratchRegister));
__ bind(&trampoline_loaded);
__ addq(rbx, Immediate(interpreter_entry_return_pc_offset.value()));
__ Push(rbx);
// Initialize dispatch table register.
__ Move(
kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
// Get the bytecode array pointer from the frame.
__ movq(kInterpreterBytecodeArrayRegister,
Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (v8_flags.debug_code) {
// Check function data field is actually a BytecodeArray object.
__ AssertNotSmi(kInterpreterBytecodeArrayRegister);
__ IsObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
rbx);
__ Assert(
equal,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Get the target bytecode offset from the frame.
__ SmiUntagUnsigned(
kInterpreterBytecodeOffsetRegister,
Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
if (v8_flags.debug_code) {
Label okay;
__ cmpq(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ j(greater_equal, &okay, Label::kNear);
__ int3();
__ bind(&okay);
}
// Dispatch to the target bytecode.
__ movzxbq(kScratchRegister,
Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ movq(kJavaScriptCallCodeStartRegister,
Operand(kInterpreterDispatchTableRegister, kScratchRegister,
times_system_pointer_size, 0));
__ jmp(kJavaScriptCallCodeStartRegister);
}
void Builtins::Generate_InterpreterEnterAtNextBytecode(MacroAssembler* masm) {
// Get bytecode array and bytecode offset from the stack frame.
__ movq(kInterpreterBytecodeArrayRegister,
Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ SmiUntagUnsigned(
kInterpreterBytecodeOffsetRegister,
Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
Label enter_bytecode, function_entry_bytecode;
__ cmpq(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag +
kFunctionEntryBytecodeOffset));
__ j(equal, &function_entry_bytecode);
// Load the current bytecode.
__ movzxbq(rbx, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
// Advance to the next bytecode.
Label if_return;
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, rbx, rcx,
r8, &if_return);
__ bind(&enter_bytecode);
// Convert new bytecode offset to a Smi and save in the stackframe.
__ SmiTag(kInterpreterBytecodeOffsetRegister);
__ movq(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp),
kInterpreterBytecodeOffsetRegister);
Generate_InterpreterEnterBytecode(masm);
__ bind(&function_entry_bytecode);
// If the code deoptimizes during the implicit function entry stack interrupt
// check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
// not a valid bytecode offset. Detect this case and advance to the first
// actual bytecode.
__ Move(kInterpreterBytecodeOffsetRegister,
BytecodeArray::kHeaderSize - kHeapObjectTag);
__ jmp(&enter_bytecode);
// We should never take the if_return path.
__ bind(&if_return);
__ Abort(AbortReason::kInvalidBytecodeAdvance);
}
void Builtins::Generate_InterpreterEnterAtBytecode(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
// static
void Builtins::Generate_BaselineOutOfLinePrologue(MacroAssembler* masm) {
Register feedback_cell = r8;
Register feedback_vector = r11;
Register return_address = r15;
#ifdef DEBUG
for (auto reg : BaselineOutOfLinePrologueDescriptor::registers()) {
DCHECK(!AreAliased(feedback_vector, return_address, reg));
}
#endif
auto descriptor =
Builtins::CallInterfaceDescriptorFor(Builtin::kBaselineOutOfLinePrologue);
Register closure = descriptor.GetRegisterParameter(
BaselineOutOfLinePrologueDescriptor::kClosure);
// Load the feedback cell and vector from the closure.
__ LoadTaggedField(feedback_cell,
FieldOperand(closure, JSFunction::kFeedbackCellOffset));
__ LoadTaggedField(feedback_vector,
FieldOperand(feedback_cell, FeedbackCell::kValueOffset));
__ AssertFeedbackVector(feedback_vector);
// Check the tiering state.
Label flags_need_processing;
__ CheckFeedbackVectorFlagsAndJumpIfNeedsProcessing(
feedback_vector, CodeKind::BASELINE, &flags_need_processing);
ResetFeedbackVectorOsrUrgency(masm, feedback_vector, kScratchRegister);
// Increment invocation count for the function.
__ incl(
FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset));
// Save the return address, so that we can push it to the end of the newly
// set-up frame once we're done setting it up.
__ PopReturnAddressTo(return_address);
FrameScope frame_scope(masm, StackFrame::MANUAL);
{
ASM_CODE_COMMENT_STRING(masm, "Frame Setup");
__ EnterFrame(StackFrame::BASELINE);
__ Push(descriptor.GetRegisterParameter(
BaselineOutOfLinePrologueDescriptor::kCalleeContext)); // Callee's
// context.
Register callee_js_function = descriptor.GetRegisterParameter(
BaselineOutOfLinePrologueDescriptor::kClosure);
DCHECK_EQ(callee_js_function, kJavaScriptCallTargetRegister);
DCHECK_EQ(callee_js_function, kJSFunctionRegister);
ResetJSFunctionAge(masm, callee_js_function);
__ Push(callee_js_function); // Callee's JS function.
__ Push(descriptor.GetRegisterParameter(
BaselineOutOfLinePrologueDescriptor::
kJavaScriptCallArgCount)); // Actual argument
// count.
// We'll use the bytecode for both code age/OSR resetting, and pushing
// onto the frame, so load it into a register.
Register bytecode_array = descriptor.GetRegisterParameter(
BaselineOutOfLinePrologueDescriptor::kInterpreterBytecodeArray);
__ Push(bytecode_array);
__ Push(feedback_cell);
__ Push(feedback_vector);
}
Register new_target = descriptor.GetRegisterParameter(
BaselineOutOfLinePrologueDescriptor::kJavaScriptCallNewTarget);
Label call_stack_guard;
Register frame_size = descriptor.GetRegisterParameter(
BaselineOutOfLinePrologueDescriptor::kStackFrameSize);
{
ASM_CODE_COMMENT_STRING(masm, " Stack/interrupt check");
// Stack check. This folds the checks for both the interrupt stack limit
// check and the real stack limit into one by just checking for the
// interrupt limit. The interrupt limit is either equal to the real stack
// limit or tighter. By ensuring we have space until that limit after
// building the frame we can quickly precheck both at once.
//
// TODO(v8:11429): Backport this folded check to the
// InterpreterEntryTrampoline.
__ Move(kScratchRegister, rsp);
DCHECK_NE(frame_size, new_target);
__ subq(kScratchRegister, frame_size);
__ cmpq(kScratchRegister,
__ StackLimitAsOperand(StackLimitKind::kInterruptStackLimit));
__ j(below, &call_stack_guard);
}
// Push the return address back onto the stack for return.
__ PushReturnAddressFrom(return_address);
// Return to caller pushed pc, without any frame teardown.
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
__ Ret();
__ bind(&flags_need_processing);
{
ASM_CODE_COMMENT_STRING(masm, "Optimized marker check");
// Drop the return address, rebalancing the return stack buffer by using
// JumpMode::kPushAndReturn. We can't leave the slot and overwrite it on
// return since we may do a runtime call along the way that requires the
// stack to only contain valid frames.
__ Drop(1);
__ OptimizeCodeOrTailCallOptimizedCodeSlot(feedback_vector, closure,
JumpMode::kPushAndReturn);
__ Trap();
}
__ bind(&call_stack_guard);
{
ASM_CODE_COMMENT_STRING(masm, "Stack/interrupt call");
{
// Push the baseline code return address now, as if it had been pushed by
// the call to this builtin.
__ PushReturnAddressFrom(return_address);
FrameScope inner_frame_scope(masm, StackFrame::INTERNAL);
// Save incoming new target or generator
__ Push(new_target);
__ SmiTag(frame_size);
__ Push(frame_size);
__ CallRuntime(Runtime::kStackGuardWithGap, 1);
__ Pop(new_target);
}
// Return to caller pushed pc, without any frame teardown.
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
__ Ret();
}
}
// static
void Builtins::Generate_BaselineOutOfLinePrologueDeopt(MacroAssembler* masm) {
// We're here because we got deopted during BaselineOutOfLinePrologue's stack
// check. Undo all its frame creation and call into the interpreter instead.
// Drop feedback vector.
__ Pop(kScratchRegister);
// Drop bytecode offset (was the feedback vector but got replaced during
// deopt).
__ Pop(kScratchRegister);
// Drop bytecode array
__ Pop(kScratchRegister);
// argc.
__ Pop(kJavaScriptCallArgCountRegister);
// Closure.
__ Pop(kJavaScriptCallTargetRegister);
// Context.
__ Pop(kContextRegister);
// Drop frame pointer
__ LeaveFrame(StackFrame::BASELINE);
// Enter the interpreter.
__ TailCallBuiltin(Builtin::kInterpreterEntryTrampoline);
}
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
bool java_script_builtin,
bool with_result) {
ASM_CODE_COMMENT(masm);
const RegisterConfiguration* config(RegisterConfiguration::Default());
int allocatable_register_count = config->num_allocatable_general_registers();
if (with_result) {
if (java_script_builtin) {
// kScratchRegister is not included in the allocateable registers.
__ movq(kScratchRegister, rax);
} else {
// Overwrite the hole inserted by the deoptimizer with the return value
// from the LAZY deopt point.
__ movq(
Operand(rsp, config->num_allocatable_general_registers() *
kSystemPointerSize +
BuiltinContinuationFrameConstants::kFixedFrameSize),
rax);
}
}
for (int i = allocatable_register_count - 1; i >= 0; --i) {
int code = config->GetAllocatableGeneralCode(i);
__ popq(Register::from_code(code));
if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
__ SmiUntagUnsigned(Register::from_code(code));
}
}
if (with_result && java_script_builtin) {
// Overwrite the hole inserted by the deoptimizer with the return value from
// the LAZY deopt point. rax contains the arguments count, the return value
// from LAZY is always the last argument.
__ movq(Operand(rsp, rax, times_system_pointer_size,
BuiltinContinuationFrameConstants::kFixedFrameSize -
kJSArgcReceiverSlots * kSystemPointerSize),
kScratchRegister);
}
__ movq(
rbp,
Operand(rsp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
const int offsetToPC =
BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp -
kSystemPointerSize;
__ popq(Operand(rsp, offsetToPC));
__ Drop(offsetToPC / kSystemPointerSize);
// Replace the builtin index Smi on the stack with the instruction start
// address of the builtin from the builtins table, and then Ret to this
// address
__ movq(kScratchRegister, Operand(rsp, 0));
__ movq(kScratchRegister,
__ EntryFromBuiltinIndexAsOperand(kScratchRegister));
__ movq(Operand(rsp, 0), kScratchRegister);
__ Ret();
}
} // namespace
void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, false);
}
void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, true);
}
void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, false);
}
void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, true);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kNotifyDeoptimized);
// Tear down internal frame.
}
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), rax.code());
__ movq(rax, Operand(rsp, kPCOnStackSize));
__ ret(1 * kSystemPointerSize); // Remove rax.
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[1] : receiver
// -- rsp[2] : thisArg
// -- rsp[3] : argArray
// -----------------------------------
// 1. Load receiver into rdi, argArray into rbx (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
Label no_arg_array, no_this_arg;
StackArgumentsAccessor args(rax);
__ LoadRoot(rdx, RootIndex::kUndefinedValue);
__ movq(rbx, rdx);
__ movq(rdi, args[0]);
__ cmpq(rax, Immediate(JSParameterCount(0)));
__ j(equal, &no_this_arg, Label::kNear);
{
__ movq(rdx, args[1]);
__ cmpq(rax, Immediate(JSParameterCount(1)));
__ j(equal, &no_arg_array, Label::kNear);
__ movq(rbx, args[2]);
__ bind(&no_arg_array);
}
__ bind(&no_this_arg);
__ DropArgumentsAndPushNewReceiver(rax, rdx, rcx,
MacroAssembler::kCountIsInteger,
MacroAssembler::kCountIncludesReceiver);
}
// ----------- S t a t e -------------
// -- rbx : argArray
// -- rdi : receiver
// -- rsp[0] : return address
// -- rsp[8] : thisArg
// -----------------------------------
// 2. We don't need to check explicitly for callable receiver here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ JumpIfRoot(rbx, RootIndex::kNullValue, &no_arguments, Label::kNear);
__ JumpIfRoot(rbx, RootIndex::kUndefinedValue, &no_arguments, Label::kNear);
// 4a. Apply the receiver to the given argArray.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver. Since we did not create a frame for
// Function.prototype.apply() yet, we use a normal Call builtin here.
__ bind(&no_arguments);
{
__ Move(rax, JSParameterCount(0));
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
// Stack Layout:
// rsp[0] : Return address
// rsp[8] : Argument 0 (receiver: callable to call)
// rsp[16] : Argument 1
// ...
// rsp[8 * n] : Argument n-1
// rsp[8 * (n + 1)] : Argument n
// rax contains the number of arguments, n.
// 1. Get the callable to call (passed as receiver) from the stack.
{
StackArgumentsAccessor args(rax);
__ movq(rdi, args.GetReceiverOperand());
}
// 2. Save the return address and drop the callable.
__ PopReturnAddressTo(rbx);
__ Pop(kScratchRegister);
// 3. Make sure we have at least one argument.
{
Label done;
__ cmpq(rax, Immediate(JSParameterCount(0)));
__ j(greater, &done, Label::kNear);
__ PushRoot(RootIndex::kUndefinedValue);
__ incq(rax);
__ bind(&done);
}
// 4. Push back the return address one slot down on the stack (overwriting the
// original callable), making the original first argument the new receiver.
__ PushReturnAddressFrom(rbx);
__ decq(rax); // One fewer argument (first argument is new receiver).
// 5. Call the callable.
// Since we did not create a frame for Function.prototype.call() yet,
// we use a normal Call builtin here.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : receiver
// -- rsp[16] : target (if argc >= 1)
// -- rsp[24] : thisArgument (if argc >= 2)
// -- rsp[32] : argumentsList (if argc == 3)
// -----------------------------------
// 1. Load target into rdi (if present), argumentsList into rbx (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
Label done;
StackArgumentsAccessor args(rax);
__ LoadRoot(rdi, RootIndex::kUndefinedValue);
__ movq(rdx, rdi);
__ movq(rbx, rdi);
__ cmpq(rax, Immediate(JSParameterCount(1)));
__ j(below, &done, Label::kNear);
__ movq(rdi, args[1]); // target
__ j(equal, &done, Label::kNear);
__ movq(rdx, args[2]); // thisArgument
__ cmpq(rax, Immediate(JSParameterCount(3)));
__ j(below, &done, Label::kNear);
__ movq(rbx, args[3]); // argumentsList
__ bind(&done);
__ DropArgumentsAndPushNewReceiver(rax, rdx, rcx,
MacroAssembler::kCountIsInteger,
MacroAssembler::kCountIncludesReceiver);
}
// ----------- S t a t e -------------
// -- rbx : argumentsList
// -- rdi : target
// -- rsp[0] : return address
// -- rsp[8] : thisArgument
// -----------------------------------
// 2. We don't need to check explicitly for callable target here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Apply the target to the given argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : receiver
// -- rsp[16] : target
// -- rsp[24] : argumentsList
// -- rsp[32] : new.target (optional)
// -----------------------------------
// 1. Load target into rdi (if present), argumentsList into rbx (if present),
// new.target into rdx (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
Label done;
StackArgumentsAccessor args(rax);
__ LoadRoot(rdi, RootIndex::kUndefinedValue);
__ movq(rdx, rdi);
__ movq(rbx, rdi);
__ cmpq(rax, Immediate(JSParameterCount(1)));
__ j(below, &done, Label::kNear);
__ movq(rdi, args[1]); // target
__ movq(rdx, rdi); // new.target defaults to target
__ j(equal, &done, Label::kNear);
__ movq(rbx, args[2]); // argumentsList
__ cmpq(rax, Immediate(JSParameterCount(3)));
__ j(below, &done, Label::kNear);
__ movq(rdx, args[3]); // new.target
__ bind(&done);
__ DropArgumentsAndPushNewReceiver(
rax, masm->RootAsOperand(RootIndex::kUndefinedValue), rcx,
MacroAssembler::kCountIsInteger,
MacroAssembler::kCountIncludesReceiver);
}
// ----------- S t a t e -------------
// -- rbx : argumentsList
// -- rdx : new.target
// -- rdi : target
// -- rsp[0] : return address
// -- rsp[8] : receiver (undefined)
// -----------------------------------
// 2. We don't need to check explicitly for constructor target here,
// since that's the first thing the Construct/ConstructWithArrayLike
// builtins will do.
// 3. We don't need to check explicitly for constructor new.target here,
// since that's the second thing the Construct/ConstructWithArrayLike
// builtins will do.
// 4. Construct the target with the given new.target and argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
RelocInfo::CODE_TARGET);
}
namespace {
// Allocate new stack space for |count| arguments and shift all existing
// arguments already on the stack. |pointer_to_new_space_out| points to the
// first free slot on the stack to copy additional arguments to and
// |argc_in_out| is updated to include |count|.
void Generate_AllocateSpaceAndShiftExistingArguments(
MacroAssembler* masm, Register count, Register argc_in_out,
Register pointer_to_new_space_out, Register scratch1, Register scratch2) {
DCHECK(!AreAliased(count, argc_in_out, pointer_to_new_space_out, scratch1,
scratch2, kScratchRegister));
// Use pointer_to_new_space_out as scratch until we set it to the correct
// value at the end.
Register old_rsp = pointer_to_new_space_out;
Register new_space = kScratchRegister;
__ movq(old_rsp, rsp);
__ leaq(new_space, Operand(count, times_system_pointer_size, 0));
__ AllocateStackSpace(new_space);
Register copy_count = argc_in_out;
Register current = scratch2;
Register value = kScratchRegister;
Label loop, entry;
__ Move(current, 0);
__ jmp(&entry);
__ bind(&loop);
__ movq(value, Operand(old_rsp, current, times_system_pointer_size, 0));
__ movq(Operand(rsp, current, times_system_pointer_size, 0), value);
__ incq(current);
__ bind(&entry);
__ cmpq(current, copy_count);
__ j(less_equal, &loop, Label::kNear);
// Point to the next free slot above the shifted arguments (copy_count + 1
// slot for the return address).
__ leaq(
pointer_to_new_space_out,
Operand(rsp, copy_count, times_system_pointer_size, kSystemPointerSize));
// We use addl instead of addq here because we can omit REX.W, saving 1 byte.
// We are especially constrained here because we are close to reaching the
// limit for a near jump to the stackoverflow label, so every byte counts.
__ addl(argc_in_out, count); // Update total number of arguments.
}
} // namespace
// static
// TODO(v8:11615): Observe Code::kMaxArguments in
// CallOrConstructVarargs
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- rdi : target
// -- rax : number of parameters on the stack
// -- rbx : arguments list (a FixedArray)
// -- rcx : len (number of elements to push from args)
// -- rdx : new.target (for [[Construct]])
// -- rsp[0] : return address
// -----------------------------------
if (v8_flags.debug_code) {
// Allow rbx to be a FixedArray, or a FixedDoubleArray if rcx == 0.
Label ok, fail;
__ AssertNotSmi(rbx);
Register map = r9;
__ LoadMap(map, rbx);
__ CmpInstanceType(map, FIXED_ARRAY_TYPE);
__ j(equal, &ok);
__ CmpInstanceType(map, FIXED_DOUBLE_ARRAY_TYPE);
__ j(not_equal, &fail);
__ Cmp(rcx, 0);
__ j(equal, &ok);
// Fall through.
__ bind(&fail);
__ Abort(AbortReason::kOperandIsNotAFixedArray);
__ bind(&ok);
}
Label stack_overflow;
__ StackOverflowCheck(rcx, &stack_overflow, Label::kNear);
// Push additional arguments onto the stack.
// Move the arguments already in the stack,
// including the receiver and the return address.
// rcx: Number of arguments to make room for.
// rax: Number of arguments already on the stack.
// r8: Points to first free slot on the stack after arguments were shifted.
Generate_AllocateSpaceAndShiftExistingArguments(masm, rcx, rax, r8, r9, r12);
// Copy the additional arguments onto the stack.
{
Register value = r12;
Register src = rbx, dest = r8, num = rcx, current = r9;
__ Move(current, 0);
Label done, push, loop;
__ bind(&loop);
__ cmpl(current, num);
__ j(equal, &done, Label::kNear);
// Turn the hole into undefined as we go.
__ LoadTaggedField(value, FieldOperand(src, current, times_tagged_size,
FixedArray::kHeaderSize));
__ CompareRoot(value, RootIndex::kTheHoleValue);
__ j(not_equal, &push, Label::kNear);
__ LoadRoot(value, RootIndex::kUndefinedValue);
__ bind(&push);
__ movq(Operand(dest, current, times_system_pointer_size, 0), value);
__ incl(current);
__ jmp(&loop);
__ bind(&done);
}
// Tail-call to the actual Call or Construct builtin.
__ Jump(code, RelocInfo::CODE_TARGET);
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
}
// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
CallOrConstructMode mode,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- rax : the number of arguments
// -- rdx : the new target (for [[Construct]] calls)
// -- rdi : the target to call (can be any Object)
// -- rcx : start index (to support rest parameters)
// -----------------------------------
// Check if new.target has a [[Construct]] internal method.
if (mode == CallOrConstructMode::kConstruct) {
Label new_target_constructor, new_target_not_constructor;
__ JumpIfSmi(rdx, &new_target_not_constructor, Label::kNear);
__ LoadMap(rbx, rdx);
__ testb(FieldOperand(rbx, Map::kBitFieldOffset),
Immediate(Map::Bits1::IsConstructorBit::kMask));
__ j(not_zero, &new_target_constructor, Label::kNear);
__ bind(&new_target_not_constructor);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ Push(rdx);
__ CallRuntime(Runtime::kThrowNotConstructor);
}
__ bind(&new_target_constructor);
}
Label stack_done, stack_overflow;
__ movq(r8, Operand(rbp, StandardFrameConstants::kArgCOffset));
__ decq(r8); // Exclude receiver.
__ subl(r8, rcx);
__ j(less_equal, &stack_done);
{
// ----------- S t a t e -------------
// -- rax : the number of arguments already in the stack
// -- rbp : point to the caller stack frame
// -- rcx : start index (to support rest parameters)
// -- rdx : the new target (for [[Construct]] calls)
// -- rdi : the target to call (can be any Object)
// -- r8 : number of arguments to copy, i.e. arguments count - start index
// -----------------------------------
// Check for stack overflow.
__ StackOverflowCheck(r8, &stack_overflow, Label::kNear);
// Forward the arguments from the caller frame.
// Move the arguments already in the stack,
// including the receiver and the return address.
// r8: Number of arguments to make room for.
// rax: Number of arguments already on the stack.
// r9: Points to first free slot on the stack after arguments were shifted.
Generate_AllocateSpaceAndShiftExistingArguments(masm, r8, rax, r9, r12,
r15);
// Point to the first argument to copy (skipping receiver).
__ leaq(rcx, Operand(rcx, times_system_pointer_size,
CommonFrameConstants::kFixedFrameSizeAboveFp +
kSystemPointerSize));
__ addq(rcx, rbp);
// Copy the additional caller arguments onto the stack.
// TODO(victorgomes): Consider using forward order as potentially more cache
// friendly.
{
Register src = rcx, dest = r9, num = r8;
Label loop;
__ bind(&loop);
__ decq(num);
__ movq(kScratchRegister,
Operand(src, num, times_system_pointer_size, 0));
__ movq(Operand(dest, num, times_system_pointer_size, 0),
kScratchRegister);
__ j(not_zero, &loop);
}
}
__ jmp(&stack_done, Label::kNear);
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&stack_done);
// Tail-call to the {code} handler.
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- rax : the number of arguments
// -- rdi : the function to call (checked to be a JSFunction)
// -----------------------------------
StackArgumentsAccessor args(rax);
__ AssertCallableFunction(rdi);
__ LoadTaggedField(rdx,
FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
// ----------- S t a t e -------------
// -- rax : the number of arguments
// -- rdx : the shared function info.
// -- rdi : the function to call (checked to be a JSFunction)
// -----------------------------------
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ LoadTaggedField(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ testl(FieldOperand(rdx, SharedFunctionInfo::kFlagsOffset),
Immediate(SharedFunctionInfo::IsNativeBit::kMask |
SharedFunctionInfo::IsStrictBit::kMask));
__ j(not_zero, &done_convert);
{
// ----------- S t a t e -------------
// -- rax : the number of arguments
// -- rdx : the shared function info.
// -- rdi : the function to call (checked to be a JSFunction)
// -- rsi : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(rcx);
} else {
Label convert_to_object, convert_receiver;
__ movq(rcx, args.GetReceiverOperand());
__ JumpIfSmi(rcx, &convert_to_object, Label::kNear);
__ JumpIfJSAnyIsNotPrimitive(rcx, rbx, &done_convert,
DEBUG_BOOL ? Label::kFar : Label::kNear);
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(rcx, RootIndex::kUndefinedValue, &convert_global_proxy,
Label::kNear);
__ JumpIfNotRoot(rcx, RootIndex::kNullValue, &convert_to_object,
Label::kNear);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(rcx);
}
__ jmp(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(rax);
__ Push(rax);
__ Push(rdi);
__ movq(rax, rcx);
__ Push(rsi);
__ Call(BUILTIN_CODE(masm->isolate(), ToObject),
RelocInfo::CODE_TARGET);
__ Pop(rsi);
__ movq(rcx, rax);
__ Pop(rdi);
__ Pop(rax);
__ SmiUntagUnsigned(rax);
}
__ LoadTaggedField(
rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ movq(args.GetReceiverOperand(), rcx);
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- rax : the number of arguments
// -- rdx : the shared function info.
// -- rdi : the function to call (checked to be a JSFunction)
// -- rsi : the function context.
// -----------------------------------
__ movzxwq(
rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset));
__ InvokeFunctionCode(rdi, no_reg, rbx, rax, InvokeType::kJump);
}
namespace {
void Generate_PushBoundArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments
// -- rdx : new.target (only in case of [[Construct]])
// -- rdi : target (checked to be a JSBoundFunction)
// -----------------------------------
// Load [[BoundArguments]] into rcx and length of that into rbx.
Label no_bound_arguments;
__ LoadTaggedField(rcx,
FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset));
__ SmiUntagFieldUnsigned(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
__ testl(rbx, rbx);
__ j(zero, &no_bound_arguments);
{
// ----------- S t a t e -------------
// -- rax : the number of arguments
// -- rdx : new.target (only in case of [[Construct]])
// -- rdi : target (checked to be a JSBoundFunction)
// -- rcx : the [[BoundArguments]] (implemented as FixedArray)
// -- rbx : the number of [[BoundArguments]] (checked to be non-zero)
// -----------------------------------
// TODO(victor): Use Generate_StackOverflowCheck here.
// Check the stack for overflow.
{
Label done;
__ shlq(rbx, Immediate(kSystemPointerSizeLog2));
__ movq(kScratchRegister, rsp);
__ subq(kScratchRegister, rbx);
// We are not trying to catch interruptions (i.e. debug break and
// preemption) here, so check the "real stack limit".
__ cmpq(kScratchRegister,
__ StackLimitAsOperand(StackLimitKind::kRealStackLimit));
__ j(above_equal, &done, Label::kNear);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
// Save Return Address and Receiver into registers.
__ Pop(r8);
__ Pop(r10);
// Push [[BoundArguments]] to the stack.
{
Label loop;
__ LoadTaggedField(
rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset));
__ SmiUntagFieldUnsigned(rbx,
FieldOperand(rcx, FixedArray::kLengthOffset));
__ addq(rax, rbx); // Adjust effective number of arguments.
__ bind(&loop);
// Instead of doing decl(rbx) here subtract kTaggedSize from the header
// offset in order to be able to move decl(rbx) right before the loop
// condition. This is necessary in order to avoid flags corruption by
// pointer decompression code.
__ LoadTaggedField(r12,
FieldOperand(rcx, rbx, times_tagged_size,
FixedArray::kHeaderSize - kTaggedSize));
__ Push(r12);
__ decl(rbx);
__ j(greater, &loop);
}
// Recover Receiver and Return Address.
__ Push(r10);
__ Push(r8);
}
__ bind(&no_bound_arguments);
}
} // namespace
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments
// -- rdi : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(rdi);
// Patch the receiver to [[BoundThis]].
StackArgumentsAccessor args(rax);
__ LoadTaggedField(rbx, FieldOperand(rdi, JSBoundFunction::kBoundThisOffset));
__ movq(args.GetReceiverOperand(), rbx);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ LoadTaggedField(
rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- rax : the number of arguments
// -- rdi : the target to call (can be any Object)
// -----------------------------------
Register argc = rax;
Register target = rdi;
Register map = rcx;
Register instance_type = rdx;
DCHECK(!AreAliased(argc, target, map, instance_type));
StackArgumentsAccessor args(argc);
Label non_callable, class_constructor;
__ JumpIfSmi(target, &non_callable);
__ LoadMap(map, target);
__ CmpInstanceTypeRange(map, instance_type, FIRST_CALLABLE_JS_FUNCTION_TYPE,
LAST_CALLABLE_JS_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->CallFunction(mode),
RelocInfo::CODE_TARGET, below_equal);
__ cmpw(instance_type, Immediate(JS_BOUND_FUNCTION_TYPE));
__ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
RelocInfo::CODE_TARGET, equal);
// Check if target has a [[Call]] internal method.
__ testb(FieldOperand(map, Map::kBitFieldOffset),
Immediate(Map::Bits1::IsCallableBit::kMask));
__ j(zero, &non_callable, Label::kNear);
// Check if target is a proxy and call CallProxy external builtin
__ cmpw(instance_type, Immediate(JS_PROXY_TYPE));
__ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET,
equal);
// Check if target is a wrapped function and call CallWrappedFunction external
// builtin
__ cmpw(instance_type, Immediate(JS_WRAPPED_FUNCTION_TYPE));
__ Jump(BUILTIN_CODE(masm->isolate(), CallWrappedFunction),
RelocInfo::CODE_TARGET, equal);
// ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that the function is not a "classConstructor".
__ cmpw(instance_type, Immediate(JS_CLASS_CONSTRUCTOR_TYPE));
__ j(equal, &class_constructor);
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
// Overwrite the original receiver with the (original) target.
__ movq(args.GetReceiverOperand(), target);
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(target, Context::CALL_AS_FUNCTION_DELEGATE_INDEX);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(target);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
__ Trap(); // Unreachable.
}
// 4. The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ Push(target);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
__ Trap(); // Unreachable.
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments
// -- rdx : the new target (checked to be a constructor)
// -- rdi : the constructor to call (checked to be a JSFunction)
// -----------------------------------
__ AssertConstructor(rdi);
__ AssertFunction(rdi);
// Calling convention for function specific ConstructStubs require
// rbx to contain either an AllocationSite or undefined.
__ LoadRoot(rbx, RootIndex::kUndefinedValue);
// Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
const TaggedRegister shared_function_info(rcx);
__ LoadTaggedField(shared_function_info,
FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ testl(FieldOperand(shared_function_info, SharedFunctionInfo::kFlagsOffset),
Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
__ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
RelocInfo::CODE_TARGET, not_zero);
__ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments
// -- rdx : the new target (checked to be a constructor)
// -- rdi : the constructor to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertConstructor(rdi);
__ AssertBoundFunction(rdi);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
{
Label done;
__ cmpq(rdi, rdx);
__ j(not_equal, &done, Label::kNear);
__ LoadTaggedField(
rdx, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
__ bind(&done);
}
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ LoadTaggedField(
rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : the number of arguments
// -- rdx : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -- rdi : the constructor to call (can be any Object)
// -----------------------------------
Register argc = rax;
Register target = rdi;
Register map = rcx;
Register instance_type = r8;
DCHECK(!AreAliased(argc, target, map, instance_type));
StackArgumentsAccessor args(argc);
// Check if target is a Smi.
Label non_constructor;
__ JumpIfSmi(target, &non_constructor);
// Check if target has a [[Construct]] internal method.
__ LoadMap(map, target);
__ testb(FieldOperand(map, Map::kBitFieldOffset),
Immediate(Map::Bits1::IsConstructorBit::kMask));
__ j(zero, &non_constructor);
// Dispatch based on instance type.
__ CmpInstanceTypeRange(map, instance_type, FIRST_JS_FUNCTION_TYPE,
LAST_JS_FUNCTION_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
RelocInfo::CODE_TARGET, below_equal);
// Only dispatch to bound functions after checking whether they are
// constructors.
__ cmpw(instance_type, Immediate(JS_BOUND_FUNCTION_TYPE));
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
RelocInfo::CODE_TARGET, equal);
// Only dispatch to proxies after checking whether they are constructors.
__ cmpw(instance_type, Immediate(JS_PROXY_TYPE));
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET,
equal);
// Called Construct on an exotic Object with a [[Construct]] internal method.
{
// Overwrite the original receiver with the (original) target.
__ movq(args.GetReceiverOperand(), target);
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(target,
Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
RelocInfo::CODE_TARGET);
}
namespace {
void Generate_OSREntry(MacroAssembler* masm, Register entry_address) {
// Overwrite the return address on the stack and "return" to the OSR entry
// point of the function.
__ movq(Operand(rsp, 0), entry_address);
__ ret(0);
}
enum class OsrSourceTier {
kInterpreter,
kBaseline,
kMaglev,
};
void OnStackReplacement(MacroAssembler* masm, OsrSourceTier source,
Register maybe_target_code) {
Label jump_to_optimized_code;
{
// If maybe_target_code is not null, no need to call into runtime. A
// precondition here is: if maybe_target_code is a InstructionStream object,
// it must NOT be marked_for_deoptimization (callers must ensure this).
__ testq(maybe_target_code, maybe_target_code);
__ j(not_equal, &jump_to_optimized_code, Label::kNear);
}
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kCompileOptimizedOSR);
}
// If the code object is null, just return to the caller.
__ testq(rax, rax);
__ j(not_equal, &jump_to_optimized_code, Label::kNear);
__ ret(0);
__ bind(&jump_to_optimized_code);
DCHECK_EQ(maybe_target_code, rax); // Already in the right spot.
if (source == OsrSourceTier::kMaglev) {
// Maglev doesn't enter OSR'd code itself, since OSR depends on the
// unoptimized (~= Ignition) stack frame layout. Instead, return to Maglev
// code and let it deoptimize.
__ ret(0);
return;
}
// OSR entry tracing.
{
Label next;
__ cmpb(
__ ExternalReferenceAsOperand(
ExternalReference::address_of_log_or_trace_osr(), kScratchRegister),
Immediate(0));
__ j(equal, &next, Label::kNear);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rax); // Preserve the code object.
__ CallRuntime(Runtime::kLogOrTraceOptimizedOSREntry, 0);
__ Pop(rax);
}
__ bind(&next);
}
if (source == OsrSourceTier::kInterpreter) {
// Drop the handler frame that is be sitting on top of the actual
// JavaScript frame.
__ leave();
}
// Load deoptimization data from the code object.
const TaggedRegister deopt_data(rbx);
__ LoadTaggedField(
deopt_data,
FieldOperand(rax, Code::kDeoptimizationDataOrInterpreterDataOffset));
// Load the OSR entrypoint offset from the deoptimization data.
__ SmiUntagField(
rbx,
FieldOperand(deopt_data, FixedArray::OffsetOfElementAt(
DeoptimizationData::kOsrPcOffsetIndex)));
__ LoadCodeInstructionStart(rax, rax);
// Compute the target address = code_entry + osr_offset
__ addq(rax, rbx);
Generate_OSREntry(masm, rax);
}
} // namespace
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
using D = OnStackReplacementDescriptor;
static_assert(D::kParameterCount == 1);
OnStackReplacement(masm, OsrSourceTier::kInterpreter,
D::MaybeTargetCodeRegister());
}
void Builtins::Generate_BaselineOnStackReplacement(MacroAssembler* masm) {
using D = OnStackReplacementDescriptor;
static_assert(D::kParameterCount == 1);
__ movq(kContextRegister,
MemOperand(rbp, BaselineFrameConstants::kContextOffset));
OnStackReplacement(masm, OsrSourceTier::kBaseline,
D::MaybeTargetCodeRegister());
}
void Builtins::Generate_MaglevOnStackReplacement(MacroAssembler* masm) {
using D =
i::CallInterfaceDescriptorFor<Builtin::kMaglevOnStackReplacement>::type;
static_assert(D::kParameterCount == 1);
OnStackReplacement(masm, OsrSourceTier::kMaglev,
D::MaybeTargetCodeRegister());
}
#ifdef V8_ENABLE_MAGLEV
// static
void Builtins::Generate_MaglevFunctionEntryStackCheck(MacroAssembler* masm,
bool save_new_target) {
// Input (rax): Stack size (Smi).
// This builtin can be invoked just after Maglev's prologue.
// All registers are available, except (possibly) new.target.
ASM_CODE_COMMENT(masm);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ AssertSmi(rax);
if (save_new_target) {
if (PointerCompressionIsEnabled()) {
__ AssertSmiOrHeapObjectInCompressionCage(
kJavaScriptCallNewTargetRegister);
}
__ Push(kJavaScriptCallNewTargetRegister);
}
__ Push(rax);
__ CallRuntime(Runtime::kStackGuardWithGap, 1);
if (save_new_target) {
__ Pop(kJavaScriptCallNewTargetRegister);
}
}
__ Ret();
}
#endif // V8_ENABLE_MAGLEV
#if V8_ENABLE_WEBASSEMBLY
// Returns the offset beyond the last saved FP register.
int SaveWasmParams(MacroAssembler* masm) {
// Save all parameter registers (see wasm-linkage.h). They might be
// overwritten in the subsequent runtime call. We don't have any callee-saved
// registers in wasm, so no need to store anything else.
static_assert(WasmLiftoffSetupFrameConstants::kNumberOfSavedGpParamRegs + 1 ==
arraysize(wasm::kGpParamRegisters),
"frame size mismatch");
for (Register reg : wasm::kGpParamRegisters) {
__ Push(reg);
}
static_assert(WasmLiftoffSetupFrameConstants::kNumberOfSavedFpParamRegs ==
arraysize(wasm::kFpParamRegisters),
"frame size mismatch");
__ AllocateStackSpace(kSimd128Size * arraysize(wasm::kFpParamRegisters));
int offset = 0;
for (DoubleRegister reg : wasm::kFpParamRegisters) {
__ movdqu(Operand(rsp, offset), reg);
offset += kSimd128Size;
}
return offset;
}
// Consumes the offset beyond the last saved FP register (as returned by
// {SaveWasmParams}).
void RestoreWasmParams(MacroAssembler* masm, int offset) {
for (DoubleRegister reg : base::Reversed(wasm::kFpParamRegisters)) {
offset -= kSimd128Size;
__ movdqu(reg, Operand(rsp, offset));
}
DCHECK_EQ(0, offset);
__ addq(rsp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters)));
for (Register reg : base::Reversed(wasm::kGpParamRegisters)) {
__ Pop(reg);
}
}
// When this builtin is called, the topmost stack entry is the calling pc.
// This is replaced with the following:
//
// [ calling pc ] <-- rsp; popped by {ret}.
// [ feedback vector ]
// [ Wasm instance ]
// [ WASM frame marker ]
// [ saved rbp ] <-- rbp; this is where "calling pc" used to be.
void Builtins::Generate_WasmLiftoffFrameSetup(MacroAssembler* masm) {
Register func_index = wasm::kLiftoffFrameSetupFunctionReg;
Register vector = r15;
Register calling_pc = rdi;
__ Pop(calling_pc);
__ Push(rbp);
__ Move(rbp, rsp);
__ Push(Immediate(StackFrame::TypeToMarker(StackFrame::WASM)));
__ LoadTaggedField(vector,
FieldOperand(kWasmInstanceRegister,
WasmInstanceObject::kFeedbackVectorsOffset));
__ LoadTaggedField(vector, FieldOperand(vector, func_index, times_tagged_size,
FixedArray::kHeaderSize));
Label allocate_vector, done;
__ JumpIfSmi(vector, &allocate_vector);
__ bind(&done);
__ Push(kWasmInstanceRegister);
__ Push(vector);
__ Push(calling_pc);
__ ret(0);
__ bind(&allocate_vector);
// Feedback vector doesn't exist yet. Call the runtime to allocate it.
// We temporarily change the frame type for this, because we need special
// handling by the stack walker in case of GC.
// For the runtime call, we create the following stack layout:
//
// [ reserved slot for NativeModule ] <-- arg[2]
// [ ("declared") function index ] <-- arg[1] for runtime func.
// [ Wasm instance ] <-- arg[0]
// [ ...spilled Wasm parameters... ]
// [ calling pc ]
// [ WASM_LIFTOFF_SETUP marker ]
// [ saved rbp ]
__ movq(Operand(rbp, TypedFrameConstants::kFrameTypeOffset),
Immediate(StackFrame::TypeToMarker(StackFrame::WASM_LIFTOFF_SETUP)));
__ set_has_frame(true);
__ Push(calling_pc);
int offset = SaveWasmParams(masm);
// Arguments to the runtime function: instance, func_index.
__ Push(kWasmInstanceRegister);
__ SmiTag(func_index);
__ Push(func_index);
// Allocate a stack slot where the runtime function can spill a pointer
// to the NativeModule.
__ Push(rsp);
__ Move(kContextRegister, Smi::zero());
__ CallRuntime(Runtime::kWasmAllocateFeedbackVector, 3);
__ movq(vector, kReturnRegister0);
RestoreWasmParams(masm, offset);
__ Pop(calling_pc);
// Restore correct frame type.
__ movq(Operand(rbp, TypedFrameConstants::kFrameTypeOffset),
Immediate(StackFrame::TypeToMarker(StackFrame::WASM)));
__ jmp(&done);
}
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
// The function index was pushed to the stack by the caller as int32.
__ Pop(r15);
// Convert to Smi for the runtime call.
__ SmiTag(r15);
{
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
FrameScope scope(masm, StackFrame::INTERNAL);
int offset = SaveWasmParams(masm);
// Push arguments for the runtime function.
__ Push(kWasmInstanceRegister);
__ Push(r15);
// Initialize the JavaScript context with 0. CEntry will use it to
// set the current context on the isolate.
__ Move(kContextRegister, Smi::zero());
__ CallRuntime(Runtime::kWasmCompileLazy, 2);
// The runtime function returns the jump table slot offset as a Smi. Use
// that to compute the jump target in r15.
__ SmiUntagUnsigned(kReturnRegister0);
__ movq(r15, kReturnRegister0);
RestoreWasmParams(masm, offset);
// After the instance register has been restored, we can add the jump table
// start to the jump table offset already stored in r15.
__ addq(r15, MemOperand(kWasmInstanceRegister,
wasm::ObjectAccess::ToTagged(
WasmInstanceObject::kJumpTableStartOffset)));
}
// Finally, jump to the jump table slot for the function.
__ jmp(r15);
}
void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) {
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
{
FrameScope scope(masm, StackFrame::WASM_DEBUG_BREAK);
// Save all parameter registers. They might hold live values, we restore
// them after the runtime call.
for (Register reg :
base::Reversed(WasmDebugBreakFrameConstants::kPushedGpRegs)) {
__ Push(reg);
}
constexpr int kFpStackSize =
kSimd128Size * WasmDebugBreakFrameConstants::kNumPushedFpRegisters;
__ AllocateStackSpace(kFpStackSize);
int offset = kFpStackSize;
for (DoubleRegister reg :
base::Reversed(WasmDebugBreakFrameConstants::kPushedFpRegs)) {
offset -= kSimd128Size;
__ movdqu(Operand(rsp, offset), reg);
}
// Initialize the JavaScript context with 0. CEntry will use it to
// set the current context on the isolate.
__ Move(kContextRegister, Smi::zero());
__ CallRuntime(Runtime::kWasmDebugBreak, 0);
// Restore registers.
for (DoubleRegister reg : WasmDebugBreakFrameConstants::kPushedFpRegs) {
__ movdqu(reg, Operand(rsp, offset));
offset += kSimd128Size;
}
__ addq(rsp, Immediate(kFpStackSize));
for (Register reg : WasmDebugBreakFrameConstants::kPushedGpRegs) {
__ Pop(reg);
}
}
__ ret(0);
}
namespace {
// Check that the stack was in the old state (if generated code assertions are
// enabled), and switch to the new state.
void SwitchStackState(MacroAssembler* masm, Register jmpbuf,
wasm::JumpBuffer::StackState old_state,
wasm::JumpBuffer::StackState new_state) {
if (v8_flags.debug_code) {
__ cmpl(MemOperand(jmpbuf, wasm::kJmpBufStateOffset), Immediate(old_state));
Label ok;
__ j(equal, &ok, Label::kNear);
__ Trap();
__ bind(&ok);
}
__ movl(MemOperand(jmpbuf, wasm::kJmpBufStateOffset), Immediate(new_state));
}
void FillJumpBuffer(MacroAssembler* masm, Register jmpbuf, Label* pc) {
__ movq(MemOperand(jmpbuf, wasm::kJmpBufSpOffset), rsp);
__ movq(MemOperand(jmpbuf, wasm::kJmpBufFpOffset), rbp);
__ movq(kScratchRegister,
__ StackLimitAsOperand(StackLimitKind::kRealStackLimit));
__ movq(MemOperand(jmpbuf, wasm::kJmpBufStackLimitOffset), kScratchRegister);
__ leaq(kScratchRegister, MemOperand(pc, 0));
__ movq(MemOperand(jmpbuf, wasm::kJmpBufPcOffset), kScratchRegister);
}
void LoadJumpBuffer(MacroAssembler* masm, Register jmpbuf, bool load_pc) {
__ movq(rsp, MemOperand(jmpbuf, wasm::kJmpBufSpOffset));
__ movq(rbp, MemOperand(jmpbuf, wasm::kJmpBufFpOffset));
SwitchStackState(masm, jmpbuf, wasm::JumpBuffer::Inactive,
wasm::JumpBuffer::Active);
if (load_pc) {
__ jmp(MemOperand(jmpbuf, wasm::kJmpBufPcOffset));
}
// The stack limit is set separately under the ExecutionAccess lock.
}
void SaveState(MacroAssembler* masm, Register active_continuation, Register tmp,
Label* suspend) {
Register jmpbuf = tmp;
__ LoadExternalPointerField(
jmpbuf,
FieldOperand(active_continuation, WasmContinuationObject::kJmpbufOffset),
kWasmContinuationJmpbufTag, kScratchRegister);
FillJumpBuffer(masm, jmpbuf, suspend);
}
void LoadTargetJumpBuffer(MacroAssembler* masm, Register target_continuation) {
Register target_jmpbuf = target_continuation;
__ LoadExternalPointerField(
target_jmpbuf,
FieldOperand(target_continuation, WasmContinuationObject::kJmpbufOffset),
kWasmContinuationJmpbufTag, kScratchRegister);
MemOperand GCScanSlotPlace =
MemOperand(rbp, StackSwitchFrameConstants::kGCScanSlotCountOffset);
__ Move(GCScanSlotPlace, 0);
// Switch stack!
LoadJumpBuffer(masm, target_jmpbuf, false);
}
void SyncStackLimit(MacroAssembler* masm, const Register& keep1,
const Register& keep2 = no_reg) {
using ER = ExternalReference;
__ Push(keep1);
if (keep2 != no_reg) {
__ Push(keep2);
}
{
FrameScope scope(masm, StackFrame::MANUAL);
__ Move(arg_reg_1, ExternalReference::isolate_address(masm->isolate()));
__ PrepareCallCFunction(1);
__ CallCFunction(ER::wasm_sync_stack_limit(), 1);
}
if (keep2 != no_reg) {
__ Pop(keep2);
}
__ Pop(keep1);
}
void ReloadParentContinuation(MacroAssembler* masm, Register promise,
Register tmp1, Register tmp2) {
Register active_continuation = tmp1;
__ LoadRoot(active_continuation, RootIndex::kActiveContinuation);
// We don't need to save the full register state since we are switching out of
// this stack for the last time. Mark the stack as retired.
Register jmpbuf = kScratchRegister;
__ LoadExternalPointerField(
jmpbuf,
FieldOperand(active_continuation, WasmContinuationObject::kJmpbufOffset),
kWasmContinuationJmpbufTag, tmp2);
SwitchStackState(masm, jmpbuf, wasm::JumpBuffer::Active,
wasm::JumpBuffer::Retired);
Register parent = tmp2;
__ LoadTaggedField(
parent,
FieldOperand(active_continuation, WasmContinuationObject::kParentOffset));
// Update active continuation root.
__ movq(masm->RootAsOperand(RootIndex::kActiveContinuation), parent);
jmpbuf = parent;
__ LoadExternalPointerField(
jmpbuf, FieldOperand(parent, WasmContinuationObject::kJmpbufOffset),
kWasmContinuationJmpbufTag, tmp1);
// Switch stack!
LoadJumpBuffer(masm, jmpbuf, false);
SyncStackLimit(masm, promise);
}
void RestoreParentSuspender(MacroAssembler* masm, Register tmp1,
Register tmp2) {
Register suspender = tmp1;
__ LoadRoot(suspender, RootIndex::kActiveSuspender);
__ StoreTaggedSignedField(
FieldOperand(suspender, WasmSuspenderObject::kStateOffset),
Smi::FromInt(WasmSuspenderObject::kInactive));
__ LoadTaggedField(
suspender, FieldOperand(suspender, WasmSuspenderObject::kParentOffset));
__ CompareRoot(suspender, RootIndex::kUndefinedValue);
Label undefined;
__ j(equal, &undefined, Label::kNear);
#ifdef DEBUG
// Check that the parent suspender is active.
Label parent_inactive;
Register state = tmp2;
__ LoadTaggedSignedField(
state, FieldOperand(suspender, WasmSuspenderObject::kStateOffset));
__ SmiCompare(state, Smi::FromInt(WasmSuspenderObject::kActive));
__ j(equal, &parent_inactive, Label::kNear);
__ Trap();
__ bind(&parent_inactive);
#endif
__ StoreTaggedSignedField(
FieldOperand(suspender, WasmSuspenderObject::kStateOffset),
Smi::FromInt(WasmSuspenderObject::kActive));
__ bind(&undefined);
__ movq(masm->RootAsOperand(RootIndex::kActiveSuspender), suspender);
}
void ResetStackSwitchFrameStackSlots(MacroAssembler* masm) {
__ Move(kScratchRegister, Smi::zero());
__ movq(MemOperand(rbp, StackSwitchFrameConstants::kInstanceOffset),
kScratchRegister);
__ movq(MemOperand(rbp, StackSwitchFrameConstants::kResultArrayOffset),
kScratchRegister);
}
void SwitchToAllocatedStack(MacroAssembler* masm, Register wasm_instance,
Register wrapper_buffer, Register original_fp,
Register new_wrapper_buffer, Register scratch,
Label* suspend) {
ResetStackSwitchFrameStackSlots(masm);
Register parent_continuation = new_wrapper_buffer;
__ LoadRoot(parent_continuation, RootIndex::kActiveContinuation);
__ LoadTaggedField(
parent_continuation,
FieldOperand(parent_continuation, WasmContinuationObject::kParentOffset));
SaveState(masm, parent_continuation, scratch, suspend);
SyncStackLimit(masm, kWasmInstanceRegister, wrapper_buffer);
parent_continuation = no_reg;
Register target_continuation = scratch;
__ LoadRoot(target_continuation, RootIndex::kActiveContinuation);
// Save the old stack's rbp in r9, and use it to access the parameters in
// the parent frame.
__ movq(original_fp, rbp);
LoadTargetJumpBuffer(masm, target_continuation);
// Push the loaded rbp. We know it is null, because there is no frame yet,
// so we could also push 0 directly. In any case we need to push it, because
// this marks the base of the stack segment for the stack frame iterator.
__ EnterFrame(StackFrame::STACK_SWITCH);
int stack_space =
StackSwitchFrameConstants::kNumSpillSlots * kSystemPointerSize +
JSToWasmWrapperFrameConstants::kWrapperBufferSize;
__ AllocateStackSpace(stack_space);
__ movq(new_wrapper_buffer, rsp);
// Copy data needed for return handling from old wrapper buffer to new one.
// kWrapperBufferRefReturnCount will be copied too, because 8 bytes are copied
// at the same time.
static_assert(JSToWasmWrapperFrameConstants::kWrapperBufferRefReturnCount ==
JSToWasmWrapperFrameConstants::kWrapperBufferReturnCount + 4);
__ movq(kScratchRegister,
MemOperand(wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferReturnCount));
__ movq(MemOperand(new_wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferReturnCount),
kScratchRegister);
__ movq(
kScratchRegister,
MemOperand(
wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferSigRepresentationArray));
__ movq(
MemOperand(
new_wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferSigRepresentationArray),
kScratchRegister);
}
void SwitchBackAndReturnPromise(MacroAssembler* masm, Register tmp1,
Register tmp2, Label* return_promise) {
// The return value of the wasm function becomes the parameter of the
// FulfillPromise builtin, and the promise is the return value of this
// wrapper.
__ movq(tmp1, kReturnRegister0);
Register promise = kReturnRegister0;
__ LoadRoot(promise, RootIndex::kActiveSuspender);
__ LoadTaggedField(
promise, FieldOperand(promise, WasmSuspenderObject::kPromiseOffset));
__ movq(kContextRegister,
MemOperand(rbp, StackSwitchFrameConstants::kInstanceOffset));
__ LoadTaggedField(
kContextRegister,
FieldOperand(kContextRegister, WasmInstanceObject::kNativeContextOffset));
__ Move(MemOperand(rbp, StackSwitchFrameConstants::kGCScanSlotCountOffset),
1);
__ Push(promise);
__ CallBuiltin(Builtin::kFulfillPromise);
__ Pop(promise);
__ bind(return_promise);
ReloadParentContinuation(masm, promise, tmp1, tmp2);
RestoreParentSuspender(masm, tmp1, tmp2);
}
void GenerateExceptionHandlingLandingPad(MacroAssembler* masm,
Label* return_promise) {
int catch_handler = __ pc_offset();
// Restore rsp to free the reserved stack slots for the sections.
__ leaq(rsp, MemOperand(rbp, StackSwitchFrameConstants::kLastSpillOffset));
// Unset thread_in_wasm_flag.
Register thread_in_wasm_flag_addr = r8;
__ movq(
thread_in_wasm_flag_addr,
MemOperand(kRootRegister, Isolate::thread_in_wasm_flag_address_offset()));
__ movl(MemOperand(thread_in_wasm_flag_addr, 0), Immediate(0));
thread_in_wasm_flag_addr = no_reg;
// The exception becomes the parameter of the RejectPromise builtin, and the
// promise is the return value of this wrapper.
__ movq(rbx, kReturnRegister0);
Register promise = rax;
__ LoadRoot(promise, RootIndex::kActiveSuspender);
__ LoadTaggedField(
promise, FieldOperand(promise, WasmSuspenderObject::kPromiseOffset));
__ movq(kContextRegister,
MemOperand(rbp, StackSwitchFrameConstants::kInstanceOffset));
__ LoadTaggedField(
kContextRegister,
FieldOperand(kContextRegister, WasmInstanceObject::kNativeContextOffset));
__ Move(MemOperand(rbp, StackSwitchFrameConstants::kGCScanSlotCountOffset),
1);
__ Push(promise);
static const Builtin_RejectPromise_InterfaceDescriptor desc;
static_assert(desc.GetRegisterParameter(0) == rax && // promise
desc.GetRegisterParameter(1) == rbx && // reason
desc.GetRegisterParameter(2) == rcx // debugEvent
);
__ LoadRoot(rcx, RootIndex::kTrueValue);
__ CallBuiltin(Builtin::kRejectPromise);
__ Pop(promise);
// Run the rest of the wrapper normally (switch to the old stack,
// deconstruct the frame, ...).
__ jmp(return_promise);
masm->isolate()->builtins()->SetJSPIPromptHandlerOffset(catch_handler);
}
void JSToWasmWrapperHelper(MacroAssembler* masm, bool stack_switch) {
__ EnterFrame(stack_switch ? StackFrame::STACK_SWITCH
: StackFrame::JS_TO_WASM);
__ AllocateStackSpace(StackSwitchFrameConstants::kNumSpillSlots *
kSystemPointerSize);
Register wrapper_buffer =
WasmJSToWasmWrapperDescriptor::WrapperBufferRegister();
__ movq(kWasmInstanceRegister,
MemOperand(rbp, JSToWasmWrapperFrameConstants::kInstanceParamOffset));
Register original_fp = stack_switch ? r9 : rbp;
Register new_wrapper_buffer = stack_switch ? rbx : wrapper_buffer;
Label suspend;
if (stack_switch) {
SwitchToAllocatedStack(masm, kWasmInstanceRegister, wrapper_buffer,
original_fp, new_wrapper_buffer, rax, &suspend);
}
__ movq(MemOperand(rbp, JSToWasmWrapperFrameConstants::kWrapperBufferOffset),
new_wrapper_buffer);
if (stack_switch) {
__ movq(MemOperand(rbp, StackSwitchFrameConstants::kInstanceOffset),
kWasmInstanceRegister);
Register result_array = kScratchRegister;
__ movq(result_array,
MemOperand(original_fp,
JSToWasmWrapperFrameConstants::kResultArrayParamOffset));
__ movq(MemOperand(rbp, StackSwitchFrameConstants::kResultArrayOffset),
result_array);
}
Register result_size = rax;
__ movq(
result_size,
MemOperand(
wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferStackReturnBufferSize));
__ shlq(result_size, Immediate(kSystemPointerSizeLog2));
__ subq(rsp, result_size);
__ movq(
MemOperand(
new_wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferStackReturnBufferStart),
rsp);
Register call_target = rdi;
// param_start should not alias with any parameter registers.
Register params_start = r11;
__ movq(params_start,
MemOperand(wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferParamStart));
Register params_end = rbx;
__ movq(params_end,
MemOperand(wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferParamEnd));
__ movq(call_target,
MemOperand(wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferCallTarget));
Register last_stack_param = rcx;
// The first GP parameter is the instance, which we handle specially.
int stack_params_offset =
(arraysize(wasm::kGpParamRegisters) - 1) * kSystemPointerSize +
arraysize(wasm::kFpParamRegisters) * kDoubleSize;
__ leaq(last_stack_param, MemOperand(params_start, stack_params_offset));
Label loop_start;
__ bind(&loop_start);
Label finish_stack_params;
__ cmpq(last_stack_param, params_end);
__ j(greater_equal, &finish_stack_params);
// Push parameter
__ subq(params_end, Immediate(kSystemPointerSize));
__ pushq(MemOperand(params_end, 0));
__ jmp(&loop_start);
__ bind(&finish_stack_params);
int next_offset = 0;
for (size_t i = 1; i < arraysize(wasm::kGpParamRegisters); ++i) {
// Check that {params_start} does not overlap with any of the parameter
// registers, so that we don't overwrite it by accident with the loads
// below.
DCHECK_NE(params_start, wasm::kGpParamRegisters[i]);
__ movq(wasm::kGpParamRegisters[i], MemOperand(params_start, next_offset));
next_offset += kSystemPointerSize;
}
for (size_t i = 0; i < arraysize(wasm::kFpParamRegisters); ++i) {
__ Movsd(wasm::kFpParamRegisters[i], MemOperand(params_start, next_offset));
next_offset += kDoubleSize;
}
DCHECK_EQ(next_offset, stack_params_offset);
Register thread_in_wasm_flag_addr = r12;
__ movq(
thread_in_wasm_flag_addr,
MemOperand(kRootRegister, Isolate::thread_in_wasm_flag_address_offset()));
__ movl(MemOperand(thread_in_wasm_flag_addr, 0), Immediate(1));
__ call(call_target);
__ movq(
thread_in_wasm_flag_addr,
MemOperand(kRootRegister, Isolate::thread_in_wasm_flag_address_offset()));
__ movl(MemOperand(thread_in_wasm_flag_addr, 0), Immediate(0));
thread_in_wasm_flag_addr = no_reg;
wrapper_buffer = rcx;
for (size_t i = 0; i < arraysize(wasm::kGpReturnRegisters); ++i) {
DCHECK_NE(wrapper_buffer, wasm::kGpReturnRegisters[i]);
}
__ movq(wrapper_buffer,
MemOperand(rbp, JSToWasmWrapperFrameConstants::kWrapperBufferOffset));
__ Movsd(MemOperand(
wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferFPReturnRegister1),
wasm::kFpReturnRegisters[0]);
__ Movsd(MemOperand(
wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferFPReturnRegister2),
wasm::kFpReturnRegisters[1]);
__ movq(MemOperand(
wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferGPReturnRegister1),
wasm::kGpReturnRegisters[0]);
__ movq(MemOperand(
wrapper_buffer,
JSToWasmWrapperFrameConstants::kWrapperBufferGPReturnRegister2),
wasm::kGpReturnRegisters[1]);
// Call the return value builtin with
// rax: wasm instance.
// rbx: the result JSArray for multi-return.
// rcx: pointer to the byte buffer which contains all parameters.
if (stack_switch) {
__ movq(rbx,
MemOperand(rbp, StackSwitchFrameConstants::kResultArrayOffset));
__ movq(rax, MemOperand(rbp, StackSwitchFrameConstants::kInstanceOffset));
} else {
__ movq(rbx,
MemOperand(rbp,
JSToWasmWrapperFrameConstants::kResultArrayParamOffset));
__ movq(rax, MemOperand(
rbp, JSToWasmWrapperFrameConstants::kInstanceParamOffset));
}
__ Call(BUILTIN_CODE(masm->isolate(), JSToWasmHandleReturns),
RelocInfo::CODE_TARGET);
Label return_promise;
if (stack_switch) {
SwitchBackAndReturnPromise(masm, rbx, rcx, &return_promise);
}
__ bind(&suspend);
__ LeaveFrame(stack_switch ? StackFrame::STACK_SWITCH
: StackFrame::JS_TO_WASM);
__ ret(0);
// Catch handler for the stack-switching wrapper: reject the promise with the
// thrown exception.
if (stack_switch) {
GenerateExceptionHandlingLandingPad(masm, &return_promise);
}
}
} // namespace
void Builtins::Generate_JSToWasmWrapperAsm(MacroAssembler* masm) {
JSToWasmWrapperHelper(masm, false);
}
void Builtins::Generate_WasmReturnPromiseOnSuspendAsm(MacroAssembler* masm) {
JSToWasmWrapperHelper(masm, true);
}
void Builtins::Generate_WasmToJsWrapperAsm(MacroAssembler* masm) {
// Pop the return address into a scratch register and push it later again. The
// return address has to be on top of the stack after all registers have been
// pushed, so that the return instruction can find it.
__ popq(kScratchRegister);
int required_stack_space = arraysize(wasm::kFpParamRegisters) * kDoubleSize;
__ subq(rsp, Immediate(required_stack_space));
for (int i = 0; i < static_cast<int>(arraysize(wasm::kFpParamRegisters));
++i) {
__ Movsd(MemOperand(rsp, i * kDoubleSize), wasm::kFpParamRegisters[i]);
}
// Push the GP registers in reverse order so that they are on the stack like
// in an array, with the first item being at the lowest address.
for (size_t i = arraysize(wasm::kGpParamRegisters) - 1; i > 0; --i) {
__ pushq(wasm::kGpParamRegisters[i]);
}
// Decrement the stack to allocate a stack slot. The signature gets written
// into the slot in Torque.
__ pushq(rax);
// Push the return address again.
__ pushq(kScratchRegister);
__ TailCallBuiltin(Builtin::kWasmToJsWrapperCSA);
}
void Builtins::Generate_WasmSuspend(MacroAssembler* masm) {
// Set up the stackframe.
__ EnterFrame(StackFrame::STACK_SWITCH);
Register suspender = rax;
__ AllocateStackSpace(StackSwitchFrameConstants::kNumSpillSlots *
kSystemPointerSize);
// Set a sentinel value for the spill slots visited by the GC.
ResetStackSwitchFrameStackSlots(masm);
// -------------------------------------------
// Save current state in active jump buffer.
// -------------------------------------------
Label resume;
Register continuation = rcx;
__ LoadRoot(continuation, RootIndex::kActiveContinuation);
Register jmpbuf = rdx;
__ LoadExternalPointerField(
jmpbuf, FieldOperand(continuation, WasmContinuationObject::kJmpbufOffset),
kWasmContinuationJmpbufTag, r8);
FillJumpBuffer(masm, jmpbuf, &resume);
SwitchStackState(masm, jmpbuf, wasm::JumpBuffer::Active,
wasm::JumpBuffer::Inactive);
__ StoreTaggedSignedField(
FieldOperand(suspender, WasmSuspenderObject::kStateOffset),
Smi::FromInt(WasmSuspenderObject::kSuspended));
jmpbuf = no_reg;
// live: [rax, rbx, rcx]
Register suspender_continuation = rdx;
__ LoadTaggedField(
suspender_continuation,
FieldOperand(suspender, WasmSuspenderObject::kContinuationOffset));
#ifdef DEBUG
// -------------------------------------------
// Check that the suspender's continuation is the active continuation.
// -------------------------------------------
// TODO(thibaudm): Once we add core stack-switching instructions, this check
// will not hold anymore: it's possible that the active continuation changed
// (due to an internal switch), so we have to update the suspender.
__ cmpq(suspender_continuation, continuation);
Label ok;
__ j(equal, &ok);
__ Trap();
__ bind(&ok);
#endif
// -------------------------------------------
// Update roots.
// -------------------------------------------
Register caller = rcx;
__ LoadTaggedField(caller,
FieldOperand(suspender_continuation,
WasmContinuationObject::kParentOffset));
__ movq(masm->RootAsOperand(RootIndex::kActiveContinuation), caller);
Register parent = rdx;
__ LoadTaggedField(
parent, FieldOperand(suspender, WasmSuspenderObject::kParentOffset));
__ movq(masm->RootAsOperand(RootIndex::kActiveSuspender), parent);
parent = no_reg;
// live: [rax, rcx]
// -------------------------------------------
// Load jump buffer.
// -------------------------------------------
SyncStackLimit(masm, caller, suspender);
jmpbuf = caller;
__ LoadExternalPointerField(
jmpbuf, FieldOperand(caller, WasmContinuationObject::kJmpbufOffset),
kWasmContinuationJmpbufTag, r8);
caller = no_reg;
__ LoadTaggedField(
kReturnRegister0,
FieldOperand(suspender, WasmSuspenderObject::kPromiseOffset));
MemOperand GCScanSlotPlace =
MemOperand(rbp, StackSwitchFrameConstants::kGCScanSlotCountOffset);
__ Move(GCScanSlotPlace, 0);
LoadJumpBuffer(masm, jmpbuf, true);
__ Trap();
__ bind(&resume);
__ LeaveFrame(StackFrame::STACK_SWITCH);
__ ret(0);
}
namespace {
// Resume the suspender stored in the closure. We generate two variants of this
// builtin: the onFulfilled variant resumes execution at the saved PC and
// forwards the value, the onRejected variant throws the value.
void Generate_WasmResumeHelper(MacroAssembler* masm, wasm::OnResume on_resume) {
__ EnterFrame(StackFrame::STACK_SWITCH);
Register param_count = rax;
__ decq(param_count); // Exclude receiver.
Register closure = kJSFunctionRegister; // rdi
__ AllocateStackSpace(StackSwitchFrameConstants::kNumSpillSlots *
kSystemPointerSize);
// Set a sentinel value for the spill slots visited by the GC.
ResetStackSwitchFrameStackSlots(masm);
param_count = no_reg;
// -------------------------------------------
// Load suspender from closure.
// -------------------------------------------
Register sfi = closure;
__ LoadTaggedField(
sfi,
MemOperand(
closure,
wasm::ObjectAccess::SharedFunctionInfoOffsetInTaggedJSFunction()));
Register function_data = sfi;
__ LoadTaggedField(
function_data,
FieldOperand(sfi, SharedFunctionInfo::kFunctionDataOffset));
// The write barrier uses a fixed register for the host object (rdi). The next
// barrier is on the suspender, so load it in rdi directly.
Register suspender = rdi;
__ LoadTaggedField(
suspender, FieldOperand(function_data, WasmResumeData::kSuspenderOffset));
// Check the suspender state.
Label suspender_is_suspended;
Register state = rdx;
__ LoadTaggedSignedField(
state, FieldOperand(suspender, WasmSuspenderObject::kStateOffset));
__ SmiCompare(state, Smi::FromInt(WasmSuspenderObject::kSuspended));
__ j(equal, &suspender_is_suspended);
__ Trap(); // TODO(thibaudm): Throw a wasm trap.
closure = no_reg;
sfi = no_reg;
__ bind(&suspender_is_suspended);
// -------------------------------------------
// Save current state.
// -------------------------------------------
Label suspend;
Register active_continuation = r9;
__ LoadRoot(active_continuation, RootIndex::kActiveContinuation);
Register current_jmpbuf = rax;
__ LoadExternalPointerField(
current_jmpbuf,
FieldOperand(active_continuation, WasmContinuationObject::kJmpbufOffset),
kWasmContinuationJmpbufTag, rdx);
FillJumpBuffer(masm, current_jmpbuf, &suspend);
SwitchStackState(masm, current_jmpbuf, wasm::JumpBuffer::Active,
wasm::JumpBuffer::Inactive);
current_jmpbuf = no_reg;
// -------------------------------------------
// Set the suspender and continuation parents and update the roots
// -------------------------------------------
Register active_suspender = rcx;
Register slot_address = WriteBarrierDescriptor::SlotAddressRegister();
// Check that the fixed register isn't one that is already in use.
DCHECK(slot_address == rbx || slot_address == r8);
__ LoadRoot(active_suspender, RootIndex::kActiveSuspender);
__ StoreTaggedField(
FieldOperand(suspender, WasmSuspenderObject::kParentOffset),
active_suspender);
__ RecordWriteField(suspender, WasmSuspenderObject::kParentOffset,
active_suspender, slot_address, SaveFPRegsMode::kIgnore);
__ StoreTaggedSignedField(
FieldOperand(suspender, WasmSuspenderObject::kStateOffset),
Smi::FromInt(WasmSuspenderObject::kActive));
__ movq(masm->RootAsOperand(RootIndex::kActiveSuspender), suspender);
Register target_continuation = suspender;
__ LoadTaggedField(
target_continuation,
FieldOperand(suspender, WasmSuspenderObject::kContinuationOffset));
suspender = no_reg;
__ StoreTaggedField(
FieldOperand(target_continuation, WasmContinuationObject::kParentOffset),
active_continuation);
__ RecordWriteField(
target_continuation, WasmContinuationObject::kParentOffset,
active_continuation, slot_address, SaveFPRegsMode::kIgnore);
active_continuation = no_reg;
__ movq(masm->RootAsOperand(RootIndex::kActiveContinuation),
target_continuation);
SyncStackLimit(masm, target_continuation);
// -------------------------------------------
// Load state from target jmpbuf (longjmp).
// -------------------------------------------
Register target_jmpbuf = rdi;
__ LoadExternalPointerField(
target_jmpbuf,
FieldOperand(target_continuation, WasmContinuationObject::kJmpbufOffset),
kWasmContinuationJmpbufTag, rax);
// Move resolved value to return register.
__ movq(kReturnRegister0, Operand(rbp, 3 * kSystemPointerSize));
__ Move(MemOperand(rbp, StackSwitchFrameConstants::kGCScanSlotCountOffset),
0);
if (on_resume == wasm::OnResume::kThrow) {
// Switch to the continuation's stack without restoring the PC.
LoadJumpBuffer(masm, target_jmpbuf, false);
// Pop this frame now. The unwinder expects that the first STACK_SWITCH
// frame is the outermost one.
__ LeaveFrame(StackFrame::STACK_SWITCH);
// Forward the onRejected value to kThrow.
__ pushq(kReturnRegister0);
__ Move(kContextRegister, Smi::zero());
__ CallRuntime(Runtime::kThrow);
} else {
// Resume the continuation normally.
LoadJumpBuffer(masm, target_jmpbuf, true);
}
__ Trap();
__ bind(&suspend);
__ LeaveFrame(StackFrame::STACK_SWITCH);
// Pop receiver + parameter.
__ ret(2 * kSystemPointerSize);
}
} // namespace
void Builtins::Generate_WasmResume(MacroAssembler* masm) {
Generate_WasmResumeHelper(masm, wasm::OnResume::kContinue);
}
void Builtins::Generate_WasmReject(MacroAssembler* masm) {
Generate_WasmResumeHelper(masm, wasm::OnResume::kThrow);
}
void Builtins::Generate_WasmOnStackReplace(MacroAssembler* masm) {
MemOperand OSRTargetSlot(rbp, -wasm::kOSRTargetOffset);
__ movq(kScratchRegister, OSRTargetSlot);
__ Move(OSRTargetSlot, 0);
__ jmp(kScratchRegister);
}
namespace {
static constexpr Register kOldSPRegister = r12;
void SwitchToTheCentralStackIfNeeded(MacroAssembler* masm,
int r12_stack_slot_index) {
using ER = ExternalReference;
// Store r12 value on the stack to restore on exit from the builtin.
__ movq(ExitFrameStackSlotOperand(r12_stack_slot_index * kSystemPointerSize),
r12);
// kOldSPRegister used as a switch flag, if it is zero - no switch performed
// if it is not zero, it contains old sp value.
__ Move(kOldSPRegister, 0);
// Using arg1-2 regs as temporary registers, because they will be rewritten
// before exiting to native code anyway.
DCHECK(!AreAliased(arg_reg_1, arg_reg_2, kOldSPRegister, rax, rbx, r15));
ER on_central_stack_flag = ER::Create(
IsolateAddressId::kIsOnCentralStackFlagAddress, masm->isolate());
Label do_not_need_to_switch;
__ cmpb(__ ExternalReferenceAsOperand(on_central_stack_flag), Immediate(0));
__ j(not_zero, &do_not_need_to_switch);
// Perform switching to the central stack.
__ movq(kOldSPRegister, rsp);
static constexpr Register argc_input = rax;
Register central_stack_sp = arg_reg_2;
DCHECK(!AreAliased(central_stack_sp, argc_input));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ pushq(argc_input);
__ Move(arg_reg_1, ER::isolate_address(masm->isolate()));
__ Move(arg_reg_2, kOldSPRegister);
__ PrepareCallCFunction(2);
__ CallCFunction(ER::wasm_switch_to_the_central_stack(), 2);
__ movq(central_stack_sp, kReturnRegister0);
__ popq(argc_input);
}
static constexpr int kReturnAddressSlotOffset = 1 * kSystemPointerSize;
__ subq(central_stack_sp, Immediate(kReturnAddressSlotOffset));
__ movq(rsp, central_stack_sp);
// rsp should be aligned by 16 bytes,
// but it is not guaranteed for stored SP.
__ AlignStackPointer();
#ifdef V8_TARGET_OS_WIN
// When we switch stack we leave home space allocated on the old stack.
// Allocate home space on the central stack to prevent stack corruption.
__ subq(rsp, Immediate(kWindowsHomeStackSlots * kSystemPointerSize));
#endif // V8_TARGET_OS_WIN
// Update the sp saved in the frame.
// It will be used to calculate the callee pc during GC.
// The pc is going to be on the new stack segment, so rewrite it here.
__ movq(Operand(rbp, ExitFrameConstants::kSPOffset), rsp);
__ bind(&do_not_need_to_switch);
}
void SwitchFromTheCentralStackIfNeeded(MacroAssembler* masm,
int r12_stack_slot_index) {
using ER = ExternalReference;
Label no_stack_change;
__ cmpq(kOldSPRegister, Immediate(0));
__ j(equal, &no_stack_change);
__ movq(rsp, kOldSPRegister);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ pushq(kReturnRegister0);
__ pushq(kReturnRegister1);
__ Move(arg_reg_1, ER::isolate_address(masm->isolate()));
__ PrepareCallCFunction(1);
__ CallCFunction(ER::wasm_switch_from_the_central_stack(), 1);
__ popq(kReturnRegister1);
__ popq(kReturnRegister0);
}
__ bind(&no_stack_change);
// Restore previous value of r12.
__ movq(r12,
ExitFrameStackSlotOperand(r12_stack_slot_index * kSystemPointerSize));
}
} // namespace
#endif // V8_ENABLE_WEBASSEMBLY
void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
ArgvMode argv_mode, bool builtin_exit_frame,
bool switch_to_central_stack) {
CHECK(result_size == 1 || result_size == 2);
using ER = ExternalReference;
// rax: number of arguments including receiver
// rbx: pointer to C function (C callee-saved)
// rbp: frame pointer of calling JS frame (restored after C call)
// rsp: stack pointer (restored after C call)
// rsi: current context (restored)
//
// If argv_mode == ArgvMode::kRegister:
// r15: pointer to the first argument
const int kSwitchToTheCentralStackSlots = switch_to_central_stack ? 1 : 0;
#ifdef V8_TARGET_OS_WIN
// Windows 64-bit ABI only allows a single-word to be returned in register
// rax. Larger return sizes must be written to an address passed as a hidden
// first argument.
static constexpr int kMaxRegisterResultSize = 1;
const int kReservedStackSlots = kSwitchToTheCentralStackSlots +
(result_size <= kMaxRegisterResultSize ? 0 : result_size);
#else
// Simple results are returned in rax, and a struct of two pointers are
// returned in rax+rdx.
static constexpr int kMaxRegisterResultSize = 2;
const int kReservedStackSlots = kSwitchToTheCentralStackSlots;
CHECK_LE(result_size, kMaxRegisterResultSize);
#endif // V8_TARGET_OS_WIN
#if V8_ENABLE_WEBASSEMBLY
const int kR12SpillSlot = kReservedStackSlots - 1;
#endif // V8_ENABLE_WEBASSEMBLY
__ EnterExitFrame(
kReservedStackSlots,
builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT, rbx);
// Set up argv in a callee-saved register. It is reused below so it must be
// retained across the C call. In case of ArgvMode::kRegister, r15 has
// already been set by the caller.
static constexpr Register kArgvRegister = r15;
if (argv_mode == ArgvMode::kStack) {
int offset =
StandardFrameConstants::kFixedFrameSizeAboveFp - kReceiverOnStackSize;
__ leaq(kArgvRegister,
Operand(rbp, rax, times_system_pointer_size, offset));
}
// rbx: pointer to builtin function (C callee-saved).
// rbp: frame pointer of exit frame (restored after C call).
// rsp: stack pointer (restored after C call).
// rax: number of arguments including receiver
// r15: argv pointer (C callee-saved).
#if V8_ENABLE_WEBASSEMBLY
if (switch_to_central_stack) {
SwitchToTheCentralStackIfNeeded(masm, kR12SpillSlot);
}
#endif // V8_ENABLE_WEBASSEMBLY
// Check stack alignment.
if (v8_flags.debug_code) {
__ CheckStackAlignment();
}
// Call C function. The arguments object will be created by stubs declared by
// DECLARE_RUNTIME_FUNCTION().
if (result_size <= kMaxRegisterResultSize) {
// Pass a pointer to the Arguments object as the first argument.
// Return result in single register (rax), or a register pair (rax, rdx).
__ movq(arg_reg_1, rax); // argc.
__ movq(arg_reg_2, kArgvRegister); // argv.
__ Move(arg_reg_3, ER::isolate_address(masm->isolate()));
} else {
#ifdef V8_TARGET_OS_WIN
DCHECK_LE(result_size, 2);
// Pass a pointer to the result location as the first argument.
__ leaq(arg_reg_1, ExitFrameStackSlotOperand(0 * kSystemPointerSize));
// Pass a pointer to the Arguments object as the second argument.
__ movq(arg_reg_2, rax); // argc.
__ movq(arg_reg_3, kArgvRegister); // argv.
__ Move(arg_reg_4, ER::isolate_address(masm->isolate()));
#else
UNREACHABLE();
#endif // V8_TARGET_OS_WIN
}
__ call(rbx);
#ifdef V8_TARGET_OS_WIN
if (result_size > kMaxRegisterResultSize) {
// Read result values stored on stack.
DCHECK_EQ(result_size, 2);
__ movq(kReturnRegister0,
ExitFrameStackSlotOperand(0 * kSystemPointerSize));
__ movq(kReturnRegister1,
ExitFrameStackSlotOperand(1 * kSystemPointerSize));
}
#endif // V8_TARGET_OS_WIN
// Result is in rax or rdx:rax - do not destroy these registers!
#if V8_ENABLE_WEBASSEMBLY
if (switch_to_central_stack) {
SwitchFromTheCentralStackIfNeeded(masm, kR12SpillSlot);
}
#endif // V8_ENABLE_WEBASSEMBLY
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(rax, RootIndex::kException);
__ j(equal, &exception_returned);
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (v8_flags.debug_code) {
Label okay;
__ LoadRoot(kScratchRegister, RootIndex::kTheHoleValue);
ER pending_exception_address =
ER::Create(IsolateAddressId::kPendingExceptionAddress, masm->isolate());
__ cmp_tagged(kScratchRegister,
masm->ExternalReferenceAsOperand(pending_exception_address));
__ j(equal, &okay, Label::kNear);
__ int3();
__ bind(&okay);
}
__ LeaveExitFrame();
if (argv_mode == ArgvMode::kStack) {
// Drop arguments and the receiver from the caller stack.
__ PopReturnAddressTo(rcx);
__ leaq(rsp, Operand(kArgvRegister, kReceiverOnStackSize));
__ PushReturnAddressFrom(rcx);
}
__ ret(0);
// Handling of exception.
__ bind(&exception_returned);
ER pending_handler_context_address = ER::Create(
IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
ER pending_handler_entrypoint_address = ER::Create(
IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
ER pending_handler_fp_address =
ER::Create(IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
ER pending_handler_sp_address =
ER::Create(IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
// Ask the runtime for help to determine the handler. This will set rax to
// contain the current pending exception, don't clobber it.
ER find_handler = ER::Create(Runtime::kUnwindAndFindExceptionHandler);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ Move(arg_reg_1, 0); // argc.
__ Move(arg_reg_2, 0); // argv.
__ Move(arg_reg_3, ER::isolate_address(masm->isolate()));
__ PrepareCallCFunction(3);
__ CallCFunction(find_handler, 3);
}
#ifdef V8_ENABLE_CET_SHADOW_STACK
// Drop frames from the shadow stack.
ER num_frames_above_pending_handler_address = ER::Create(
IsolateAddressId::kNumFramesAbovePendingHandlerAddress, masm->isolate());
__ movq(rcx, masm->ExternalReferenceAsOperand(
num_frames_above_pending_handler_address));
__ IncsspqIfSupported(rcx, kScratchRegister);
#endif // V8_ENABLE_CET_SHADOW_STACK
// Retrieve the handler context, SP and FP.
__ movq(rsi,
masm->ExternalReferenceAsOperand(pending_handler_context_address));
__ movq(rsp, masm->ExternalReferenceAsOperand(pending_handler_sp_address));
__ movq(rbp, masm->ExternalReferenceAsOperand(pending_handler_fp_address));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (rsi == 0) for non-JS frames.
Label skip;
__ testq(rsi, rsi);
__ j(zero, &skip, Label::kNear);
__ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
__ bind(&skip);
// Clear c_entry_fp, like we do in `LeaveExitFrame`.
ER c_entry_fp_address =
ER::Create(IsolateAddressId::kCEntryFPAddress, masm->isolate());
Operand c_entry_fp_operand =
masm->ExternalReferenceAsOperand(c_entry_fp_address);
__ movq(c_entry_fp_operand, Immediate(0));
// Compute the handler entry address and jump to it.
__ movq(rdi,
masm->ExternalReferenceAsOperand(pending_handler_entrypoint_address));
__ jmp(rdi);
}
void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
Label check_negative, process_64_bits, done;
// Account for return address and saved regs.
const int kArgumentOffset = 4 * kSystemPointerSize;
MemOperand mantissa_operand(MemOperand(rsp, kArgumentOffset));
MemOperand exponent_operand(
MemOperand(rsp, kArgumentOffset + kDoubleSize / 2));
// The result is returned on the stack.
MemOperand return_operand = mantissa_operand;
Register scratch1 = rbx;
// Since we must use rcx for shifts below, use some other register (rax)
// to calculate the result if ecx is the requested return register.
Register result_reg = rax;
// Save ecx if it isn't the return register and therefore volatile, or if it
// is the return register, then save the temp register we use in its stead
// for the result.
Register save_reg = rax;
__ pushq(rcx);
__ pushq(scratch1);
__ pushq(save_reg);
__ movl(scratch1, mantissa_operand);
__ Movsd(kScratchDoubleReg, mantissa_operand);
__ movl(rcx, exponent_operand);
__ andl(rcx, Immediate(HeapNumber::kExponentMask));
__ shrl(rcx, Immediate(HeapNumber::kExponentShift));
__ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias));
__ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits));
__ j(below, &process_64_bits, Label::kNear);
// Result is entirely in lower 32-bits of mantissa
int delta =
HeapNumber::kExponentBias + base::Double::kPhysicalSignificandSize;
__ subl(rcx, Immediate(delta));
__ xorl(result_reg, result_reg);
__ cmpl(rcx, Immediate(31));
__ j(above, &done, Label::kNear);
__ shll_cl(scratch1);
__ jmp(&check_negative, Label::kNear);
__ bind(&process_64_bits);
__ Cvttsd2siq(result_reg, kScratchDoubleReg);
__ jmp(&done, Label::kNear);
// If the double was negative, negate the integer result.
__ bind(&check_negative);
__ movl(result_reg, scratch1);
__ negl(result_reg);
__ cmpl(exponent_operand, Immediate(0));
__ cmovl(greater, result_reg, scratch1);
// Restore registers
__ bind(&done);
__ movl(return_operand, result_reg);
__ popq(save_reg);
__ popq(scratch1);
__ popq(rcx);
__ ret(0);
}
// TODO(jgruber): Instead of explicitly setting up implicit_args_ on the stack
// in CallApiCallback, we could use the calling convention to set up the stack
// correctly in the first place.
//
// TODO(jgruber): I suspect that most of CallApiCallback could be implemented
// as a C++ trampoline, vastly simplifying the assembly implementation.
void Builtins::Generate_CallApiCallbackImpl(MacroAssembler* masm,
CallApiCallbackMode mode) {
// ----------- S t a t e -------------
// CallApiCallbackMode::kGeneric mode:
// -- rcx : arguments count (not including the receiver)
// -- rbx : call handler info
// -- r8 : holder
// CallApiCallbackMode::kOptimizedNoProfiling/kOptimized modes:
// -- rdx : api function address
// -- rcx : arguments count (not including the receiver)
// -- rbx : call data
// -- rdi : holder
// Both modes:
// -- rsi : context
// -- rsp[0] : return address
// -- rsp[8] : argument 0 (receiver)
// -- rsp[16] : argument 1
// -- ...
// -- rsp[argc * 8] : argument (argc - 1)
// -- rsp[(argc + 1) * 8] : argument argc
// -----------------------------------
Register function_callback_info_arg = arg_reg_1;
Register api_function_address = no_reg;
Register argc = no_reg;
Register call_data = no_reg;
Register callback = no_reg;
Register holder = no_reg;
Register scratch = rax;
Register scratch2 = no_reg;
switch (mode) {
case CallApiCallbackMode::kGeneric:
api_function_address = rdx;
scratch2 = r9;
argc = CallApiCallbackGenericDescriptor::ActualArgumentsCountRegister();
callback = CallApiCallbackGenericDescriptor::CallHandlerInfoRegister();
holder = CallApiCallbackGenericDescriptor::HolderRegister();
break;
case CallApiCallbackMode::kOptimizedNoProfiling:
case CallApiCallbackMode::kOptimized:
api_function_address =
CallApiCallbackOptimizedDescriptor::ApiFunctionAddressRegister();
argc = CallApiCallbackOptimizedDescriptor::ActualArgumentsCountRegister();
call_data = CallApiCallbackOptimizedDescriptor::CallDataRegister();
holder = CallApiCallbackOptimizedDescriptor::HolderRegister();
break;
}
DCHECK(!AreAliased(api_function_address, argc, holder, call_data, callback,
scratch, scratch2, kScratchRegister));
using FCA = FunctionCallbackArguments;
static_assert(FCA::kArgsLength == 6);
static_assert(FCA::kNewTargetIndex == 5);
static_assert(FCA::kDataIndex == 4);
static_assert(FCA::kReturnValueIndex == 3);
static_assert(FCA::kUnusedIndex == 2);
static_assert(FCA::kIsolateIndex == 1);
static_assert(FCA::kHolderIndex == 0);
// Set up FunctionCallbackInfo's implicit_args on the stack as follows:
//
// Current state:
// rsp[0]: return address
//
// Target state:
// rsp[0 * kSystemPointerSize]: return address
// rsp[1 * kSystemPointerSize]: kHolder <= implicit_args_
// rsp[2 * kSystemPointerSize]: kIsolate
// rsp[3 * kSystemPointerSize]: undefined (padding, unused)
// rsp[4 * kSystemPointerSize]: undefined (kReturnValue)
// rsp[5 * kSystemPointerSize]: kData
// rsp[6 * kSystemPointerSize]: undefined (kNewTarget)
// Existing state:
// rsp[7 * kSystemPointerSize]: <= FCA:::values_
__ PopReturnAddressTo(scratch);
__ LoadRoot(kScratchRegister, RootIndex::kUndefinedValue);
__ Push(kScratchRegister); // kNewTarget
switch (mode) {
case CallApiCallbackMode::kGeneric:
__ PushTaggedField(FieldOperand(callback, CallHandlerInfo::kDataOffset),
scratch2);
break;
case CallApiCallbackMode::kOptimizedNoProfiling:
case CallApiCallbackMode::kOptimized:
__ Push(call_data);
break;
}
__ Push(kScratchRegister); // kReturnValue
__ Push(kScratchRegister); // kUnused
__ PushAddress(ExternalReference::isolate_address(masm->isolate()));
__ Push(holder);
// Keep a pointer to kHolder (= implicit_args) in a {holder} register.
// We use it below to set up the FunctionCallbackInfo object.
__ movq(holder, rsp);
// Allocate v8::FunctionCallbackInfo object and a number of bytes to drop
// from the stack after the callback in non-GCed space of the exit frame.
static constexpr int kApiStackSpace = 4;
static_assert((kApiStackSpace - 1) * kSystemPointerSize == FCA::kSize);
const int exit_frame_params_count =
mode == CallApiCallbackMode::kGeneric
? ApiCallbackExitFrameConstants::kAdditionalParametersCount
: 0;
if (mode == CallApiCallbackMode::kGeneric) {
ASM_CODE_COMMENT_STRING(masm, "Push API_CALLBACK_EXIT frame arguments");
// No padding is required.
static_assert(ApiCallbackExitFrameConstants::kOptionalPaddingSize == 0);
// Context parameter.
static_assert(ApiCallbackExitFrameConstants::kContextOffset ==
4 * kSystemPointerSize);
__ Push(kContextRegister);
// Argc parameter as a Smi.
static_assert(ApiCallbackExitFrameConstants::kArgcOffset ==
3 * kSystemPointerSize);
__ Move(kScratchRegister, argc);
__ SmiTag(kScratchRegister);
__ Push(kScratchRegister); // argc as a Smi
// Target parameter.
static_assert(ApiCallbackExitFrameConstants::kTargetOffset ==
2 * kSystemPointerSize);
__ PushTaggedField(
FieldOperand(callback, CallHandlerInfo::kOwnerTemplateOffset),
scratch2);
__ PushReturnAddressFrom(scratch);
__ LoadExternalPointerField(
api_function_address,
FieldOperand(callback, CallHandlerInfo::kMaybeRedirectedCallbackOffset),
kCallHandlerInfoCallbackTag, kScratchRegister);
__ EnterExitFrame(kApiStackSpace, StackFrame::API_CALLBACK_EXIT,
api_function_address);
} else {
__ PushReturnAddressFrom(scratch);
__ EnterExitFrame(kApiStackSpace, StackFrame::EXIT, api_function_address);
}
{
ASM_CODE_COMMENT_STRING(masm, "Initialize FunctionCallbackInfo");
// FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above).
__ movq(ExitFrameStackSlotOperand(FCA::kImplicitArgsOffset), holder);
// FunctionCallbackInfo::values_ (points at the first varargs argument
// passed on the stack).
__ leaq(holder,
Operand(holder, FCA::kArgsLengthWithReceiver * kSystemPointerSize));
__ movq(ExitFrameStackSlotOperand(FCA::kValuesOffset), holder);
// FunctionCallbackInfo::length_.
__ movq(ExitFrameStackSlotOperand(FCA::kLengthOffset), argc);
}
// We also store the number of bytes to drop from the stack after returning
// from the API function here.
constexpr int kBytesToDropOffset = FCA::kLengthOffset + kSystemPointerSize;
static_assert(kBytesToDropOffset ==
(kApiStackSpace - 1) * kSystemPointerSize);
__ leaq(kScratchRegister,
Operand(argc, times_system_pointer_size,
(FCA::kArgsLengthWithReceiver + exit_frame_params_count) *
kSystemPointerSize));
__ movq(ExitFrameStackSlotOperand(kBytesToDropOffset), kScratchRegister);
__ RecordComment("v8::FunctionCallback's argument.");
__ leaq(function_callback_info_arg,
ExitFrameStackSlotOperand(FCA::kImplicitArgsOffset));
DCHECK(!AreAliased(api_function_address, function_callback_info_arg));
ExternalReference thunk_ref =
ExternalReference::invoke_function_callback(mode);
// Pass api function address to thunk wrapper in case profiler or side-effect
// checking is enabled.
Register thunk_arg = api_function_address;
Operand return_value_operand = ExitFrameCallerStackSlotOperand(
FCA::kReturnValueIndex + exit_frame_params_count);
static constexpr int kUseExitFrameStackSlotOperand = 0;
Operand stack_space_operand = ExitFrameStackSlotOperand(kBytesToDropOffset);
const bool with_profiling =
mode != CallApiCallbackMode::kOptimizedNoProfiling;
Label* no_done = nullptr;
CallApiFunctionAndReturn(masm, with_profiling, api_function_address,
thunk_ref, thunk_arg, kUseExitFrameStackSlotOperand,
&stack_space_operand, return_value_operand, no_done);
}
void Builtins::Generate_CallApiGetter(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rsi : context
// -- rdx : receiver
// -- rcx : holder
// -- rbx : accessor info
// -- rsp[0] : return address
// -----------------------------------
Register name_arg = arg_reg_1;
Register property_callback_info_arg = arg_reg_2;
Register api_function_address = r8;
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register scratch = rax;
Register decompr_scratch1 = COMPRESS_POINTERS_BOOL ? r15 : no_reg;
DCHECK(!AreAliased(receiver, holder, callback, scratch, decompr_scratch1));
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
// name below the exit frame to make GC aware of them.
using PCI = PropertyCallbackInfo<v8::Value>;
using PCA = PropertyCallbackArguments;
static_assert(PCA::kShouldThrowOnErrorIndex == 0);
static_assert(PCA::kHolderIndex == 1);
static_assert(PCA::kIsolateIndex == 2);
static_assert(PCA::kUnusedIndex == 3);
static_assert(PCA::kReturnValueIndex == 4);
static_assert(PCA::kDataIndex == 5);
static_assert(PCA::kThisIndex == 6);
static_assert(PCA::kArgsLength == 7);
// Set up PropertyCallbackInfo's args_ on the stack as follows:
//
// Current state:
// rsp[0]: return address
//
// Target state:
// rsp[0 * kSystemPointerSize]: return address
// rsp[1 * kSystemPointerSize]: name
// rsp[2 * kSystemPointerSize]: kShouldThrowOnErrorIndex <= PCI:args_
// rsp[3 * kSystemPointerSize]: kHolderIndex
// rsp[4 * kSystemPointerSize]: kIsolateIndex
// rsp[5 * kSystemPointerSize]: kUnusedIndex
// rsp[6 * kSystemPointerSize]: kReturnValueIndex
// rsp[7 * kSystemPointerSize]: kDataIndex
// rsp[8 * kSystemPointerSize]: kThisIndex / receiver
__ PopReturnAddressTo(scratch);
__ Push(receiver);
__ PushTaggedField(FieldOperand(callback, AccessorInfo::kDataOffset),
decompr_scratch1);
__ LoadRoot(kScratchRegister, RootIndex::kUndefinedValue);
__ Push(kScratchRegister); // return value
__ Push(Smi::zero()); // unused value
__ PushAddress(ExternalReference::isolate_address(masm->isolate()));
__ Push(holder);
__ Push(Smi::zero()); // should_throw_on_error -> false
// Initialize a pointer to PropertyCallbackInfo::args_ array (= &ShouldThrow).
Register args_array = ReassignRegister(holder);
__ Move(args_array, rsp);
__ PushTaggedField(FieldOperand(callback, AccessorInfo::kNameOffset),
decompr_scratch1);
__ PushReturnAddressFrom(scratch);
// v8::PropertyCallbackInfo::args_ array and name handle.
static constexpr int kNameOnStackSize = 1;
static constexpr int kStackUnwindSpace = PCA::kArgsLength + kNameOnStackSize;
// Allocate v8::PropertyCallbackInfo in non-GCed stack space.
static constexpr int kApiStackSpace = 1;
static_assert(kApiStackSpace * kSystemPointerSize == sizeof(PCI));
__ EnterExitFrame(kApiStackSpace, StackFrame::EXIT, api_function_address);
__ RecordComment("Create v8::PropertyCallbackInfo object on the stack.");
// Initialize v8::PropertyCallbackInfo::args_ field.
Operand info_object = ExitFrameStackSlotOperand(0);
__ movq(info_object, args_array);
// name_arg = Handle<Name>(&name), name value was pushed to GC-ed stack space.
__ leaq(name_arg, Operand(args_array, -kSystemPointerSize));
// The context register (rsi) might overlap with property_callback_info_arg
// but the context value has been saved in EnterExitFrame and thus it could
// be used to pass arguments.
// property_callback_info_arg = v8::PropertyCallbackInfo&
__ leaq(property_callback_info_arg, info_object);
__ RecordComment("Load api_function_address");
__ LoadExternalPointerField(
api_function_address,
FieldOperand(callback, AccessorInfo::kMaybeRedirectedGetterOffset),
kAccessorInfoGetterTag, kScratchRegister);
DCHECK(
!AreAliased(api_function_address, property_callback_info_arg, name_arg));
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback();
// Pass AccessorInfo to thunk wrapper in case profiler or side-effect
// checking is enabled.
Register thunk_arg = callback;
Operand return_value_operand = ExitFrameCallerStackSlotOperand(
PCA::kReturnValueIndex + kNameOnStackSize);
Operand* const kUseStackSpaceConstant = nullptr;
const bool with_profiling = true;
Label* no_done = nullptr;
CallApiFunctionAndReturn(
masm, with_profiling, api_function_address, thunk_ref, thunk_arg,
kStackUnwindSpace, kUseStackSpaceConstant, return_value_operand, no_done);
}
void Builtins::Generate_DirectCEntry(MacroAssembler* masm) {
__ int3(); // Unused on this architecture.
}
namespace {
void Generate_DeoptimizationEntry(MacroAssembler* masm,
DeoptimizeKind deopt_kind) {
Isolate* isolate = masm->isolate();
// Save all double registers, they will later be copied to the deoptimizer's
// FrameDescription.
static constexpr int kDoubleRegsSize =
kDoubleSize * XMMRegister::kNumRegisters;
__ AllocateStackSpace(kDoubleRegsSize);
const RegisterConfiguration* config = RegisterConfiguration::Default();
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
int code = config->GetAllocatableDoubleCode(i);
XMMRegister xmm_reg = XMMRegister::from_code(code);
int offset = code * kDoubleSize;
__ Movsd(Operand(rsp, offset), xmm_reg);
}
// Save all general purpose registers, they will later be copied to the
// deoptimizer's FrameDescription.
static constexpr int kNumberOfRegisters = Register::kNumRegisters;
for (int i = 0; i < kNumberOfRegisters; i++) {
__ pushq(Register::from_code(i));
}
static constexpr int kSavedRegistersAreaSize =
kNumberOfRegisters * kSystemPointerSize + kDoubleRegsSize;
static constexpr int kCurrentOffsetToReturnAddress = kSavedRegistersAreaSize;
static constexpr int kCurrentOffsetToParentSP =
kCurrentOffsetToReturnAddress + kPCOnStackSize;
__ Store(
ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate),
rbp);
// Get the address of the location in the code object
// and compute the fp-to-sp delta in register arg5.
__ movq(arg_reg_3, Operand(rsp, kCurrentOffsetToReturnAddress));
// Load the fp-to-sp-delta.
__ leaq(arg_reg_4, Operand(rsp, kCurrentOffsetToParentSP));
__ subq(arg_reg_4, rbp);
__ negq(arg_reg_4);
// Allocate a new deoptimizer object.
__ PrepareCallCFunction(5);
__ Move(rax, 0);
Label context_check;
__ movq(rdi, Operand(rbp, CommonFrameConstants::kContextOrFrameTypeOffset));
__ JumpIfSmi(rdi, &context_check);
__ movq(rax, Operand(rbp, StandardFrameConstants::kFunctionOffset));
__ bind(&context_check);
__ movq(arg_reg_1, rax);
__ Move(arg_reg_2, static_cast<int>(deopt_kind));
// Args 3 and 4 are already in the right registers.
// On windows put the arguments on the stack (PrepareCallCFunction
// has created space for this). On linux pass the arguments in r8.
#ifdef V8_TARGET_OS_WIN
Register arg5 = r15;
__ LoadAddress(arg5, ExternalReference::isolate_address(isolate));
__ movq(Operand(rsp, 4 * kSystemPointerSize), arg5);
#else
// r8 is arg_reg_5 on Linux
__ LoadAddress(r8, ExternalReference::isolate_address(isolate));
#endif
{
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(ExternalReference::new_deoptimizer_function(), 5);
}
// Preserve deoptimizer object in register rax and get the input
// frame descriptor pointer.
__ movq(rbx, Operand(rax, Deoptimizer::input_offset()));
// Fill in the input registers.
for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
int offset =
(i * kSystemPointerSize) + FrameDescription::registers_offset();
__ PopQuad(Operand(rbx, offset));
}
// Fill in the double input registers.
int double_regs_offset = FrameDescription::double_registers_offset();
for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
int dst_offset = i * kDoubleSize + double_regs_offset;
__ popq(Operand(rbx, dst_offset));
}
// Mark the stack as not iterable for the CPU profiler which won't be able to
// walk the stack without the return address.
__ movb(__ ExternalReferenceAsOperand(
ExternalReference::stack_is_iterable_address(isolate)),
Immediate(0));
// Remove the return address from the stack.
__ addq(rsp, Immediate(kPCOnStackSize));
// Compute a pointer to the unwinding limit in register rcx; that is
// the first stack slot not part of the input frame.
__ movq(rcx, Operand(rbx, FrameDescription::frame_size_offset()));
__ addq(rcx, rsp);
// Unwind the stack down to - but not including - the unwinding
// limit and copy the contents of the activation frame to the input
// frame description.
__ leaq(rdx, Operand(rbx, FrameDescription::frame_content_offset()));
Label pop_loop_header;
__ jmp(&pop_loop_header);
Label pop_loop;
__ bind(&pop_loop);
__ Pop(Operand(rdx, 0));
__ addq(rdx, Immediate(sizeof(intptr_t)));
__ bind(&pop_loop_header);
__ cmpq(rcx, rsp);
__ j(not_equal, &pop_loop);
// Compute the output frame in the deoptimizer.
__ pushq(rax);
__ PrepareCallCFunction(2);
__ movq(arg_reg_1, rax);
__ LoadAddress(arg_reg_2, ExternalReference::isolate_address(isolate));
{
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(ExternalReference::compute_output_frames_function(), 2);
}
__ popq(rax);
__ movq(rsp, Operand(rax, Deoptimizer::caller_frame_top_offset()));
// Replace the current (input) frame with the output frames.
Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header;
// Outer loop state: rax = current FrameDescription**, rdx = one past the
// last FrameDescription**.
__ movl(rdx, Operand(rax, Deoptimizer::output_count_offset()));
__ movq(rax, Operand(rax, Deoptimizer::output_offset()));
__ leaq(rdx, Operand(rax, rdx, times_system_pointer_size, 0));
__ jmp(&outer_loop_header);
__ bind(&outer_push_loop);
// Inner loop state: rbx = current FrameDescription*, rcx = loop index.
__ movq(rbx, Operand(rax, 0));
__ movq(rcx, Operand(rbx, FrameDescription::frame_size_offset()));
__ jmp(&inner_loop_header);
__ bind(&inner_push_loop);
__ subq(rcx, Immediate(sizeof(intptr_t)));
__ Push(Operand(rbx, rcx, times_1, FrameDescription::frame_content_offset()));
__ bind(&inner_loop_header);
__ testq(rcx, rcx);
__ j(not_zero, &inner_push_loop);
__ addq(rax, Immediate(kSystemPointerSize));
__ bind(&outer_loop_header);
__ cmpq(rax, rdx);
__ j(below, &outer_push_loop);
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
int code = config->GetAllocatableDoubleCode(i);
XMMRegister xmm_reg = XMMRegister::from_code(code);
int src_offset = code * kDoubleSize + double_regs_offset;
__ Movsd(xmm_reg, Operand(rbx, src_offset));
}
// Push pc and continuation from the last output frame.
__ PushQuad(Operand(rbx, FrameDescription::pc_offset()));
__ PushQuad(Operand(rbx, FrameDescription::continuation_offset()));
// Push the registers from the last output frame.
for (int i = 0; i < kNumberOfRegisters; i++) {
int offset =
(i * kSystemPointerSize) + FrameDescription::registers_offset();
__ PushQuad(Operand(rbx, offset));
}
// Restore the registers from the stack.
for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
Register r = Register::from_code(i);
// Do not restore rsp, simply pop the value into the next register
// and overwrite this afterwards.
if (r == rsp) {
DCHECK_GT(i, 0);
r = Register::from_code(i - 1);
}
__ popq(r);
}
__ movb(__ ExternalReferenceAsOperand(
ExternalReference::stack_is_iterable_address(isolate)),
Immediate(1));
// Return to the continuation point.
__ ret(0);
}
} // namespace
void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager);
}
void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) {
Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy);
}
namespace {
// Restarts execution either at the current or next (in execution order)
// bytecode. If there is baseline code on the shared function info, converts an
// interpreter frame into a baseline frame and continues execution in baseline
// code. Otherwise execution continues with bytecode.
void Generate_BaselineOrInterpreterEntry(MacroAssembler* masm,
bool next_bytecode,
bool is_osr = false) {
Label start;
__ bind(&start);
// Get function from the frame.
Register closure = rdi;
__ movq(closure, MemOperand(rbp, StandardFrameConstants::kFunctionOffset));
// Get the InstructionStream object from the shared function info.
Register code_obj = rbx;
Register shared_function_info(code_obj);
__ LoadTaggedField(
shared_function_info,
FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset));
if (is_osr) {
ResetSharedFunctionInfoAge(masm, shared_function_info);
}
__ LoadTaggedField(code_obj,
FieldOperand(shared_function_info,
SharedFunctionInfo::kFunctionDataOffset));
// Check if we have baseline code. For OSR entry it is safe to assume we
// always have baseline code.
if (!is_osr) {
Label start_with_baseline;
__ IsObjectType(code_obj, CODE_TYPE, kScratchRegister);
__ j(equal, &start_with_baseline);
// Start with bytecode as there is no baseline code.
Builtin builtin_id = next_bytecode
? Builtin::kInterpreterEnterAtNextBytecode
: Builtin::kInterpreterEnterAtBytecode;
__ Jump(masm->isolate()->builtins()->code_handle(builtin_id),
RelocInfo::CODE_TARGET);
// Start with baseline code.
__ bind(&start_with_baseline);
} else if (v8_flags.debug_code) {
__ IsObjectType(code_obj, CODE_TYPE, kScratchRegister);
__ Assert(equal, AbortReason::kExpectedBaselineData);
}
if (v8_flags.debug_code) {
AssertCodeIsBaseline(masm, code_obj, r11);
}
// Load the feedback cell and feedback vector.
Register feedback_cell = r8;
Register feedback_vector = r11;
__ LoadTaggedField(feedback_cell,
FieldOperand(closure, JSFunction::kFeedbackCellOffset));
__ LoadTaggedField(feedback_vector,
FieldOperand(feedback_cell, FeedbackCell::kValueOffset));
Label install_baseline_code;
// Check if feedback vector is valid. If not, call prepare for baseline to
// allocate it.
__ IsObjectType(feedback_vector, FEEDBACK_VECTOR_TYPE, kScratchRegister);
__ j(not_equal, &install_baseline_code);
// Save bytecode offset from the stack frame.
__ SmiUntagUnsigned(
kInterpreterBytecodeOffsetRegister,
MemOperand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
// Replace bytecode offset with feedback cell.
static_assert(InterpreterFrameConstants::kBytecodeOffsetFromFp ==
BaselineFrameConstants::kFeedbackCellFromFp);
__ movq(MemOperand(rbp, BaselineFrameConstants::kFeedbackCellFromFp),
feedback_cell);
feedback_cell = no_reg;
// Update feedback vector cache.
static_assert(InterpreterFrameConstants::kFeedbackVectorFromFp ==
BaselineFrameConstants::kFeedbackVectorFromFp);
__ movq(MemOperand(rbp, InterpreterFrameConstants::kFeedbackVectorFromFp),
feedback_vector);
feedback_vector = no_reg;
// Compute baseline pc for bytecode offset.
ExternalReference get_baseline_pc_extref;
if (next_bytecode || is_osr) {
get_baseline_pc_extref =
ExternalReference::baseline_pc_for_next_executed_bytecode();
} else {
get_baseline_pc_extref =
ExternalReference::baseline_pc_for_bytecode_offset();
}
Register get_baseline_pc = r11;
__ LoadAddress(get_baseline_pc, get_baseline_pc_extref);
// If the code deoptimizes during the implicit function entry stack interrupt
// check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
// not a valid bytecode offset.
// TODO(pthier): Investigate if it is feasible to handle this special case
// in TurboFan instead of here.
Label valid_bytecode_offset, function_entry_bytecode;
if (!is_osr) {
__ cmpq(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag +
kFunctionEntryBytecodeOffset));
__ j(equal, &function_entry_bytecode);
}
__ subq(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ bind(&valid_bytecode_offset);
// Get bytecode array from the stack frame.
__ movq(kInterpreterBytecodeArrayRegister,
MemOperand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ pushq(kInterpreterAccumulatorRegister);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ PrepareCallCFunction(3);
__ movq(arg_reg_1, code_obj);
__ movq(arg_reg_2, kInterpreterBytecodeOffsetRegister);
__ movq(arg_reg_3, kInterpreterBytecodeArrayRegister);
__ CallCFunction(get_baseline_pc, 3);
}
__ LoadCodeInstructionStart(code_obj, code_obj);
__ addq(code_obj, kReturnRegister0);
__ popq(kInterpreterAccumulatorRegister);
if (is_osr) {
Generate_OSREntry(masm, code_obj);
} else {
__ jmp(code_obj);
}
__ Trap(); // Unreachable.
if (!is_osr) {
__ bind(&function_entry_bytecode);
// If the bytecode offset is kFunctionEntryOffset, get the start address of
// the first bytecode.
__ Move(kInterpreterBytecodeOffsetRegister, 0);
if (next_bytecode) {
__ LoadAddress(get_baseline_pc,
ExternalReference::baseline_pc_for_bytecode_offset());
}
__ jmp(&valid_bytecode_offset);
}
__ bind(&install_baseline_code);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ pushq(kInterpreterAccumulatorRegister);
__ Push(closure);
__ CallRuntime(Runtime::kInstallBaselineCode, 1);
__ popq(kInterpreterAccumulatorRegister);
}
// Retry from the start after installing baseline code.
__ jmp(&start);
}
} // namespace
void Builtins::Generate_BaselineOrInterpreterEnterAtBytecode(
MacroAssembler* masm) {
Generate_BaselineOrInterpreterEntry(masm, false);
}
void Builtins::Generate_BaselineOrInterpreterEnterAtNextBytecode(
MacroAssembler* masm) {
Generate_BaselineOrInterpreterEntry(masm, true);
}
void Builtins::Generate_InterpreterOnStackReplacement_ToBaseline(
MacroAssembler* masm) {
Generate_BaselineOrInterpreterEntry(masm, false, true);
}
void Builtins::Generate_RestartFrameTrampoline(MacroAssembler* masm) {
// Restart the current frame:
// - Look up current function on the frame.
// - Leave the frame.
// - Restart the frame by calling the function.
__ movq(rdi, Operand(rbp, StandardFrameConstants::kFunctionOffset));
__ movq(rax, Operand(rbp, StandardFrameConstants::kArgCOffset));
__ LeaveFrame(StackFrame::INTERPRETED);
// The arguments are already in the stack (including any necessary padding),
// we should not try to massage the arguments again.
__ movq(rbx, Immediate(kDontAdaptArgumentsSentinel));
__ InvokeFunction(rdi, no_reg, rbx, rax, InvokeType::kJump);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_X64