%PDF- %PDF-
| Direktori : /home2/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/api/ |
| Current File : //home2/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/api/api.cc |
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/api/api.h"
#include <algorithm> // For min
#include <cmath> // For isnan.
#include <limits>
#include <sstream>
#include <string>
#include <utility> // For move
#include <vector>
#include "include/v8-callbacks.h"
#include "include/v8-cppgc.h"
#include "include/v8-date.h"
#include "include/v8-embedder-state-scope.h"
#include "include/v8-extension.h"
#include "include/v8-fast-api-calls.h"
#include "include/v8-function.h"
#include "include/v8-json.h"
#include "include/v8-locker.h"
#include "include/v8-primitive-object.h"
#include "include/v8-profiler.h"
#include "include/v8-source-location.h"
#include "include/v8-unwinder-state.h"
#include "include/v8-util.h"
#include "include/v8-wasm.h"
#include "src/api/api-inl.h"
#include "src/api/api-natives.h"
#include "src/base/functional.h"
#include "src/base/logging.h"
#include "src/base/platform/memory.h"
#include "src/base/platform/platform.h"
#include "src/base/platform/time.h"
#include "src/base/safe_conversions.h"
#include "src/base/utils/random-number-generator.h"
#include "src/builtins/accessors.h"
#include "src/builtins/builtins-utils.h"
#include "src/codegen/compilation-cache.h"
#include "src/codegen/compiler.h"
#include "src/codegen/cpu-features.h"
#include "src/codegen/script-details.h"
#include "src/common/assert-scope.h"
#include "src/common/globals.h"
#include "src/compiler-dispatcher/lazy-compile-dispatcher.h"
#include "src/date/date.h"
#include "src/debug/debug.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/embedder-state.h"
#include "src/execution/execution.h"
#include "src/execution/frames-inl.h"
#include "src/execution/isolate-inl.h"
#include "src/execution/messages.h"
#include "src/execution/microtask-queue.h"
#include "src/execution/simulator.h"
#include "src/execution/v8threads.h"
#include "src/execution/vm-state-inl.h"
#include "src/handles/global-handles.h"
#include "src/handles/persistent-handles.h"
#include "src/handles/shared-object-conveyor-handles.h"
#include "src/handles/traced-handles.h"
#include "src/heap/heap-inl.h"
#include "src/heap/heap-write-barrier.h"
#include "src/heap/safepoint.h"
#include "src/init/bootstrapper.h"
#include "src/init/icu_util.h"
#include "src/init/startup-data-util.h"
#include "src/init/v8.h"
#include "src/json/json-parser.h"
#include "src/json/json-stringifier.h"
#include "src/logging/counters-scopes.h"
#include "src/logging/metrics.h"
#include "src/logging/runtime-call-stats-scope.h"
#include "src/logging/tracing-flags.h"
#include "src/numbers/conversions-inl.h"
#include "src/objects/api-callbacks.h"
#include "src/objects/contexts.h"
#include "src/objects/embedder-data-array-inl.h"
#include "src/objects/embedder-data-slot-inl.h"
#include "src/objects/hash-table-inl.h"
#include "src/objects/heap-object.h"
#include "src/objects/instance-type-inl.h"
#include "src/objects/instance-type.h"
#include "src/objects/js-array-buffer-inl.h"
#include "src/objects/js-array-inl.h"
#include "src/objects/js-collection-inl.h"
#include "src/objects/js-promise-inl.h"
#include "src/objects/js-regexp-inl.h"
#include "src/objects/js-weak-refs-inl.h"
#include "src/objects/module-inl.h"
#include "src/objects/objects-inl.h"
#include "src/objects/oddball.h"
#include "src/objects/ordered-hash-table-inl.h"
#include "src/objects/primitive-heap-object.h"
#include "src/objects/property-descriptor.h"
#include "src/objects/property-details.h"
#include "src/objects/property.h"
#include "src/objects/prototype.h"
#include "src/objects/shared-function-info.h"
#include "src/objects/slots.h"
#include "src/objects/smi.h"
#include "src/objects/synthetic-module-inl.h"
#include "src/objects/templates.h"
#include "src/objects/value-serializer.h"
#include "src/parsing/parse-info.h"
#include "src/parsing/parser.h"
#include "src/parsing/pending-compilation-error-handler.h"
#include "src/parsing/scanner-character-streams.h"
#include "src/profiler/cpu-profiler.h"
#include "src/profiler/heap-profiler.h"
#include "src/profiler/heap-snapshot-generator-inl.h"
#include "src/profiler/profile-generator-inl.h"
#include "src/profiler/tick-sample.h"
#include "src/regexp/regexp-utils.h"
#include "src/roots/static-roots.h"
#include "src/runtime/runtime.h"
#include "src/sandbox/external-pointer.h"
#include "src/sandbox/sandbox.h"
#include "src/snapshot/code-serializer.h"
#include "src/snapshot/embedded/embedded-data.h"
#include "src/snapshot/snapshot.h"
#include "src/strings/char-predicates-inl.h"
#include "src/strings/string-hasher.h"
#include "src/strings/unicode-inl.h"
#include "src/tracing/trace-event.h"
#include "src/utils/detachable-vector.h"
#include "src/utils/identity-map.h"
#include "src/utils/version.h"
#if V8_ENABLE_WEBASSEMBLY
#include "src/debug/debug-wasm-objects.h"
#include "src/trap-handler/trap-handler.h"
#include "src/wasm/streaming-decoder.h"
#include "src/wasm/value-type.h"
#include "src/wasm/wasm-engine.h"
#include "src/wasm/wasm-js.h"
#include "src/wasm/wasm-objects-inl.h"
#include "src/wasm/wasm-result.h"
#include "src/wasm/wasm-serialization.h"
#endif // V8_ENABLE_WEBASSEMBLY
#if V8_OS_LINUX || V8_OS_DARWIN || V8_OS_FREEBSD
#include <signal.h>
#include <unistd.h>
#if V8_ENABLE_WEBASSEMBLY
#include "include/v8-wasm-trap-handler-posix.h"
#include "src/trap-handler/handler-inside-posix.h"
#endif // V8_ENABLE_WEBASSEMBLY
#endif // V8_OS_LINUX || V8_OS_DARWIN || V8_OS_FREEBSD
#if V8_OS_WIN
#include <windows.h>
// This has to come after windows.h.
#include <versionhelpers.h>
#include "include/v8-wasm-trap-handler-win.h"
#include "src/trap-handler/handler-inside-win.h"
#if defined(V8_OS_WIN64)
#include "src/base/platform/wrappers.h"
#include "src/diagnostics/unwinding-info-win64.h"
#endif // V8_OS_WIN64
#endif // V8_OS_WIN
#if defined(V8_OS_WIN) && defined(V8_ENABLE_ETW_STACK_WALKING)
#include "src/diagnostics/etw-jit-win.h"
#endif
// Has to be the last include (doesn't have include guards):
#include "src/api/api-macros.h"
namespace v8 {
static OOMErrorCallback g_oom_error_callback = nullptr;
static ScriptOrigin GetScriptOriginForScript(i::Isolate* i_isolate,
i::Handle<i::Script> script) {
i::Handle<i::Object> scriptName(script->GetNameOrSourceURL(), i_isolate);
i::Handle<i::Object> source_map_url(script->source_mapping_url(), i_isolate);
i::Handle<i::Object> host_defined_options(script->host_defined_options(),
i_isolate);
ScriptOriginOptions options(script->origin_options());
bool is_wasm = false;
#if V8_ENABLE_WEBASSEMBLY
is_wasm = script->type() == i::Script::Type::kWasm;
#endif // V8_ENABLE_WEBASSEMBLY
v8::ScriptOrigin origin(
reinterpret_cast<v8::Isolate*>(i_isolate), Utils::ToLocal(scriptName),
script->line_offset(), script->column_offset(),
options.IsSharedCrossOrigin(), script->id(),
Utils::ToLocal(source_map_url), options.IsOpaque(), is_wasm,
options.IsModule(), Utils::ToLocal(host_defined_options));
return origin;
}
// --- E x c e p t i o n B e h a v i o r ---
// When V8 cannot allocate memory FatalProcessOutOfMemory is called. The default
// OOM error handler is called and execution is stopped.
void i::V8::FatalProcessOutOfMemory(i::Isolate* i_isolate, const char* location,
const OOMDetails& details) {
char last_few_messages[Heap::kTraceRingBufferSize + 1];
char js_stacktrace[Heap::kStacktraceBufferSize + 1];
i::HeapStats heap_stats;
if (i_isolate == nullptr) {
i_isolate = Isolate::TryGetCurrent();
}
if (i_isolate == nullptr) {
// If the Isolate is not available for the current thread we cannot retrieve
// memory information from the Isolate. Write easy-to-recognize values on
// the stack.
memset(last_few_messages, 0x0BADC0DE, Heap::kTraceRingBufferSize + 1);
memset(js_stacktrace, 0x0BADC0DE, Heap::kStacktraceBufferSize + 1);
memset(&heap_stats, 0xBADC0DE, sizeof(heap_stats));
// Give the embedder a chance to handle the condition. If it doesn't,
// just crash.
if (g_oom_error_callback) g_oom_error_callback(location, details);
// Note: The error message needs to be consistent with other OOM error
// messages (e.g. below) so that ClusterFuzz recognizes it.
FATAL("Fatal process out of memory: %s", location);
UNREACHABLE();
}
memset(last_few_messages, 0, Heap::kTraceRingBufferSize + 1);
memset(js_stacktrace, 0, Heap::kStacktraceBufferSize + 1);
intptr_t start_marker;
heap_stats.start_marker = &start_marker;
size_t ro_space_size;
heap_stats.ro_space_size = &ro_space_size;
size_t ro_space_capacity;
heap_stats.ro_space_capacity = &ro_space_capacity;
size_t new_space_size;
heap_stats.new_space_size = &new_space_size;
size_t new_space_capacity;
heap_stats.new_space_capacity = &new_space_capacity;
size_t old_space_size;
heap_stats.old_space_size = &old_space_size;
size_t old_space_capacity;
heap_stats.old_space_capacity = &old_space_capacity;
size_t code_space_size;
heap_stats.code_space_size = &code_space_size;
size_t code_space_capacity;
heap_stats.code_space_capacity = &code_space_capacity;
size_t map_space_size;
heap_stats.map_space_size = &map_space_size;
size_t map_space_capacity;
heap_stats.map_space_capacity = &map_space_capacity;
size_t lo_space_size;
heap_stats.lo_space_size = &lo_space_size;
size_t code_lo_space_size;
heap_stats.code_lo_space_size = &code_lo_space_size;
size_t global_handle_count;
heap_stats.global_handle_count = &global_handle_count;
size_t weak_global_handle_count;
heap_stats.weak_global_handle_count = &weak_global_handle_count;
size_t pending_global_handle_count;
heap_stats.pending_global_handle_count = &pending_global_handle_count;
size_t near_death_global_handle_count;
heap_stats.near_death_global_handle_count = &near_death_global_handle_count;
size_t free_global_handle_count;
heap_stats.free_global_handle_count = &free_global_handle_count;
size_t memory_allocator_size;
heap_stats.memory_allocator_size = &memory_allocator_size;
size_t memory_allocator_capacity;
heap_stats.memory_allocator_capacity = &memory_allocator_capacity;
size_t malloced_memory;
heap_stats.malloced_memory = &malloced_memory;
size_t malloced_peak_memory;
heap_stats.malloced_peak_memory = &malloced_peak_memory;
size_t objects_per_type[LAST_TYPE + 1] = {0};
heap_stats.objects_per_type = objects_per_type;
size_t size_per_type[LAST_TYPE + 1] = {0};
heap_stats.size_per_type = size_per_type;
int os_error;
heap_stats.os_error = &os_error;
heap_stats.last_few_messages = last_few_messages;
heap_stats.js_stacktrace = js_stacktrace;
intptr_t end_marker;
heap_stats.end_marker = &end_marker;
if (i_isolate->heap()->HasBeenSetUp()) {
// BUG(1718): Don't use the take_snapshot since we don't support
// HeapObjectIterator here without doing a special GC.
i_isolate->heap()->RecordStats(&heap_stats, false);
if (!v8_flags.correctness_fuzzer_suppressions) {
char* first_newline = strchr(last_few_messages, '\n');
if (first_newline == nullptr || first_newline[1] == '\0')
first_newline = last_few_messages;
base::OS::PrintError("\n<--- Last few GCs --->\n%s\n", first_newline);
base::OS::PrintError("\n<--- JS stacktrace --->\n%s\n", js_stacktrace);
}
}
Utils::ReportOOMFailure(i_isolate, location, details);
if (g_oom_error_callback) g_oom_error_callback(location, details);
// If the fatal error handler returns, we stop execution.
FATAL("API fatal error handler returned after process out of memory");
}
void i::V8::FatalProcessOutOfMemory(i::Isolate* i_isolate, const char* location,
const char* detail) {
OOMDetails details;
details.detail = detail;
FatalProcessOutOfMemory(i_isolate, location, details);
}
void Utils::ReportApiFailure(const char* location, const char* message) {
i::Isolate* i_isolate = i::Isolate::TryGetCurrent();
FatalErrorCallback callback = nullptr;
if (i_isolate != nullptr) {
callback = i_isolate->exception_behavior();
}
if (callback == nullptr) {
base::OS::PrintError("\n#\n# Fatal error in %s\n# %s\n#\n\n", location,
message);
base::OS::Abort();
} else {
callback(location, message);
}
i_isolate->SignalFatalError();
}
void Utils::ReportOOMFailure(i::Isolate* i_isolate, const char* location,
const OOMDetails& details) {
if (auto oom_callback = i_isolate->oom_behavior()) {
oom_callback(location, details);
} else {
// TODO(wfh): Remove this fallback once Blink is setting OOM handler. See
// crbug.com/614440.
FatalErrorCallback fatal_callback = i_isolate->exception_behavior();
if (fatal_callback == nullptr) {
// Be careful when changing the error message below; it's matched by
// ClusterFuzz.
base::OS::PrintError("\n#\n# Fatal %s out of memory: %s\n#\n\n",
details.is_heap_oom ? "JavaScript" : "process",
location);
#ifdef V8_FUZZILLI
// Ignore OOM crashes for fuzzing but exit with an error such that
// samples are discarded by Fuzzilli.
_exit(1);
#else
base::OS::Abort();
#endif // V8_FUZZILLI
} else {
fatal_callback(location,
details.is_heap_oom
? "Allocation failed - JavaScript heap out of memory"
: "Allocation failed - process out of memory");
}
}
i_isolate->SignalFatalError();
}
void V8::SetSnapshotDataBlob(StartupData* snapshot_blob) {
i::V8::SetSnapshotBlob(snapshot_blob);
}
namespace {
#ifdef V8_ENABLE_SANDBOX
// ArrayBufferAllocator to use when the sandbox is enabled in which case all
// ArrayBuffer backing stores need to be allocated inside the sandbox.
class ArrayBufferAllocator : public v8::ArrayBuffer::Allocator {
public:
void* Allocate(size_t length) override {
return allocator_->Allocate(length);
}
void* AllocateUninitialized(size_t length) override {
return Allocate(length);
}
void Free(void* data, size_t length) override {
return allocator_->Free(data);
}
private:
// Backend allocator shared by all ArrayBufferAllocator instances. This way,
// there is a single region of virtual addres space reserved inside the
// sandbox from which all ArrayBufferAllocators allocate their memory,
// instead of each allocator creating their own region, which may cause
// address space exhaustion inside the sandbox.
// TODO(chromium:1340224): replace this with a more efficient allocator.
class BackendAllocator {
public:
BackendAllocator() {
CHECK(i::GetProcessWideSandbox()->is_initialized());
VirtualAddressSpace* vas = i::GetProcessWideSandbox()->address_space();
constexpr size_t max_backing_memory_size = 8ULL * i::GB;
constexpr size_t min_backing_memory_size = 1ULL * i::GB;
size_t backing_memory_size = max_backing_memory_size;
i::Address backing_memory_base = 0;
while (!backing_memory_base &&
backing_memory_size >= min_backing_memory_size) {
backing_memory_base = vas->AllocatePages(
VirtualAddressSpace::kNoHint, backing_memory_size, kChunkSize,
PagePermissions::kNoAccess);
if (!backing_memory_base) {
backing_memory_size /= 2;
}
}
if (!backing_memory_base) {
i::V8::FatalProcessOutOfMemory(
nullptr,
"Could not reserve backing memory for ArrayBufferAllocators");
}
DCHECK(IsAligned(backing_memory_base, kChunkSize));
region_alloc_ = std::make_unique<base::RegionAllocator>(
backing_memory_base, backing_memory_size, kAllocationGranularity);
end_of_accessible_region_ = region_alloc_->begin();
// Install a on-merge callback to discard or decommit unused pages.
region_alloc_->set_on_merge_callback([this](i::Address start,
size_t size) {
mutex_.AssertHeld();
VirtualAddressSpace* vas = i::GetProcessWideSandbox()->address_space();
i::Address end = start + size;
if (end == region_alloc_->end() &&
start <= end_of_accessible_region_ - kChunkSize) {
// Can shrink the accessible region.
i::Address new_end_of_accessible_region = RoundUp(start, kChunkSize);
size_t size =
end_of_accessible_region_ - new_end_of_accessible_region;
if (!vas->DecommitPages(new_end_of_accessible_region, size)) {
i::V8::FatalProcessOutOfMemory(
nullptr, "ArrayBufferAllocator::BackendAllocator()");
}
end_of_accessible_region_ = new_end_of_accessible_region;
} else if (size >= 2 * kChunkSize) {
// Can discard pages. The pages stay accessible, so the size of the
// accessible region doesn't change.
i::Address chunk_start = RoundUp(start, kChunkSize);
i::Address chunk_end = RoundDown(start + size, kChunkSize);
if (!vas->DiscardSystemPages(chunk_start, chunk_end - chunk_start)) {
i::V8::FatalProcessOutOfMemory(
nullptr, "ArrayBufferAllocator::BackendAllocator()");
}
}
});
}
~BackendAllocator() {
// The sandbox may already have been torn down, in which case there's no
// need to free any memory.
if (i::GetProcessWideSandbox()->is_initialized()) {
VirtualAddressSpace* vas = i::GetProcessWideSandbox()->address_space();
vas->FreePages(region_alloc_->begin(), region_alloc_->size());
}
}
BackendAllocator(const BackendAllocator&) = delete;
BackendAllocator& operator=(const BackendAllocator&) = delete;
void* Allocate(size_t length) {
base::MutexGuard guard(&mutex_);
length = RoundUp(length, kAllocationGranularity);
i::Address region = region_alloc_->AllocateRegion(length);
if (region == base::RegionAllocator::kAllocationFailure) return nullptr;
// Check if the memory is inside the accessible region. If not, grow it.
i::Address end = region + length;
size_t length_to_memset = length;
if (end > end_of_accessible_region_) {
VirtualAddressSpace* vas = i::GetProcessWideSandbox()->address_space();
i::Address new_end_of_accessible_region = RoundUp(end, kChunkSize);
size_t size = new_end_of_accessible_region - end_of_accessible_region_;
if (!vas->SetPagePermissions(end_of_accessible_region_, size,
PagePermissions::kReadWrite)) {
if (!region_alloc_->FreeRegion(region)) {
i::V8::FatalProcessOutOfMemory(
nullptr, "ArrayBufferAllocator::BackendAllocator::Allocate()");
}
return nullptr;
}
// The pages that were inaccessible are guaranteed to be zeroed, so only
// memset until the previous end of the accessible region.
length_to_memset = end_of_accessible_region_ - region;
end_of_accessible_region_ = new_end_of_accessible_region;
}
void* mem = reinterpret_cast<void*>(region);
memset(mem, 0, length_to_memset);
return mem;
}
void Free(void* data) {
base::MutexGuard guard(&mutex_);
region_alloc_->FreeRegion(reinterpret_cast<i::Address>(data));
}
static BackendAllocator* SharedInstance() {
static base::LeakyObject<BackendAllocator> instance;
return instance.get();
}
private:
// Use a region allocator with a "page size" of 128 bytes as a reasonable
// compromise between the number of regions it has to manage and the amount
// of memory wasted due to rounding allocation sizes up to the page size.
static constexpr size_t kAllocationGranularity = 128;
// The backing memory's accessible region is grown in chunks of this size.
static constexpr size_t kChunkSize = 1 * i::MB;
std::unique_ptr<base::RegionAllocator> region_alloc_;
size_t end_of_accessible_region_;
base::Mutex mutex_;
};
BackendAllocator* allocator_ = BackendAllocator::SharedInstance();
};
#else
class ArrayBufferAllocator : public v8::ArrayBuffer::Allocator {
public:
void* Allocate(size_t length) override { return base::Calloc(length, 1); }
void* AllocateUninitialized(size_t length) override {
return base::Malloc(length);
}
void Free(void* data, size_t) override { base::Free(data); }
void* Reallocate(void* data, size_t old_length, size_t new_length) override {
void* new_data = base::Realloc(data, new_length);
if (new_length > old_length) {
memset(reinterpret_cast<uint8_t*>(new_data) + old_length, 0,
new_length - old_length);
}
return new_data;
}
};
#endif // V8_ENABLE_SANDBOX
} // namespace
SnapshotCreator::SnapshotCreator(Isolate* v8_isolate,
const intptr_t* external_references,
const StartupData* existing_snapshot,
bool owns_isolate)
: data_(new i::SnapshotCreatorImpl(
reinterpret_cast<i::Isolate*>(v8_isolate), external_references,
existing_snapshot, owns_isolate)) {}
SnapshotCreator::SnapshotCreator(const intptr_t* external_references,
const StartupData* existing_snapshot)
: SnapshotCreator(nullptr, external_references, existing_snapshot) {}
SnapshotCreator::~SnapshotCreator() {
DCHECK_NOT_NULL(data_);
auto impl = static_cast<i::SnapshotCreatorImpl*>(data_);
delete impl;
}
Isolate* SnapshotCreator::GetIsolate() {
auto impl = static_cast<i::SnapshotCreatorImpl*>(data_);
return reinterpret_cast<v8::Isolate*>(impl->isolate());
}
void SnapshotCreator::SetDefaultContext(
Local<Context> context, SerializeInternalFieldsCallback callback) {
auto impl = static_cast<i::SnapshotCreatorImpl*>(data_);
impl->SetDefaultContext(Utils::OpenHandle(*context), callback);
}
size_t SnapshotCreator::AddContext(Local<Context> context,
SerializeInternalFieldsCallback callback) {
auto impl = static_cast<i::SnapshotCreatorImpl*>(data_);
return impl->AddContext(Utils::OpenHandle(*context), callback);
}
size_t SnapshotCreator::AddData(i::Address object) {
auto impl = static_cast<i::SnapshotCreatorImpl*>(data_);
return impl->AddData(object);
}
size_t SnapshotCreator::AddData(Local<Context> context, i::Address object) {
auto impl = static_cast<i::SnapshotCreatorImpl*>(data_);
return impl->AddData(Utils::OpenHandle(*context), object);
}
StartupData SnapshotCreator::CreateBlob(
SnapshotCreator::FunctionCodeHandling function_code_handling) {
auto impl = static_cast<i::SnapshotCreatorImpl*>(data_);
return impl->CreateBlob(function_code_handling);
}
bool StartupData::CanBeRehashed() const {
DCHECK(i::Snapshot::VerifyChecksum(this));
return i::Snapshot::ExtractRehashability(this);
}
bool StartupData::IsValid() const { return i::Snapshot::VersionIsValid(this); }
void V8::SetDcheckErrorHandler(DcheckErrorCallback that) {
v8::base::SetDcheckFunction(that);
}
void V8::SetFlagsFromString(const char* str) {
SetFlagsFromString(str, strlen(str));
}
void V8::SetFlagsFromString(const char* str, size_t length) {
i::FlagList::SetFlagsFromString(str, length);
i::FlagList::EnforceFlagImplications();
}
void V8::SetFlagsFromCommandLine(int* argc, char** argv, bool remove_flags) {
using HelpOptions = i::FlagList::HelpOptions;
i::FlagList::SetFlagsFromCommandLine(argc, argv, remove_flags,
HelpOptions(HelpOptions::kDontExit));
}
RegisteredExtension* RegisteredExtension::first_extension_ = nullptr;
RegisteredExtension::RegisteredExtension(std::unique_ptr<Extension> extension)
: extension_(std::move(extension)) {}
// static
void RegisteredExtension::Register(std::unique_ptr<Extension> extension) {
RegisteredExtension* new_extension =
new RegisteredExtension(std::move(extension));
new_extension->next_ = first_extension_;
first_extension_ = new_extension;
}
// static
void RegisteredExtension::UnregisterAll() {
RegisteredExtension* re = first_extension_;
while (re != nullptr) {
RegisteredExtension* next = re->next();
delete re;
re = next;
}
first_extension_ = nullptr;
}
namespace {
class ExtensionResource : public String::ExternalOneByteStringResource {
public:
ExtensionResource() : data_(nullptr), length_(0) {}
ExtensionResource(const char* data, size_t length)
: data_(data), length_(length) {}
const char* data() const override { return data_; }
size_t length() const override { return length_; }
void Dispose() override {}
private:
const char* data_;
size_t length_;
};
} // anonymous namespace
void RegisterExtension(std::unique_ptr<Extension> extension) {
RegisteredExtension::Register(std::move(extension));
}
Extension::Extension(const char* name, const char* source, int dep_count,
const char** deps, int source_length)
: name_(name),
source_length_(source_length >= 0
? source_length
: (source ? static_cast<int>(strlen(source)) : 0)),
dep_count_(dep_count),
deps_(deps),
auto_enable_(false) {
source_ = new ExtensionResource(source, source_length_);
CHECK(source != nullptr || source_length_ == 0);
}
void ResourceConstraints::ConfigureDefaultsFromHeapSize(
size_t initial_heap_size_in_bytes, size_t maximum_heap_size_in_bytes) {
CHECK_LE(initial_heap_size_in_bytes, maximum_heap_size_in_bytes);
if (maximum_heap_size_in_bytes == 0) {
return;
}
size_t young_generation, old_generation;
i::Heap::GenerationSizesFromHeapSize(maximum_heap_size_in_bytes,
&young_generation, &old_generation);
set_max_young_generation_size_in_bytes(
std::max(young_generation, i::Heap::MinYoungGenerationSize()));
set_max_old_generation_size_in_bytes(
std::max(old_generation, i::Heap::MinOldGenerationSize()));
if (initial_heap_size_in_bytes > 0) {
i::Heap::GenerationSizesFromHeapSize(initial_heap_size_in_bytes,
&young_generation, &old_generation);
// We do not set lower bounds for the initial sizes.
set_initial_young_generation_size_in_bytes(young_generation);
set_initial_old_generation_size_in_bytes(old_generation);
}
if (i::kPlatformRequiresCodeRange) {
set_code_range_size_in_bytes(
std::min(i::kMaximalCodeRangeSize, maximum_heap_size_in_bytes));
}
}
void ResourceConstraints::ConfigureDefaults(uint64_t physical_memory,
uint64_t virtual_memory_limit) {
size_t heap_size = i::Heap::HeapSizeFromPhysicalMemory(physical_memory);
size_t young_generation, old_generation;
i::Heap::GenerationSizesFromHeapSize(heap_size, &young_generation,
&old_generation);
set_max_young_generation_size_in_bytes(young_generation);
set_max_old_generation_size_in_bytes(old_generation);
if (virtual_memory_limit > 0 && i::kPlatformRequiresCodeRange) {
set_code_range_size_in_bytes(
std::min(i::kMaximalCodeRangeSize,
static_cast<size_t>(virtual_memory_limit / 8)));
}
}
namespace internal {
i::Address* GlobalizeTracedReference(i::Isolate* i_isolate, i::Address value,
internal::Address* slot,
GlobalHandleStoreMode store_mode) {
API_RCS_SCOPE(i_isolate, TracedGlobal, New);
#ifdef DEBUG
Utils::ApiCheck((slot != nullptr), "v8::GlobalizeTracedReference",
"the address slot must be not null");
#endif
auto result = i_isolate->traced_handles()->Create(value, slot, store_mode);
#ifdef VERIFY_HEAP
if (i::v8_flags.verify_heap) {
Object::ObjectVerify(i::Tagged<i::Object>(value), i_isolate);
}
#endif // VERIFY_HEAP
return result.location();
}
void MoveTracedReference(internal::Address** from, internal::Address** to) {
TracedHandles::Move(from, to);
}
void CopyTracedReference(const internal::Address* const* from,
internal::Address** to) {
TracedHandles::Copy(from, to);
}
void DisposeTracedReference(internal::Address* location) {
TracedHandles::Destroy(location);
}
// static
void v8::internal::HandleHelper::VerifyOnStack(const void* ptr) {
DCHECK_LE(v8::base::Stack::GetCurrentStackPosition(), ptr);
DCHECK_GE(v8::base::Stack::GetStackStartUnchecked(), ptr);
}
#if V8_STATIC_ROOTS_BOOL
// Initialize static root constants exposed in v8-internal.h.
namespace {
constexpr InstanceTypeChecker::RootIndexRange kStringMapRange =
*InstanceTypeChecker::UniqueMapRangeOfInstanceTypeRange(FIRST_STRING_TYPE,
LAST_STRING_TYPE);
constexpr Tagged_t kFirstStringMapPtr =
StaticReadOnlyRootsPointerTable[static_cast<size_t>(kStringMapRange.first)];
constexpr Tagged_t kLastStringMapPtr =
StaticReadOnlyRootsPointerTable[static_cast<size_t>(
kStringMapRange.second)];
} // namespace
#define EXPORTED_STATIC_ROOTS_MAPPING(V) \
V(UndefinedValue, i::StaticReadOnlyRoot::kUndefinedValue) \
V(NullValue, i::StaticReadOnlyRoot::kNullValue) \
V(TrueValue, i::StaticReadOnlyRoot::kTrueValue) \
V(FalseValue, i::StaticReadOnlyRoot::kFalseValue) \
V(EmptyString, i::StaticReadOnlyRoot::kempty_string) \
V(TheHoleValue, i::StaticReadOnlyRoot::kTheHoleValue) \
V(FirstStringMap, kFirstStringMapPtr) \
V(LastStringMap, kLastStringMapPtr)
static_assert(std::is_same<Internals::Tagged_t, Tagged_t>::value);
#define DEF_STATIC_ROOT(name, internal_value) \
const Internals::Tagged_t Internals::StaticReadOnlyRoot::k##name = \
internal_value;
EXPORTED_STATIC_ROOTS_MAPPING(DEF_STATIC_ROOT)
#undef DEF_STATIC_ROOT
#undef EXPORTED_STATIC_ROOTS_MAPPING
#endif // V8_STATIC_ROOTS_BOOL
} // namespace internal
namespace api_internal {
i::Address* GlobalizeReference(i::Isolate* i_isolate, i::Address value) {
API_RCS_SCOPE(i_isolate, Persistent, New);
i::Handle<i::Object> result = i_isolate->global_handles()->Create(value);
#ifdef VERIFY_HEAP
if (i::v8_flags.verify_heap) {
i::Object::ObjectVerify(i::Tagged<i::Object>(value), i_isolate);
}
#endif // VERIFY_HEAP
return result.location();
}
i::Address* CopyGlobalReference(i::Address* from) {
i::Handle<i::Object> result = i::GlobalHandles::CopyGlobal(from);
return result.location();
}
void MoveGlobalReference(internal::Address** from, internal::Address** to) {
i::GlobalHandles::MoveGlobal(from, to);
}
void MakeWeak(i::Address* location, void* parameter,
WeakCallbackInfo<void>::Callback weak_callback,
WeakCallbackType type) {
i::GlobalHandles::MakeWeak(location, parameter, weak_callback, type);
}
void MakeWeak(i::Address** location_addr) {
i::GlobalHandles::MakeWeak(location_addr);
}
void* ClearWeak(i::Address* location) {
return i::GlobalHandles::ClearWeakness(location);
}
void AnnotateStrongRetainer(i::Address* location, const char* label) {
i::GlobalHandles::AnnotateStrongRetainer(location, label);
}
void DisposeGlobal(i::Address* location) {
i::GlobalHandles::Destroy(location);
}
i::Address* Eternalize(Isolate* v8_isolate, Value* value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::Tagged<i::Object> object = *Utils::OpenDirectHandle(value);
int index = -1;
i_isolate->eternal_handles()->Create(i_isolate, object, &index);
return i_isolate->eternal_handles()->Get(index).location();
}
void FromJustIsNothing() {
Utils::ApiCheck(false, "v8::FromJust", "Maybe value is Nothing");
}
void ToLocalEmpty() {
Utils::ApiCheck(false, "v8::ToLocalChecked", "Empty MaybeLocal");
}
void InternalFieldOutOfBounds(int index) {
Utils::ApiCheck(0 <= index && index < kInternalFieldsInWeakCallback,
"WeakCallbackInfo::GetInternalField",
"Internal field out of bounds");
}
} // namespace api_internal
// --- H a n d l e s ---
HandleScope::HandleScope(Isolate* v8_isolate) { Initialize(v8_isolate); }
void HandleScope::Initialize(Isolate* v8_isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
// We do not want to check the correct usage of the Locker class all over the
// place, so we do it only here: Without a HandleScope, an embedder can do
// almost nothing, so it is enough to check in this central place.
// We make an exception if the serializer is enabled, which means that the
// Isolate is exclusively used to create a snapshot.
Utils::ApiCheck(!i_isolate->was_locker_ever_used() ||
i_isolate->thread_manager()->IsLockedByCurrentThread() ||
i_isolate->serializer_enabled(),
"HandleScope::HandleScope",
"Entering the V8 API without proper locking in place");
i::HandleScopeData* current = i_isolate->handle_scope_data();
i_isolate_ = i_isolate;
prev_next_ = current->next;
prev_limit_ = current->limit;
current->level++;
}
HandleScope::~HandleScope() {
i::HandleScope::CloseScope(i_isolate_, prev_next_, prev_limit_);
}
void* HandleScope::operator new(size_t) { base::OS::Abort(); }
void* HandleScope::operator new[](size_t) { base::OS::Abort(); }
void HandleScope::operator delete(void*, size_t) { base::OS::Abort(); }
void HandleScope::operator delete[](void*, size_t) { base::OS::Abort(); }
int HandleScope::NumberOfHandles(Isolate* v8_isolate) {
return i::HandleScope::NumberOfHandles(
reinterpret_cast<i::Isolate*>(v8_isolate));
}
i::Address* HandleScope::CreateHandle(i::Isolate* i_isolate, i::Address value) {
return i::HandleScope::CreateHandle(i_isolate, value);
}
#ifdef V8_ENABLE_DIRECT_LOCAL
i::Address* HandleScope::CreateHandleForCurrentIsolate(i::Address value) {
i::Isolate* i_isolate = i::Isolate::Current();
return i::HandleScope::CreateHandle(i_isolate, value);
}
#endif // V8_ENABLE_DIRECT_LOCAL
EscapableHandleScope::EscapableHandleScope(Isolate* v8_isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
escape_slot_ = CreateHandle(
i_isolate, i::ReadOnlyRoots(i_isolate).the_hole_value().ptr());
Initialize(v8_isolate);
}
i::Address* EscapableHandleScope::Escape(i::Address* escape_value) {
i::Heap* heap = reinterpret_cast<i::Isolate*>(GetIsolate())->heap();
Utils::ApiCheck(
i::IsTheHole(i::Tagged<i::Object>(*escape_slot_), heap->isolate()),
"EscapableHandleScope::Escape", "Escape value set twice");
if (escape_value == nullptr) {
*escape_slot_ = i::ReadOnlyRoots(heap).undefined_value().ptr();
return nullptr;
}
*escape_slot_ = *escape_value;
return escape_slot_;
}
void* EscapableHandleScope::operator new(size_t) { base::OS::Abort(); }
void* EscapableHandleScope::operator new[](size_t) { base::OS::Abort(); }
void EscapableHandleScope::operator delete(void*, size_t) { base::OS::Abort(); }
void EscapableHandleScope::operator delete[](void*, size_t) {
base::OS::Abort();
}
SealHandleScope::SealHandleScope(Isolate* v8_isolate)
: i_isolate_(reinterpret_cast<i::Isolate*>(v8_isolate)) {
i::HandleScopeData* current = i_isolate_->handle_scope_data();
prev_limit_ = current->limit;
current->limit = current->next;
prev_sealed_level_ = current->sealed_level;
current->sealed_level = current->level;
}
SealHandleScope::~SealHandleScope() {
i::HandleScopeData* current = i_isolate_->handle_scope_data();
DCHECK_EQ(current->next, current->limit);
current->limit = prev_limit_;
DCHECK_EQ(current->level, current->sealed_level);
current->sealed_level = prev_sealed_level_;
}
void* SealHandleScope::operator new(size_t) { base::OS::Abort(); }
void* SealHandleScope::operator new[](size_t) { base::OS::Abort(); }
void SealHandleScope::operator delete(void*, size_t) { base::OS::Abort(); }
void SealHandleScope::operator delete[](void*, size_t) { base::OS::Abort(); }
bool Data::IsModule() const {
return i::IsModule(*Utils::OpenDirectHandle(this));
}
bool Data::IsFixedArray() const {
return i::IsFixedArray(*Utils::OpenDirectHandle(this));
}
bool Data::IsValue() const {
i::DisallowGarbageCollection no_gc;
i::Tagged<i::Object> self = *Utils::OpenDirectHandle(this);
if (i::IsSmi(self)) return true;
i::Tagged<i::HeapObject> heap_object = i::HeapObject::cast(self);
DCHECK(!IsTheHole(heap_object));
if (i::IsSymbol(heap_object)) {
return !i::Symbol::cast(heap_object)->is_private();
}
return IsPrimitiveHeapObject(heap_object) || IsJSReceiver(heap_object);
}
bool Data::IsPrivate() const {
return i::IsPrivateSymbol(*Utils::OpenDirectHandle(this));
}
bool Data::IsObjectTemplate() const {
return i::IsObjectTemplateInfo(*Utils::OpenDirectHandle(this));
}
bool Data::IsFunctionTemplate() const {
return i::IsFunctionTemplateInfo(*Utils::OpenDirectHandle(this));
}
bool Data::IsContext() const {
return i::IsContext(*Utils::OpenDirectHandle(this));
}
void Context::Enter() {
i::DisallowGarbageCollection no_gc;
i::Tagged<i::NativeContext> env = *Utils::OpenDirectHandle(this);
i::Isolate* i_isolate = env->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScopeImplementer* impl = i_isolate->handle_scope_implementer();
impl->EnterContext(env);
impl->SaveContext(i_isolate->context());
i_isolate->set_context(env);
}
void Context::Exit() {
i::DirectHandle<i::NativeContext> env = Utils::OpenDirectHandle(this);
i::Isolate* i_isolate = env->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScopeImplementer* impl = i_isolate->handle_scope_implementer();
if (!Utils::ApiCheck(impl->LastEnteredContextWas(*env), "v8::Context::Exit()",
"Cannot exit non-entered context")) {
return;
}
impl->LeaveContext();
i_isolate->set_context(impl->RestoreContext());
}
Context::BackupIncumbentScope::BackupIncumbentScope(
Local<Context> backup_incumbent_context)
: backup_incumbent_context_(backup_incumbent_context) {
DCHECK(!backup_incumbent_context_.IsEmpty());
i::DirectHandle<i::NativeContext> env =
Utils::OpenDirectHandle(*backup_incumbent_context_);
i::Isolate* i_isolate = env->GetIsolate();
js_stack_comparable_address_ =
i::SimulatorStack::RegisterJSStackComparableAddress(i_isolate);
prev_ = i_isolate->top_backup_incumbent_scope();
i_isolate->set_top_backup_incumbent_scope(this);
}
Context::BackupIncumbentScope::~BackupIncumbentScope() {
i::DirectHandle<i::NativeContext> env =
Utils::OpenDirectHandle(*backup_incumbent_context_);
i::Isolate* i_isolate = env->GetIsolate();
i::SimulatorStack::UnregisterJSStackComparableAddress(i_isolate);
i_isolate->set_top_backup_incumbent_scope(prev_);
}
static_assert(i::Internals::kEmbedderDataSlotSize == i::kEmbedderDataSlotSize);
static_assert(i::Internals::kEmbedderDataSlotExternalPointerOffset ==
i::EmbedderDataSlot::kExternalPointerOffset);
static i::Handle<i::EmbedderDataArray> EmbedderDataFor(Context* context,
int index, bool can_grow,
const char* location) {
i::DirectHandle<i::NativeContext> env = Utils::OpenDirectHandle(context);
i::Isolate* i_isolate = env->GetIsolate();
DCHECK_NO_SCRIPT_NO_EXCEPTION(i_isolate);
bool ok = Utils::ApiCheck(i::IsNativeContext(*env), location,
"Not a native context") &&
Utils::ApiCheck(index >= 0, location, "Negative index");
if (!ok) return i::Handle<i::EmbedderDataArray>();
// TODO(ishell): remove cast once embedder_data slot has a proper type.
i::Handle<i::EmbedderDataArray> data(
i::EmbedderDataArray::cast(env->embedder_data()), i_isolate);
if (index < data->length()) return data;
if (!Utils::ApiCheck(can_grow && index < i::EmbedderDataArray::kMaxLength,
location, "Index too large")) {
return i::Handle<i::EmbedderDataArray>();
}
data = i::EmbedderDataArray::EnsureCapacity(i_isolate, data, index);
env->set_embedder_data(*data);
return data;
}
uint32_t Context::GetNumberOfEmbedderDataFields() {
i::DirectHandle<i::NativeContext> context = Utils::OpenDirectHandle(this);
DCHECK_NO_SCRIPT_NO_EXCEPTION(context->GetIsolate());
Utils::ApiCheck(i::IsNativeContext(*context),
"Context::GetNumberOfEmbedderDataFields",
"Not a native context");
// TODO(ishell): remove cast once embedder_data slot has a proper type.
return static_cast<uint32_t>(
i::EmbedderDataArray::cast(context->embedder_data())->length());
}
v8::Local<v8::Value> Context::SlowGetEmbedderData(int index) {
const char* location = "v8::Context::GetEmbedderData()";
i::Handle<i::EmbedderDataArray> data =
EmbedderDataFor(this, index, false, location);
if (data.is_null()) return Local<Value>();
i::Isolate* i_isolate = Utils::OpenDirectHandle(this)->GetIsolate();
i::Handle<i::Object> result(i::EmbedderDataSlot(*data, index).load_tagged(),
i_isolate);
return Utils::ToLocal(result);
}
void Context::SetEmbedderData(int index, v8::Local<Value> value) {
const char* location = "v8::Context::SetEmbedderData()";
i::Handle<i::EmbedderDataArray> data =
EmbedderDataFor(this, index, true, location);
if (data.is_null()) return;
i::DirectHandle<i::Object> val = Utils::OpenDirectHandle(*value);
i::EmbedderDataSlot::store_tagged(*data, index, *val);
DCHECK_EQ(*Utils::OpenDirectHandle(*value),
*Utils::OpenDirectHandle(*GetEmbedderData(index)));
}
void* Context::SlowGetAlignedPointerFromEmbedderData(int index) {
const char* location = "v8::Context::GetAlignedPointerFromEmbedderData()";
i::Isolate* i_isolate = Utils::OpenDirectHandle(this)->GetIsolate();
i::HandleScope handle_scope(i_isolate);
i::Handle<i::EmbedderDataArray> data =
EmbedderDataFor(this, index, false, location);
if (data.is_null()) return nullptr;
void* result;
Utils::ApiCheck(
i::EmbedderDataSlot(*data, index).ToAlignedPointer(i_isolate, &result),
location, "Pointer is not aligned");
return result;
}
void Context::SetAlignedPointerInEmbedderData(int index, void* value) {
const char* location = "v8::Context::SetAlignedPointerInEmbedderData()";
i::Isolate* i_isolate = Utils::OpenDirectHandle(this)->GetIsolate();
i::Handle<i::EmbedderDataArray> data =
EmbedderDataFor(this, index, true, location);
bool ok =
i::EmbedderDataSlot(*data, index).store_aligned_pointer(i_isolate, value);
Utils::ApiCheck(ok, location, "Pointer is not aligned");
DCHECK_EQ(value, GetAlignedPointerFromEmbedderData(index));
}
// --- T e m p l a t e ---
static void InitializeTemplate(i::Tagged<i::TemplateInfo> that, int type,
bool do_not_cache) {
that->set_number_of_properties(0);
that->set_tag(type);
int serial_number =
do_not_cache ? i::TemplateInfo::kDoNotCache : i::TemplateInfo::kUncached;
that->set_serial_number(serial_number);
}
void Template::Set(v8::Local<Name> name, v8::Local<Data> value,
v8::PropertyAttribute attribute) {
auto templ = Utils::OpenHandle(this);
i::Isolate* i_isolate = templ->GetIsolateChecked();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
auto value_obj = Utils::OpenHandle(*value);
Utils::ApiCheck(!IsJSReceiver(*value_obj) || IsTemplateInfo(*value_obj),
"v8::Template::Set",
"Invalid value, must be a primitive or a Template");
// The template cache only performs shallow clones, if we set an
// ObjectTemplate as a property value then we can not cache the receiver
// template.
if (i::IsObjectTemplateInfo(*value_obj)) {
templ->set_serial_number(i::TemplateInfo::kDoNotCache);
}
i::ApiNatives::AddDataProperty(i_isolate, templ, Utils::OpenHandle(*name),
value_obj,
static_cast<i::PropertyAttributes>(attribute));
}
void Template::SetPrivate(v8::Local<Private> name, v8::Local<Data> value,
v8::PropertyAttribute attribute) {
Set(Utils::ToLocal(Utils::OpenHandle(reinterpret_cast<Name*>(*name))), value,
attribute);
}
void Template::SetAccessorProperty(v8::Local<v8::Name> name,
v8::Local<FunctionTemplate> getter,
v8::Local<FunctionTemplate> setter,
v8::PropertyAttribute attribute,
v8::AccessControl access_control) {
Utils::ApiCheck(
getter.IsEmpty() ||
!IsUndefined(
Utils::OpenDirectHandle(*getter)->call_code(kAcquireLoad)),
"v8::Template::SetAccessorProperty", "Getter must have a call handler");
Utils::ApiCheck(
setter.IsEmpty() ||
!IsUndefined(
Utils::OpenDirectHandle(*setter)->call_code(kAcquireLoad)),
"v8::Template::SetAccessorProperty", "Setter must have a call handler");
// TODO(verwaest): Remove |access_control|.
DCHECK_EQ(v8::DEFAULT, access_control);
auto templ = Utils::OpenHandle(this);
auto i_isolate = templ->GetIsolateChecked();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
DCHECK(!name.IsEmpty());
DCHECK(!getter.IsEmpty() || !setter.IsEmpty());
i::HandleScope scope(i_isolate);
i::ApiNatives::AddAccessorProperty(
i_isolate, templ, Utils::OpenHandle(*name),
Utils::OpenHandle(*getter, true), Utils::OpenHandle(*setter, true),
static_cast<i::PropertyAttributes>(attribute));
}
// --- F u n c t i o n T e m p l a t e ---
static void InitializeFunctionTemplate(i::Tagged<i::FunctionTemplateInfo> info,
bool do_not_cache) {
InitializeTemplate(info, Consts::FUNCTION_TEMPLATE, do_not_cache);
info->set_flag(0, kRelaxedStore);
}
namespace {
Local<ObjectTemplate> ObjectTemplateNew(i::Isolate* i_isolate,
v8::Local<FunctionTemplate> constructor,
bool do_not_cache) {
API_RCS_SCOPE(i_isolate, ObjectTemplate, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::Struct> struct_obj = i_isolate->factory()->NewStruct(
i::OBJECT_TEMPLATE_INFO_TYPE, i::AllocationType::kOld);
i::Handle<i::ObjectTemplateInfo> obj =
i::Handle<i::ObjectTemplateInfo>::cast(struct_obj);
{
// Disallow GC until all fields of obj have acceptable types.
i::DisallowGarbageCollection no_gc;
i::Tagged<i::ObjectTemplateInfo> raw = *obj;
InitializeTemplate(raw, Consts::OBJECT_TEMPLATE, do_not_cache);
raw->set_data(0);
if (!constructor.IsEmpty()) {
raw->set_constructor(*Utils::OpenDirectHandle(*constructor));
}
}
return Utils::ToLocal(obj);
}
} // namespace
Local<ObjectTemplate> FunctionTemplate::PrototypeTemplate() {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolateChecked();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::HeapObject> result(self->GetPrototypeTemplate(), i_isolate);
if (i::IsUndefined(*result, i_isolate)) {
// Do not cache prototype objects.
result = Utils::OpenHandle(
*ObjectTemplateNew(i_isolate, Local<FunctionTemplate>(), true));
i::FunctionTemplateInfo::SetPrototypeTemplate(i_isolate, self, result);
}
return ToApiHandle<ObjectTemplate>(result);
}
void FunctionTemplate::SetPrototypeProviderTemplate(
Local<FunctionTemplate> prototype_provider) {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolateChecked();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::FunctionTemplateInfo> result =
Utils::OpenHandle(*prototype_provider);
Utils::ApiCheck(i::IsUndefined(self->GetPrototypeTemplate(), i_isolate),
"v8::FunctionTemplate::SetPrototypeProviderTemplate",
"Protoype must be undefined");
Utils::ApiCheck(i::IsUndefined(self->GetParentTemplate(), i_isolate),
"v8::FunctionTemplate::SetPrototypeProviderTemplate",
"Prototype provider must be empty");
i::FunctionTemplateInfo::SetPrototypeProviderTemplate(i_isolate, self,
result);
}
namespace {
static void EnsureNotPublished(i::DirectHandle<i::FunctionTemplateInfo> info,
const char* func) {
DCHECK_IMPLIES(info->instantiated(), info->published());
Utils::ApiCheck(!info->published(), func,
"FunctionTemplate already instantiated");
}
Local<FunctionTemplate> FunctionTemplateNew(
i::Isolate* i_isolate, FunctionCallback callback, v8::Local<Value> data,
v8::Local<Signature> signature, int length, ConstructorBehavior behavior,
bool do_not_cache,
v8::Local<Private> cached_property_name = v8::Local<Private>(),
SideEffectType side_effect_type = SideEffectType::kHasSideEffect,
const MemorySpan<const CFunction>& c_function_overloads = {},
uint8_t instance_type = 0,
uint8_t allowed_receiver_instance_type_range_start = 0,
uint8_t allowed_receiver_instance_type_range_end = 0) {
i::Handle<i::Struct> struct_obj = i_isolate->factory()->NewStruct(
i::FUNCTION_TEMPLATE_INFO_TYPE, i::AllocationType::kOld);
i::Handle<i::FunctionTemplateInfo> obj =
i::Handle<i::FunctionTemplateInfo>::cast(struct_obj);
{
// Disallow GC until all fields of obj have acceptable types.
i::DisallowGarbageCollection no_gc;
i::Tagged<i::FunctionTemplateInfo> raw = *obj;
InitializeFunctionTemplate(raw, do_not_cache);
raw->set_length(length);
raw->set_undetectable(false);
raw->set_needs_access_check(false);
raw->set_accept_any_receiver(true);
if (!signature.IsEmpty()) {
raw->set_signature(*Utils::OpenDirectHandle(*signature));
}
raw->set_cached_property_name(
cached_property_name.IsEmpty()
? i::ReadOnlyRoots(i_isolate).the_hole_value()
: *Utils::OpenDirectHandle(*cached_property_name));
if (behavior == ConstructorBehavior::kThrow)
raw->set_remove_prototype(true);
raw->SetInstanceType(instance_type);
raw->set_allowed_receiver_instance_type_range_start(
allowed_receiver_instance_type_range_start);
raw->set_allowed_receiver_instance_type_range_end(
allowed_receiver_instance_type_range_end);
}
if (callback != nullptr) {
Utils::ToLocal(obj)->SetCallHandler(callback, data, side_effect_type,
c_function_overloads);
}
return Utils::ToLocal(obj);
}
} // namespace
void FunctionTemplate::Inherit(v8::Local<FunctionTemplate> value) {
auto info = Utils::OpenHandle(this);
EnsureNotPublished(info, "v8::FunctionTemplate::Inherit");
i::Isolate* i_isolate = info->GetIsolateChecked();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
Utils::ApiCheck(
i::IsUndefined(info->GetPrototypeProviderTemplate(), i_isolate),
"v8::FunctionTemplate::Inherit", "Protoype provider must be empty");
i::FunctionTemplateInfo::SetParentTemplate(i_isolate, info,
Utils::OpenHandle(*value));
}
Local<FunctionTemplate> FunctionTemplate::New(
Isolate* v8_isolate, FunctionCallback callback, v8::Local<Value> data,
v8::Local<Signature> signature, int length, ConstructorBehavior behavior,
SideEffectType side_effect_type, const CFunction* c_function,
uint16_t instance_type, uint16_t allowed_receiver_instance_type_range_start,
uint16_t allowed_receiver_instance_type_range_end) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
// Changes to the environment cannot be captured in the snapshot. Expect no
// function templates when the isolate is created for serialization.
API_RCS_SCOPE(i_isolate, FunctionTemplate, New);
if (!Utils::ApiCheck(
!c_function || behavior == ConstructorBehavior::kThrow,
"FunctionTemplate::New",
"Fast API calls are not supported for constructor functions")) {
return Local<FunctionTemplate>();
}
if (instance_type != 0) {
if (!Utils::ApiCheck(
instance_type >= i::Internals::kFirstJSApiObjectType &&
instance_type <= i::Internals::kLastJSApiObjectType,
"FunctionTemplate::New",
"instance_type is outside the range of valid JSApiObject types")) {
return Local<FunctionTemplate>();
}
}
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
return FunctionTemplateNew(
i_isolate, callback, data, signature, length, behavior, false,
Local<Private>(), side_effect_type,
c_function ? MemorySpan<const CFunction>{c_function, 1}
: MemorySpan<const CFunction>{},
instance_type, allowed_receiver_instance_type_range_start,
allowed_receiver_instance_type_range_end);
}
Local<FunctionTemplate> FunctionTemplate::NewWithCFunctionOverloads(
Isolate* v8_isolate, FunctionCallback callback, v8::Local<Value> data,
v8::Local<Signature> signature, int length, ConstructorBehavior behavior,
SideEffectType side_effect_type,
const MemorySpan<const CFunction>& c_function_overloads) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, FunctionTemplate, New);
if (!Utils::ApiCheck(
c_function_overloads.size() == 0 ||
behavior == ConstructorBehavior::kThrow,
"FunctionTemplate::NewWithCFunctionOverloads",
"Fast API calls are not supported for constructor functions")) {
return Local<FunctionTemplate>();
}
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
return FunctionTemplateNew(i_isolate, callback, data, signature, length,
behavior, false, Local<Private>(),
side_effect_type, c_function_overloads);
}
Local<FunctionTemplate> FunctionTemplate::NewWithCache(
Isolate* v8_isolate, FunctionCallback callback,
Local<Private> cache_property, Local<Value> data,
Local<Signature> signature, int length, SideEffectType side_effect_type) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, FunctionTemplate, NewWithCache);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
return FunctionTemplateNew(i_isolate, callback, data, signature, length,
ConstructorBehavior::kAllow, false, cache_property,
side_effect_type);
}
Local<Signature> Signature::New(Isolate* v8_isolate,
Local<FunctionTemplate> receiver) {
return Local<Signature>::Cast(receiver);
}
#define SET_FIELD_WRAPPED(i_isolate, obj, setter, cdata) \
do { \
i::Handle<i::Object> foreign = FromCData(i_isolate, cdata); \
(obj)->setter(*foreign); \
} while (false)
void FunctionTemplate::SetCallHandler(
FunctionCallback callback, v8::Local<Value> data,
SideEffectType side_effect_type,
const MemorySpan<const CFunction>& c_function_overloads) {
auto info = Utils::OpenHandle(this);
EnsureNotPublished(info, "v8::FunctionTemplate::SetCallHandler");
i::Isolate* i_isolate = info->GetIsolateChecked();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
i::Handle<i::CallHandlerInfo> obj = i_isolate->factory()->NewCallHandlerInfo(
side_effect_type == SideEffectType::kHasNoSideEffect);
obj->set_owner_template(*info);
obj->set_callback(i_isolate, reinterpret_cast<i::Address>(callback));
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(i_isolate));
}
obj->set_data(*Utils::OpenHandle(*data));
if (c_function_overloads.size() > 0) {
// Stores the data for a sequence of CFunction overloads into a single
// FixedArray, as [address_0, signature_0, ... address_n-1, signature_n-1].
i::Handle<i::FixedArray> function_overloads =
i_isolate->factory()->NewFixedArray(static_cast<int>(
c_function_overloads.size() *
i::FunctionTemplateInfo::kFunctionOverloadEntrySize));
int function_count = static_cast<int>(c_function_overloads.size());
for (int i = 0; i < function_count; i++) {
const CFunction& c_function = c_function_overloads.data()[i];
i::Handle<i::Object> address =
FromCData(i_isolate, c_function.GetAddress());
function_overloads->set(
i::FunctionTemplateInfo::kFunctionOverloadEntrySize * i, *address);
i::Handle<i::Object> signature =
FromCData(i_isolate, c_function.GetTypeInfo());
function_overloads->set(
i::FunctionTemplateInfo::kFunctionOverloadEntrySize * i + 1,
*signature);
}
i::FunctionTemplateInfo::SetCFunctionOverloads(i_isolate, info,
function_overloads);
}
info->set_call_code(*obj, kReleaseStore);
}
namespace {
template <typename Getter, typename Setter>
i::Handle<i::AccessorInfo> MakeAccessorInfo(
i::Isolate* i_isolate, v8::Local<Name> name, Getter getter, Setter setter,
v8::Local<Value> data, v8::AccessControl settings,
bool is_special_data_property, bool replace_on_access) {
i::Handle<i::AccessorInfo> obj = i_isolate->factory()->NewAccessorInfo();
obj->set_getter(i_isolate, reinterpret_cast<i::Address>(getter));
DCHECK_IMPLIES(replace_on_access,
is_special_data_property && setter == nullptr);
if (is_special_data_property && setter == nullptr) {
setter = reinterpret_cast<Setter>(&i::Accessors::ReconfigureToDataProperty);
}
obj->set_setter(i_isolate, reinterpret_cast<i::Address>(setter));
i::Handle<i::Name> accessor_name = Utils::OpenHandle(*name);
if (!IsUniqueName(*accessor_name)) {
accessor_name = i_isolate->factory()->InternalizeString(
i::Handle<i::String>::cast(accessor_name));
}
i::DisallowGarbageCollection no_gc;
i::Tagged<i::AccessorInfo> raw_obj = *obj;
if (data.IsEmpty()) {
raw_obj->set_data(i::ReadOnlyRoots(i_isolate).undefined_value());
} else {
raw_obj->set_data(*Utils::OpenHandle(*data));
}
raw_obj->set_name(*accessor_name);
raw_obj->set_is_special_data_property(is_special_data_property);
raw_obj->set_replace_on_access(replace_on_access);
if (settings & ALL_CAN_READ) raw_obj->set_all_can_read(true);
if (settings & ALL_CAN_WRITE) raw_obj->set_all_can_write(true);
raw_obj->set_initial_property_attributes(i::NONE);
return obj;
}
} // namespace
Local<ObjectTemplate> FunctionTemplate::InstanceTemplate() {
i::Handle<i::FunctionTemplateInfo> handle = Utils::OpenHandle(this, true);
if (!Utils::ApiCheck(!handle.is_null(),
"v8::FunctionTemplate::InstanceTemplate()",
"Reading from empty handle")) {
return Local<ObjectTemplate>();
}
i::Isolate* i_isolate = handle->GetIsolateChecked();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
if (i::IsUndefined(handle->GetInstanceTemplate(), i_isolate)) {
Local<ObjectTemplate> templ =
ObjectTemplate::New(i_isolate, ToApiHandle<FunctionTemplate>(handle));
i::FunctionTemplateInfo::SetInstanceTemplate(i_isolate, handle,
Utils::OpenHandle(*templ));
}
i::Handle<i::ObjectTemplateInfo> result(
i::ObjectTemplateInfo::cast(handle->GetInstanceTemplate()), i_isolate);
return Utils::ToLocal(result);
}
void FunctionTemplate::SetLength(int length) {
auto info = Utils::OpenDirectHandle(this);
EnsureNotPublished(info, "v8::FunctionTemplate::SetLength");
i::Isolate* i_isolate = info->GetIsolateChecked();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
info->set_length(length);
}
void FunctionTemplate::SetClassName(Local<String> name) {
auto info = Utils::OpenDirectHandle(this);
EnsureNotPublished(info, "v8::FunctionTemplate::SetClassName");
i::Isolate* i_isolate = info->GetIsolateChecked();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
info->set_class_name(*Utils::OpenHandle(*name));
}
void FunctionTemplate::SetAcceptAnyReceiver(bool value) {
auto info = Utils::OpenDirectHandle(this);
EnsureNotPublished(info, "v8::FunctionTemplate::SetAcceptAnyReceiver");
i::Isolate* i_isolate = info->GetIsolateChecked();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
info->set_accept_any_receiver(value);
}
void FunctionTemplate::ReadOnlyPrototype() {
auto info = Utils::OpenDirectHandle(this);
EnsureNotPublished(info, "v8::FunctionTemplate::ReadOnlyPrototype");
i::Isolate* i_isolate = info->GetIsolateChecked();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
info->set_read_only_prototype(true);
}
void FunctionTemplate::RemovePrototype() {
auto info = Utils::OpenDirectHandle(this);
EnsureNotPublished(info, "v8::FunctionTemplate::RemovePrototype");
i::Isolate* i_isolate = info->GetIsolateChecked();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
info->set_remove_prototype(true);
}
// --- O b j e c t T e m p l a t e ---
Local<ObjectTemplate> ObjectTemplate::New(
Isolate* v8_isolate, v8::Local<FunctionTemplate> constructor) {
return New(reinterpret_cast<i::Isolate*>(v8_isolate), constructor);
}
Local<ObjectTemplate> ObjectTemplate::New(
i::Isolate* i_isolate, v8::Local<FunctionTemplate> constructor) {
return ObjectTemplateNew(i_isolate, constructor, false);
}
namespace {
// Ensure that the object template has a constructor. If no
// constructor is available we create one.
i::Handle<i::FunctionTemplateInfo> EnsureConstructor(
i::Isolate* i_isolate, ObjectTemplate* object_template) {
i::Tagged<i::Object> obj =
Utils::OpenDirectHandle(object_template)->constructor();
if (!IsUndefined(obj, i_isolate)) {
i::Tagged<i::FunctionTemplateInfo> info =
i::FunctionTemplateInfo::cast(obj);
return i::Handle<i::FunctionTemplateInfo>(info, i_isolate);
}
Local<FunctionTemplate> templ =
FunctionTemplate::New(reinterpret_cast<Isolate*>(i_isolate));
i::Handle<i::FunctionTemplateInfo> constructor = Utils::OpenHandle(*templ);
i::FunctionTemplateInfo::SetInstanceTemplate(
i_isolate, constructor, Utils::OpenHandle(object_template));
Utils::OpenDirectHandle(object_template)->set_constructor(*constructor);
return constructor;
}
template <typename Getter, typename Setter, typename Data, typename Template>
void TemplateSetAccessor(Template* template_obj, v8::Local<Name> name,
Getter getter, Setter setter, Data data,
AccessControl settings, PropertyAttribute attribute,
bool is_special_data_property, bool replace_on_access,
SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
auto info = Utils::OpenHandle(template_obj);
auto i_isolate = info->GetIsolateChecked();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
i::Handle<i::AccessorInfo> accessor_info =
MakeAccessorInfo(i_isolate, name, getter, setter, data, settings,
is_special_data_property, replace_on_access);
{
i::DisallowGarbageCollection no_gc;
i::Tagged<i::AccessorInfo> raw = *accessor_info;
raw->set_initial_property_attributes(
static_cast<i::PropertyAttributes>(attribute));
raw->set_getter_side_effect_type(getter_side_effect_type);
raw->set_setter_side_effect_type(setter_side_effect_type);
}
i::ApiNatives::AddNativeDataProperty(i_isolate, info, accessor_info);
}
} // namespace
void Template::SetNativeDataProperty(v8::Local<String> name,
AccessorGetterCallback getter,
AccessorSetterCallback setter,
v8::Local<Value> data,
PropertyAttribute attribute,
AccessControl settings,
SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
TemplateSetAccessor(this, name, getter, setter, data, settings, attribute,
true, false, getter_side_effect_type,
setter_side_effect_type);
}
void Template::SetNativeDataProperty(v8::Local<Name> name,
AccessorNameGetterCallback getter,
AccessorNameSetterCallback setter,
v8::Local<Value> data,
PropertyAttribute attribute,
AccessControl settings,
SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
TemplateSetAccessor(this, name, getter, setter, data, settings, attribute,
true, false, getter_side_effect_type,
setter_side_effect_type);
}
void Template::SetLazyDataProperty(v8::Local<Name> name,
AccessorNameGetterCallback getter,
v8::Local<Value> data,
PropertyAttribute attribute,
SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
TemplateSetAccessor(this, name, getter,
static_cast<AccessorNameSetterCallback>(nullptr), data,
DEFAULT, attribute, true, true, getter_side_effect_type,
setter_side_effect_type);
}
void Template::SetIntrinsicDataProperty(Local<Name> name, Intrinsic intrinsic,
PropertyAttribute attribute) {
auto templ = Utils::OpenHandle(this);
i::Isolate* i_isolate = templ->GetIsolateChecked();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
i::ApiNatives::AddDataProperty(i_isolate, templ, Utils::OpenHandle(*name),
intrinsic,
static_cast<i::PropertyAttributes>(attribute));
}
void ObjectTemplate::SetAccessor(v8::Local<String> name,
AccessorGetterCallback getter,
AccessorSetterCallback setter,
v8::Local<Value> data, AccessControl settings,
PropertyAttribute attribute,
SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
TemplateSetAccessor(this, name, getter, setter, data, settings, attribute,
i::v8_flags.disable_old_api_accessors, false,
getter_side_effect_type, setter_side_effect_type);
}
void ObjectTemplate::SetAccessor(v8::Local<Name> name,
AccessorNameGetterCallback getter,
AccessorNameSetterCallback setter,
v8::Local<Value> data, AccessControl settings,
PropertyAttribute attribute,
SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
TemplateSetAccessor(this, name, getter, setter, data, settings, attribute,
i::v8_flags.disable_old_api_accessors, false,
getter_side_effect_type, setter_side_effect_type);
}
namespace {
template <typename Getter, typename Setter, typename Query, typename Descriptor,
typename Deleter, typename Enumerator, typename Definer>
i::Handle<i::InterceptorInfo> CreateInterceptorInfo(
i::Isolate* i_isolate, Getter getter, Setter setter, Query query,
Descriptor descriptor, Deleter remover, Enumerator enumerator,
Definer definer, Local<Value> data, PropertyHandlerFlags flags) {
auto obj =
i::Handle<i::InterceptorInfo>::cast(i_isolate->factory()->NewStruct(
i::INTERCEPTOR_INFO_TYPE, i::AllocationType::kOld));
obj->set_flags(0);
if (getter != nullptr) SET_FIELD_WRAPPED(i_isolate, obj, set_getter, getter);
if (setter != nullptr) SET_FIELD_WRAPPED(i_isolate, obj, set_setter, setter);
if (query != nullptr) SET_FIELD_WRAPPED(i_isolate, obj, set_query, query);
if (descriptor != nullptr) {
SET_FIELD_WRAPPED(i_isolate, obj, set_descriptor, descriptor);
}
if (remover != nullptr) {
SET_FIELD_WRAPPED(i_isolate, obj, set_deleter, remover);
}
if (enumerator != nullptr) {
SET_FIELD_WRAPPED(i_isolate, obj, set_enumerator, enumerator);
}
if (definer != nullptr) {
SET_FIELD_WRAPPED(i_isolate, obj, set_definer, definer);
}
obj->set_can_intercept_symbols(
!(static_cast<int>(flags) &
static_cast<int>(PropertyHandlerFlags::kOnlyInterceptStrings)));
obj->set_all_can_read(static_cast<int>(flags) &
static_cast<int>(PropertyHandlerFlags::kAllCanRead));
obj->set_non_masking(static_cast<int>(flags) &
static_cast<int>(PropertyHandlerFlags::kNonMasking));
obj->set_has_no_side_effect(
static_cast<int>(flags) &
static_cast<int>(PropertyHandlerFlags::kHasNoSideEffect));
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(i_isolate));
}
obj->set_data(*Utils::OpenDirectHandle(*data));
return obj;
}
template <typename Getter, typename Setter, typename Query, typename Descriptor,
typename Deleter, typename Enumerator, typename Definer>
i::Handle<i::InterceptorInfo> CreateNamedInterceptorInfo(
i::Isolate* i_isolate, Getter getter, Setter setter, Query query,
Descriptor descriptor, Deleter remover, Enumerator enumerator,
Definer definer, Local<Value> data, PropertyHandlerFlags flags) {
auto interceptor =
CreateInterceptorInfo(i_isolate, getter, setter, query, descriptor,
remover, enumerator, definer, data, flags);
interceptor->set_is_named(true);
return interceptor;
}
template <typename Getter, typename Setter, typename Query, typename Descriptor,
typename Deleter, typename Enumerator, typename Definer>
i::Handle<i::InterceptorInfo> CreateIndexedInterceptorInfo(
i::Isolate* i_isolate, Getter getter, Setter setter, Query query,
Descriptor descriptor, Deleter remover, Enumerator enumerator,
Definer definer, Local<Value> data, PropertyHandlerFlags flags) {
auto interceptor =
CreateInterceptorInfo(i_isolate, getter, setter, query, descriptor,
remover, enumerator, definer, data, flags);
interceptor->set_is_named(false);
return interceptor;
}
template <typename Getter, typename Setter, typename Query, typename Descriptor,
typename Deleter, typename Enumerator, typename Definer>
void ObjectTemplateSetNamedPropertyHandler(
ObjectTemplate* templ, Getter getter, Setter setter, Query query,
Descriptor descriptor, Deleter remover, Enumerator enumerator,
Definer definer, Local<Value> data, PropertyHandlerFlags flags) {
i::Isolate* i_isolate = Utils::OpenHandle(templ)->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
auto cons = EnsureConstructor(i_isolate, templ);
EnsureNotPublished(cons, "ObjectTemplateSetNamedPropertyHandler");
auto obj =
CreateNamedInterceptorInfo(i_isolate, getter, setter, query, descriptor,
remover, enumerator, definer, data, flags);
i::FunctionTemplateInfo::SetNamedPropertyHandler(i_isolate, cons, obj);
}
} // namespace
void ObjectTemplate::SetHandler(
const NamedPropertyHandlerConfiguration& config) {
ObjectTemplateSetNamedPropertyHandler(
this, config.getter, config.setter, config.query, config.descriptor,
config.deleter, config.enumerator, config.definer, config.data,
config.flags);
}
void ObjectTemplate::MarkAsUndetectable() {
i::Isolate* i_isolate = Utils::OpenDirectHandle(this)->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
auto cons = EnsureConstructor(i_isolate, this);
EnsureNotPublished(cons, "v8::ObjectTemplate::MarkAsUndetectable");
cons->set_undetectable(true);
}
void ObjectTemplate::SetAccessCheckCallback(AccessCheckCallback callback,
Local<Value> data) {
i::Isolate* i_isolate = Utils::OpenDirectHandle(this)->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
auto cons = EnsureConstructor(i_isolate, this);
EnsureNotPublished(cons, "v8::ObjectTemplate::SetAccessCheckCallback");
i::Handle<i::Struct> struct_info = i_isolate->factory()->NewStruct(
i::ACCESS_CHECK_INFO_TYPE, i::AllocationType::kOld);
i::Handle<i::AccessCheckInfo> info =
i::Handle<i::AccessCheckInfo>::cast(struct_info);
SET_FIELD_WRAPPED(i_isolate, info, set_callback, callback);
info->set_named_interceptor(i::Tagged<i::Object>());
info->set_indexed_interceptor(i::Tagged<i::Object>());
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(i_isolate));
}
info->set_data(*Utils::OpenDirectHandle(*data));
i::FunctionTemplateInfo::SetAccessCheckInfo(i_isolate, cons, info);
cons->set_needs_access_check(true);
}
void ObjectTemplate::SetAccessCheckCallbackAndHandler(
AccessCheckCallback callback,
const NamedPropertyHandlerConfiguration& named_handler,
const IndexedPropertyHandlerConfiguration& indexed_handler,
Local<Value> data) {
i::Isolate* i_isolate = Utils::OpenDirectHandle(this)->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
auto cons = EnsureConstructor(i_isolate, this);
EnsureNotPublished(cons,
"v8::ObjectTemplate::SetAccessCheckCallbackWithHandler");
i::Handle<i::Struct> struct_info = i_isolate->factory()->NewStruct(
i::ACCESS_CHECK_INFO_TYPE, i::AllocationType::kOld);
i::Handle<i::AccessCheckInfo> info =
i::Handle<i::AccessCheckInfo>::cast(struct_info);
SET_FIELD_WRAPPED(i_isolate, info, set_callback, callback);
auto named_interceptor = CreateNamedInterceptorInfo(
i_isolate, named_handler.getter, named_handler.setter,
named_handler.query, named_handler.descriptor, named_handler.deleter,
named_handler.enumerator, named_handler.definer, named_handler.data,
named_handler.flags);
info->set_named_interceptor(*named_interceptor);
auto indexed_interceptor = CreateIndexedInterceptorInfo(
i_isolate, indexed_handler.getter, indexed_handler.setter,
indexed_handler.query, indexed_handler.descriptor,
indexed_handler.deleter, indexed_handler.enumerator,
indexed_handler.definer, indexed_handler.data, indexed_handler.flags);
info->set_indexed_interceptor(*indexed_interceptor);
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(i_isolate));
}
info->set_data(*Utils::OpenDirectHandle(*data));
i::FunctionTemplateInfo::SetAccessCheckInfo(i_isolate, cons, info);
cons->set_needs_access_check(true);
}
void ObjectTemplate::SetHandler(
const IndexedPropertyHandlerConfiguration& config) {
i::Isolate* i_isolate = Utils::OpenDirectHandle(this)->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
auto cons = EnsureConstructor(i_isolate, this);
EnsureNotPublished(cons, "v8::ObjectTemplate::SetHandler");
auto obj = CreateIndexedInterceptorInfo(
i_isolate, config.getter, config.setter, config.query, config.descriptor,
config.deleter, config.enumerator, config.definer, config.data,
config.flags);
i::FunctionTemplateInfo::SetIndexedPropertyHandler(i_isolate, cons, obj);
}
void ObjectTemplate::SetCallAsFunctionHandler(FunctionCallback callback,
Local<Value> data) {
i::Isolate* i_isolate = Utils::OpenDirectHandle(this)->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
auto cons = EnsureConstructor(i_isolate, this);
EnsureNotPublished(cons, "v8::ObjectTemplate::SetCallAsFunctionHandler");
i::Handle<i::CallHandlerInfo> obj =
i_isolate->factory()->NewCallHandlerInfo();
obj->set_owner_template(*Utils::OpenDirectHandle(this));
obj->set_callback(i_isolate, reinterpret_cast<i::Address>(callback));
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(i_isolate));
}
obj->set_data(*Utils::OpenDirectHandle(*data));
i::FunctionTemplateInfo::SetInstanceCallHandler(i_isolate, cons, obj);
}
int ObjectTemplate::InternalFieldCount() const {
return Utils::OpenDirectHandle(this)->embedder_field_count();
}
void ObjectTemplate::SetInternalFieldCount(int value) {
i::Isolate* i_isolate = Utils::OpenDirectHandle(this)->GetIsolate();
if (!Utils::ApiCheck(i::Smi::IsValid(value),
"v8::ObjectTemplate::SetInternalFieldCount()",
"Invalid embedder field count")) {
return;
}
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
if (value > 0) {
// The embedder field count is set by the constructor function's
// construct code, so we ensure that there is a constructor
// function to do the setting.
EnsureConstructor(i_isolate, this);
}
Utils::OpenDirectHandle(this)->set_embedder_field_count(value);
}
bool ObjectTemplate::IsImmutableProto() const {
return Utils::OpenDirectHandle(this)->immutable_proto();
}
void ObjectTemplate::SetImmutableProto() {
auto self = Utils::OpenDirectHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
self->set_immutable_proto(true);
}
bool ObjectTemplate::IsCodeLike() const {
return Utils::OpenDirectHandle(this)->code_like();
}
void ObjectTemplate::SetCodeLike() {
auto self = Utils::OpenDirectHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
self->set_code_like(true);
}
// --- S c r i p t s ---
// Internally, UnboundScript and UnboundModuleScript are SharedFunctionInfos,
// and Script is a JSFunction.
ScriptCompiler::CachedData::CachedData(const uint8_t* data_, int length_,
BufferPolicy buffer_policy_)
: data(data_),
length(length_),
rejected(false),
buffer_policy(buffer_policy_) {}
ScriptCompiler::CachedData::~CachedData() {
if (buffer_policy == BufferOwned) {
delete[] data;
}
}
ScriptCompiler::CachedData::CompatibilityCheckResult
ScriptCompiler::CachedData::CompatibilityCheck(Isolate* isolate) {
i::AlignedCachedData aligned(data, length);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::SerializedCodeSanityCheckResult result;
i::SerializedCodeData scd =
i::SerializedCodeData::FromCachedDataWithoutSource(
i_isolate->AsLocalIsolate(), &aligned, &result);
return static_cast<ScriptCompiler::CachedData::CompatibilityCheckResult>(
result);
}
ScriptCompiler::StreamedSource::StreamedSource(
std::unique_ptr<ExternalSourceStream> stream, Encoding encoding)
: impl_(new i::ScriptStreamingData(std::move(stream), encoding)) {}
ScriptCompiler::StreamedSource::~StreamedSource() = default;
Local<Script> UnboundScript::BindToCurrentContext() {
i::Handle<i::SharedFunctionInfo> function_info = Utils::OpenHandle(this);
// TODO(jgruber): Remove this DCHECK once Function::GetUnboundScript is gone.
DCHECK(!function_info->InReadOnlySpace());
i::Isolate* i_isolate = i::GetIsolateFromWritableObject(*function_info);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::JSFunction> function =
i::Factory::JSFunctionBuilder{i_isolate, function_info,
i_isolate->native_context()}
.Build();
return ToApiHandle<Script>(function);
}
int UnboundScript::GetId() const {
i::DirectHandle<i::SharedFunctionInfo> function_info =
Utils::OpenDirectHandle(this);
// TODO(jgruber): Remove this DCHECK once Function::GetUnboundScript is gone.
DCHECK(!function_info->InReadOnlySpace());
API_RCS_SCOPE(i::GetIsolateFromWritableObject(*function_info), UnboundScript,
GetId);
return i::Script::cast(function_info->script())->id();
}
int UnboundScript::GetLineNumber(int code_pos) {
i::DirectHandle<i::SharedFunctionInfo> obj = Utils::OpenDirectHandle(this);
if (i::IsScript(obj->script())) {
// TODO(jgruber): Remove this DCHECK once Function::GetUnboundScript is
// gone.
DCHECK(!obj->InReadOnlySpace());
i::Isolate* i_isolate = i::GetIsolateFromWritableObject(*obj);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
API_RCS_SCOPE(i_isolate, UnboundScript, GetLineNumber);
i::Handle<i::Script> script(i::Script::cast(obj->script()), i_isolate);
return i::Script::GetLineNumber(script, code_pos);
} else {
return -1;
}
}
int UnboundScript::GetColumnNumber(int code_pos) {
i::DirectHandle<i::SharedFunctionInfo> obj = Utils::OpenDirectHandle(this);
if (i::IsScript(obj->script())) {
// TODO(jgruber): Remove this DCHECK once Function::GetUnboundScript is
// gone.
DCHECK(!obj->InReadOnlySpace());
i::Isolate* i_isolate = i::GetIsolateFromWritableObject(*obj);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
API_RCS_SCOPE(i_isolate, UnboundScript, GetColumnNumber);
i::Handle<i::Script> script(i::Script::cast(obj->script()), i_isolate);
return i::Script::GetColumnNumber(script, code_pos);
} else {
return -1;
}
}
Local<Value> UnboundScript::GetScriptName() {
i::DirectHandle<i::SharedFunctionInfo> obj = Utils::OpenDirectHandle(this);
if (i::IsScript(obj->script())) {
// TODO(jgruber): Remove this DCHECK once Function::GetUnboundScript is
// gone.
DCHECK(!obj->InReadOnlySpace());
i::Isolate* i_isolate = i::GetIsolateFromWritableObject(*obj);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
API_RCS_SCOPE(i_isolate, UnboundScript, GetName);
i::Tagged<i::Object> name = i::Script::cast(obj->script())->name();
return Utils::ToLocal(i::DirectHandle<i::Object>(name, i_isolate),
i_isolate);
} else {
return Local<String>();
}
}
Local<Value> UnboundScript::GetSourceURL() {
i::DirectHandle<i::SharedFunctionInfo> obj = Utils::OpenDirectHandle(this);
if (i::IsScript(obj->script())) {
// TODO(jgruber): Remove this DCHECK once Function::GetUnboundScript is
// gone.
DCHECK(!obj->InReadOnlySpace());
i::Isolate* i_isolate = i::GetIsolateFromWritableObject(*obj);
API_RCS_SCOPE(i_isolate, UnboundScript, GetSourceURL);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Tagged<i::Object> url = i::Script::cast(obj->script())->source_url();
return Utils::ToLocal(i::DirectHandle<i::Object>(url, i_isolate),
i_isolate);
} else {
return Local<String>();
}
}
Local<Value> UnboundScript::GetSourceMappingURL() {
i::DirectHandle<i::SharedFunctionInfo> obj = Utils::OpenDirectHandle(this);
if (i::IsScript(obj->script())) {
// TODO(jgruber): Remove this DCHECK once Function::GetUnboundScript is
// gone.
DCHECK(!obj->InReadOnlySpace());
i::Isolate* i_isolate = i::GetIsolateFromWritableObject(*obj);
API_RCS_SCOPE(i_isolate, UnboundScript, GetSourceMappingURL);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Tagged<i::Object> url =
i::Script::cast(obj->script())->source_mapping_url();
return Utils::ToLocal(i::DirectHandle<i::Object>(url, i_isolate),
i_isolate);
} else {
return Local<String>();
}
}
Local<Value> UnboundModuleScript::GetSourceURL() {
i::DirectHandle<i::SharedFunctionInfo> obj = Utils::OpenDirectHandle(this);
if (i::IsScript(obj->script())) {
// TODO(jgruber): Remove this DCHECK once Function::GetUnboundScript is
// gone.
DCHECK(!obj->InReadOnlySpace());
i::Isolate* i_isolate = i::GetIsolateFromWritableObject(*obj);
API_RCS_SCOPE(i_isolate, UnboundModuleScript, GetSourceURL);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Tagged<i::Object> url = i::Script::cast(obj->script())->source_url();
return Utils::ToLocal(i::DirectHandle<i::Object>(url, i_isolate),
i_isolate);
} else {
return Local<String>();
}
}
Local<Value> UnboundModuleScript::GetSourceMappingURL() {
i::DirectHandle<i::SharedFunctionInfo> obj = Utils::OpenDirectHandle(this);
if (i::IsScript(obj->script())) {
// TODO(jgruber): Remove this DCHECK once Function::GetUnboundScript is
// gone.
DCHECK(!obj->InReadOnlySpace());
i::Isolate* i_isolate = i::GetIsolateFromWritableObject(*obj);
API_RCS_SCOPE(i_isolate, UnboundModuleScript, GetSourceMappingURL);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Tagged<i::Object> url =
i::Script::cast(obj->script())->source_mapping_url();
return Utils::ToLocal(i::DirectHandle<i::Object>(url, i_isolate),
i_isolate);
} else {
return Local<String>();
}
}
MaybeLocal<Value> Script::Run(Local<Context> context) {
return Run(context, Local<Data>());
}
MaybeLocal<Value> Script::Run(Local<Context> context,
Local<Data> host_defined_options) {
auto v8_isolate = context->GetIsolate();
auto i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
TRACE_EVENT_CALL_STATS_SCOPED(i_isolate, "v8", "V8.Execute");
ENTER_V8(i_isolate, context, Script, Run, MaybeLocal<Value>(),
InternalEscapableScope);
i::TimerEventScope<i::TimerEventExecute> timer_scope(i_isolate);
i::NestedTimedHistogramScope execute_timer(i_isolate->counters()->execute(),
i_isolate);
i::AggregatingHistogramTimerScope histogram_timer(
i_isolate->counters()->compile_lazy());
#if defined(V8_OS_WIN) && defined(V8_ENABLE_ETW_STACK_WALKING)
// In case ETW has been activated, tasks to log existing code are
// created. But in case the task runner does not run those before
// starting to execute code (as it happens in d8, that will run
// first the code from prompt), then that code will not have
// JIT instrumentation on time.
//
// To avoid this, on running scripts check first if JIT code log is
// pending and generate immediately.
if (i::v8_flags.enable_etw_stack_walking) {
i::ETWJITInterface::MaybeSetHandlerNow(i_isolate);
}
#endif
auto fun = i::Handle<i::JSFunction>::cast(Utils::OpenHandle(this));
i::Handle<i::Object> receiver = i_isolate->global_proxy();
// TODO(cbruni, chromium:1244145): Remove once migrated to the context.
i::Handle<i::Object> options(
i::Script::cast(fun->shared()->script())->host_defined_options(),
i_isolate);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(
i::Execution::CallScript(i_isolate, fun, receiver, options), &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
Local<Value> ScriptOrModule::GetResourceName() {
i::DirectHandle<i::ScriptOrModule> obj = Utils::OpenDirectHandle(this);
i::Isolate* i_isolate = i::GetIsolateFromWritableObject(*obj);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::DirectHandle<i::Object> val(obj->resource_name(), i_isolate);
return ToApiHandle<Value>(val, i_isolate);
}
Local<Data> ScriptOrModule::HostDefinedOptions() {
i::DirectHandle<i::ScriptOrModule> obj = Utils::OpenDirectHandle(this);
i::Isolate* i_isolate = i::GetIsolateFromWritableObject(*obj);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::DirectHandle<i::Object> val(obj->host_defined_options(), i_isolate);
return ToApiHandle<Data>(val, i_isolate);
}
Local<UnboundScript> Script::GetUnboundScript() {
i::DisallowGarbageCollection no_gc;
i::DirectHandle<i::JSFunction> obj = Utils::OpenDirectHandle(this);
i::DirectHandle<i::SharedFunctionInfo> sfi =
i::handle(obj->shared(), obj->GetIsolate());
DCHECK(!sfi->InReadOnlySpace());
return ToApiHandle<UnboundScript>(sfi, obj->GetIsolate());
}
Local<Value> Script::GetResourceName() {
i::DisallowGarbageCollection no_gc;
i::DirectHandle<i::JSFunction> func = Utils::OpenDirectHandle(this);
i::Tagged<i::SharedFunctionInfo> sfi = func->shared();
CHECK(IsScript(sfi->script()));
i::DirectHandle<i::Object> name(i::Script::cast(sfi->script())->name(),
func->GetIsolate());
return ToApiHandle<Value>(name, func->GetIsolate());
}
std::vector<int> Script::GetProducedCompileHints() const {
i::DisallowGarbageCollection no_gc;
i::DirectHandle<i::JSFunction> func = Utils::OpenDirectHandle(this);
i::Isolate* i_isolate = func->GetIsolate();
i::Tagged<i::SharedFunctionInfo> sfi = func->shared();
CHECK(IsScript(sfi->script()));
i::Tagged<i::Script> script = i::Script::cast(sfi->script());
i::Tagged<i::Object> maybe_array_list =
script->compiled_lazy_function_positions();
std::vector<int> result;
if (!IsUndefined(maybe_array_list, i_isolate)) {
i::Tagged<i::ArrayList> array_list = i::ArrayList::cast(maybe_array_list);
result.reserve(array_list->Length());
for (int i = 0; i < array_list->Length(); ++i) {
i::Tagged<i::Object> item = array_list->Get(i);
CHECK(IsSmi(item));
result.push_back(i::Smi::ToInt(item));
}
// Clear the data; the embedder can still request more data later, but it'll
// have to keep track of the original data itself.
script->set_compiled_lazy_function_positions(
i::ReadOnlyRoots(i_isolate).undefined_value());
}
return result;
}
// static
Local<PrimitiveArray> PrimitiveArray::New(Isolate* v8_isolate, int length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
Utils::ApiCheck(length >= 0, "v8::PrimitiveArray::New",
"length must be equal or greater than zero");
i::Handle<i::FixedArray> array = i_isolate->factory()->NewFixedArray(length);
return ToApiHandle<PrimitiveArray>(array);
}
int PrimitiveArray::Length() const {
i::DirectHandle<i::FixedArray> array = Utils::OpenDirectHandle(this);
return array->length();
}
void PrimitiveArray::Set(Isolate* v8_isolate, int index,
Local<Primitive> item) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::DirectHandle<i::FixedArray> array = Utils::OpenDirectHandle(this);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
Utils::ApiCheck(index >= 0 && index < array->length(),
"v8::PrimitiveArray::Set",
"index must be greater than or equal to 0 and less than the "
"array length");
i::DirectHandle<i::Object> i_item = Utils::OpenDirectHandle(*item);
array->set(index, *i_item);
}
Local<Primitive> PrimitiveArray::Get(Isolate* v8_isolate, int index) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::DirectHandle<i::FixedArray> array = Utils::OpenDirectHandle(this);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
Utils::ApiCheck(index >= 0 && index < array->length(),
"v8::PrimitiveArray::Get",
"index must be greater than or equal to 0 and less than the "
"array length");
i::DirectHandle<i::Object> i_item(array->get(index), i_isolate);
return ToApiHandle<Primitive>(i_item, i_isolate);
}
void v8::PrimitiveArray::CheckCast(v8::Data* that) {
i::DirectHandle<i::Object> obj = Utils::OpenDirectHandle(that);
Utils::ApiCheck(
i::IsFixedArray(*obj), "v8::PrimitiveArray::Cast",
"Value is not a PrimitiveArray; this is a temporary issue, v8::Data and "
"v8::PrimitiveArray will not be compatible in the future");
}
int FixedArray::Length() const {
i::DirectHandle<i::FixedArray> self = Utils::OpenDirectHandle(this);
return self->length();
}
Local<Data> FixedArray::Get(Local<Context> context, int i) const {
i::DirectHandle<i::FixedArray> self = Utils::OpenDirectHandle(this);
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
CHECK_LT(i, self->length());
i::DirectHandle<i::Object> entry(self->get(i), i_isolate);
return ToApiHandle<Data>(entry, i_isolate);
}
Local<String> ModuleRequest::GetSpecifier() const {
i::DirectHandle<i::ModuleRequest> self = Utils::OpenDirectHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
return ToApiHandle<String>(i::direct_handle(self->specifier(), i_isolate),
i_isolate);
}
int ModuleRequest::GetSourceOffset() const {
return Utils::OpenDirectHandle(this)->position();
}
Local<FixedArray> ModuleRequest::GetImportAssertions() const {
i::DirectHandle<i::ModuleRequest> self = Utils::OpenDirectHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
return ToApiHandle<FixedArray>(
i::direct_handle(self->import_assertions(), i_isolate), i_isolate);
}
Module::Status Module::GetStatus() const {
i::DirectHandle<i::Module> self = Utils::OpenDirectHandle(this);
switch (self->status()) {
case i::Module::kUnlinked:
case i::Module::kPreLinking:
return kUninstantiated;
case i::Module::kLinking:
return kInstantiating;
case i::Module::kLinked:
return kInstantiated;
case i::Module::kEvaluating:
case i::Module::kEvaluatingAsync:
return kEvaluating;
case i::Module::kEvaluated:
return kEvaluated;
case i::Module::kErrored:
return kErrored;
}
UNREACHABLE();
}
Local<Value> Module::GetException() const {
Utils::ApiCheck(GetStatus() == kErrored, "v8::Module::GetException",
"Module status must be kErrored");
i::DirectHandle<i::Module> self = Utils::OpenDirectHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
return ToApiHandle<Value>(i::direct_handle(self->GetException(), i_isolate),
i_isolate);
}
Local<FixedArray> Module::GetModuleRequests() const {
i::DirectHandle<i::Module> self = Utils::OpenDirectHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
DCHECK_NO_SCRIPT_NO_EXCEPTION(i_isolate);
if (i::IsSyntheticModule(*self)) {
// Synthetic modules are leaf nodes in the module graph. They have no
// ModuleRequests.
return ToApiHandle<FixedArray>(
self->GetReadOnlyRoots().empty_fixed_array_handle());
} else {
i::DirectHandle<i::FixedArray> module_requests(
i::DirectHandle<i::SourceTextModule>::cast(self)
->info()
->module_requests(),
i_isolate);
return ToApiHandle<FixedArray>(module_requests, i_isolate);
}
}
Location Module::SourceOffsetToLocation(int offset) const {
i::Handle<i::Module> self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
Utils::ApiCheck(
i::IsSourceTextModule(*self), "v8::Module::SourceOffsetToLocation",
"v8::Module::SourceOffsetToLocation must be used on an SourceTextModule");
i::Handle<i::Script> script(
i::Handle<i::SourceTextModule>::cast(self)->GetScript(), i_isolate);
i::Script::PositionInfo info;
i::Script::GetPositionInfo(script, offset, &info);
return v8::Location(info.line, info.column);
}
Local<Value> Module::GetModuleNamespace() {
Utils::ApiCheck(
GetStatus() >= kInstantiated, "v8::Module::GetModuleNamespace",
"v8::Module::GetModuleNamespace must be used on an instantiated module");
i::Handle<i::Module> self = Utils::OpenHandle(this);
auto i_isolate = self->GetIsolate();
DCHECK_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::JSModuleNamespace> module_namespace =
i::Module::GetModuleNamespace(i_isolate, self);
return ToApiHandle<Value>(module_namespace);
}
Local<UnboundModuleScript> Module::GetUnboundModuleScript() {
i::DirectHandle<i::Module> self = Utils::OpenDirectHandle(this);
Utils::ApiCheck(
i::IsSourceTextModule(*self), "v8::Module::GetUnboundModuleScript",
"v8::Module::GetUnboundModuleScript must be used on an SourceTextModule");
auto i_isolate = self->GetIsolate();
DCHECK_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::DirectHandle<i::Object> shared_info(
i::DirectHandle<i::SourceTextModule>::cast(self)->GetSharedFunctionInfo(),
i_isolate);
return ToApiHandle<UnboundModuleScript>(shared_info, i_isolate);
}
int Module::ScriptId() const {
i::Tagged<i::Module> self = *Utils::OpenDirectHandle(this);
Utils::ApiCheck(i::IsSourceTextModule(self), "v8::Module::ScriptId",
"v8::Module::ScriptId must be used on an SourceTextModule");
DCHECK_NO_SCRIPT_NO_EXCEPTION(self->GetIsolate());
return i::SourceTextModule::cast(self)->GetScript()->id();
}
bool Module::IsGraphAsync() const {
Utils::ApiCheck(
GetStatus() >= kInstantiated, "v8::Module::IsGraphAsync",
"v8::Module::IsGraphAsync must be used on an instantiated module");
i::Tagged<i::Module> self = *Utils::OpenDirectHandle(this);
auto i_isolate = self->GetIsolate();
DCHECK_NO_SCRIPT_NO_EXCEPTION(i_isolate);
return self->IsGraphAsync(i_isolate);
}
bool Module::IsSourceTextModule() const {
auto self = Utils::OpenDirectHandle(this);
DCHECK_NO_SCRIPT_NO_EXCEPTION(self->GetIsolate());
return i::IsSourceTextModule(*self);
}
bool Module::IsSyntheticModule() const {
auto self = Utils::OpenDirectHandle(this);
DCHECK_NO_SCRIPT_NO_EXCEPTION(self->GetIsolate());
return i::IsSyntheticModule(*self);
}
int Module::GetIdentityHash() const {
auto self = Utils::OpenDirectHandle(this);
DCHECK_NO_SCRIPT_NO_EXCEPTION(self->GetIsolate());
return self->hash();
}
Maybe<bool> Module::InstantiateModule(Local<Context> context,
Module::ResolveModuleCallback callback) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Module, InstantiateModule, Nothing<bool>(),
i::HandleScope);
has_pending_exception = !i::Module::Instantiate(
i_isolate, Utils::OpenHandle(this), context, callback, nullptr);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
MaybeLocal<Value> Module::Evaluate(Local<Context> context) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
TRACE_EVENT_CALL_STATS_SCOPED(i_isolate, "v8", "V8.Execute");
ENTER_V8(i_isolate, context, Module, Evaluate, MaybeLocal<Value>(),
InternalEscapableScope);
i::TimerEventScope<i::TimerEventExecute> timer_scope(i_isolate);
i::NestedTimedHistogramScope execute_timer(i_isolate->counters()->execute(),
i_isolate);
i::AggregatingHistogramTimerScope timer(
i_isolate->counters()->compile_lazy());
i::Handle<i::Module> self = Utils::OpenHandle(this);
Utils::ApiCheck(self->status() >= i::Module::kLinked, "Module::Evaluate",
"Expected instantiated module");
Local<Value> result;
has_pending_exception =
!ToLocal(i::Module::Evaluate(i_isolate, self), &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
Local<Module> Module::CreateSyntheticModule(
Isolate* v8_isolate, Local<String> module_name,
const std::vector<Local<String>>& export_names,
v8::Module::SyntheticModuleEvaluationSteps evaluation_steps) {
return CreateSyntheticModule(
v8_isolate, module_name,
MemorySpan<const Local<String>>(export_names.begin(), export_names.end()),
evaluation_steps);
}
Local<Module> Module::CreateSyntheticModule(
Isolate* v8_isolate, Local<String> module_name,
const MemorySpan<const Local<String>>& export_names,
v8::Module::SyntheticModuleEvaluationSteps evaluation_steps) {
auto i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::String> i_module_name = Utils::OpenHandle(*module_name);
i::Handle<i::FixedArray> i_export_names = i_isolate->factory()->NewFixedArray(
static_cast<int>(export_names.size()));
for (int i = 0; i < i_export_names->length(); ++i) {
i::Handle<i::String> str = i_isolate->factory()->InternalizeString(
Utils::OpenHandle(*export_names[i]));
i_export_names->set(i, *str);
}
return v8::Utils::ToLocal(
i::Handle<i::Module>(i_isolate->factory()->NewSyntheticModule(
i_module_name, i_export_names, evaluation_steps)));
}
Maybe<bool> Module::SetSyntheticModuleExport(Isolate* v8_isolate,
Local<String> export_name,
Local<v8::Value> export_value) {
auto i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::Handle<i::String> i_export_name = Utils::OpenHandle(*export_name);
i::Handle<i::Object> i_export_value = Utils::OpenHandle(*export_value);
i::Handle<i::Module> self = Utils::OpenHandle(this);
Utils::ApiCheck(i::IsSyntheticModule(*self),
"v8::Module::SyntheticModuleSetExport",
"v8::Module::SyntheticModuleSetExport must only be called on "
"a SyntheticModule");
ENTER_V8_NO_SCRIPT(i_isolate, v8_isolate->GetCurrentContext(), Module,
SetSyntheticModuleExport, Nothing<bool>(), i::HandleScope);
has_pending_exception =
i::SyntheticModule::SetExport(i_isolate,
i::Handle<i::SyntheticModule>::cast(self),
i_export_name, i_export_value)
.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
std::vector<std::tuple<Local<Module>, Local<Message>>>
Module::GetStalledTopLevelAwaitMessage(Isolate* isolate) {
auto i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::Handle<i::Module> self = Utils::OpenHandle(this);
Utils::ApiCheck(i::IsSourceTextModule(*self),
"v8::Module::GetStalledTopLevelAwaitMessage",
"v8::Module::GetStalledTopLevelAwaitMessage must only be "
"called on a SourceTextModule");
std::vector<
std::tuple<i::Handle<i::SourceTextModule>, i::Handle<i::JSMessageObject>>>
stalled_awaits = i::Handle<i::SourceTextModule>::cast(self)
->GetStalledTopLevelAwaitMessage(i_isolate);
std::vector<std::tuple<Local<Module>, Local<Message>>> result;
size_t stalled_awaits_count = stalled_awaits.size();
if (stalled_awaits_count == 0) {
return result;
}
result.reserve(stalled_awaits_count);
for (size_t i = 0; i < stalled_awaits_count; ++i) {
auto [module, message] = stalled_awaits[i];
result.push_back(std::make_tuple(ToApiHandle<Module>(module),
ToApiHandle<Message>(message)));
}
return result;
}
namespace {
i::ScriptDetails GetScriptDetails(
i::Isolate* i_isolate, Local<Value> resource_name, int resource_line_offset,
int resource_column_offset, Local<Value> source_map_url,
Local<Data> host_defined_options, ScriptOriginOptions origin_options) {
i::ScriptDetails script_details(Utils::OpenHandle(*(resource_name), true),
origin_options);
script_details.line_offset = resource_line_offset;
script_details.column_offset = resource_column_offset;
script_details.host_defined_options =
host_defined_options.IsEmpty()
? i_isolate->factory()->empty_fixed_array()
: Utils::OpenHandle(*(host_defined_options));
if (!source_map_url.IsEmpty()) {
script_details.source_map_url = Utils::OpenHandle(*(source_map_url));
}
return script_details;
}
} // namespace
MaybeLocal<UnboundScript> ScriptCompiler::CompileUnboundInternal(
Isolate* v8_isolate, Source* source, CompileOptions options,
NoCacheReason no_cache_reason) {
auto i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
TRACE_EVENT_CALL_STATS_SCOPED(i_isolate, "v8", "V8.ScriptCompiler");
ENTER_V8_NO_SCRIPT(i_isolate, v8_isolate->GetCurrentContext(), ScriptCompiler,
CompileUnbound, MaybeLocal<UnboundScript>(),
InternalEscapableScope);
i::Handle<i::String> str = Utils::OpenHandle(*(source->source_string));
i::Handle<i::SharedFunctionInfo> result;
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.CompileScript");
i::ScriptDetails script_details = GetScriptDetails(
i_isolate, source->resource_name, source->resource_line_offset,
source->resource_column_offset, source->source_map_url,
source->host_defined_options, source->resource_options);
i::MaybeHandle<i::SharedFunctionInfo> maybe_function_info;
if (options == kConsumeCodeCache) {
if (source->consume_cache_task) {
// Take ownership of the internal deserialization task and clear it off
// the consume task on the source.
DCHECK_NOT_NULL(source->consume_cache_task->impl_);
std::unique_ptr<i::BackgroundDeserializeTask> deserialize_task =
std::move(source->consume_cache_task->impl_);
maybe_function_info =
i::Compiler::GetSharedFunctionInfoForScriptWithDeserializeTask(
i_isolate, str, script_details, deserialize_task.get(), options,
no_cache_reason, i::NOT_NATIVES_CODE);
source->cached_data->rejected = deserialize_task->rejected();
} else {
DCHECK(source->cached_data);
// AlignedCachedData takes care of pointer-aligning the data.
auto cached_data = std::make_unique<i::AlignedCachedData>(
source->cached_data->data, source->cached_data->length);
maybe_function_info =
i::Compiler::GetSharedFunctionInfoForScriptWithCachedData(
i_isolate, str, script_details, cached_data.get(), options,
no_cache_reason, i::NOT_NATIVES_CODE);
source->cached_data->rejected = cached_data->rejected();
}
} else if (options == kConsumeCompileHints) {
maybe_function_info =
i::Compiler::GetSharedFunctionInfoForScriptWithCompileHints(
i_isolate, str, script_details, source->compile_hint_callback,
source->compile_hint_callback_data, options, no_cache_reason,
i::NOT_NATIVES_CODE);
} else {
// Compile without any cache.
maybe_function_info = i::Compiler::GetSharedFunctionInfoForScript(
i_isolate, str, script_details, options, no_cache_reason,
i::NOT_NATIVES_CODE);
}
has_pending_exception = !maybe_function_info.ToHandle(&result);
DCHECK_IMPLIES(!has_pending_exception, !result->InReadOnlySpace());
RETURN_ON_FAILED_EXECUTION(UnboundScript);
RETURN_ESCAPED(ToApiHandle<UnboundScript>(result));
}
MaybeLocal<UnboundScript> ScriptCompiler::CompileUnboundScript(
Isolate* v8_isolate, Source* source, CompileOptions options,
NoCacheReason no_cache_reason) {
Utils::ApiCheck(
!source->GetResourceOptions().IsModule(),
"v8::ScriptCompiler::CompileUnboundScript",
"v8::ScriptCompiler::CompileModule must be used to compile modules");
return CompileUnboundInternal(v8_isolate, source, options, no_cache_reason);
}
MaybeLocal<Script> ScriptCompiler::Compile(Local<Context> context,
Source* source,
CompileOptions options,
NoCacheReason no_cache_reason) {
Utils::ApiCheck(
!source->GetResourceOptions().IsModule(), "v8::ScriptCompiler::Compile",
"v8::ScriptCompiler::CompileModule must be used to compile modules");
auto i_isolate = context->GetIsolate();
MaybeLocal<UnboundScript> maybe =
CompileUnboundInternal(i_isolate, source, options, no_cache_reason);
Local<UnboundScript> result;
if (!maybe.ToLocal(&result)) return MaybeLocal<Script>();
v8::Context::Scope scope(context);
return result->BindToCurrentContext();
}
MaybeLocal<Module> ScriptCompiler::CompileModule(
Isolate* v8_isolate, Source* source, CompileOptions options,
NoCacheReason no_cache_reason) {
Utils::ApiCheck(
options == kNoCompileOptions || options == kConsumeCodeCache ||
options == kProduceCompileHints,
"v8::ScriptCompiler::CompileModule", "Invalid CompileOptions");
Utils::ApiCheck(source->GetResourceOptions().IsModule(),
"v8::ScriptCompiler::CompileModule",
"Invalid ScriptOrigin: is_module must be true");
MaybeLocal<UnboundScript> maybe =
CompileUnboundInternal(v8_isolate, source, options, no_cache_reason);
Local<UnboundScript> unbound;
if (!maybe.ToLocal(&unbound)) return MaybeLocal<Module>();
i::Handle<i::SharedFunctionInfo> shared = Utils::OpenHandle(*unbound);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
return ToApiHandle<Module>(i_isolate->factory()->NewSourceTextModule(shared));
}
// static
V8_WARN_UNUSED_RESULT MaybeLocal<Function> ScriptCompiler::CompileFunction(
Local<Context> context, Source* source, size_t arguments_count,
Local<String> arguments[], size_t context_extension_count,
Local<Object> context_extensions[], CompileOptions options,
NoCacheReason no_cache_reason) {
return CompileFunctionInternal(context, source, arguments_count, arguments,
context_extension_count, context_extensions,
options, no_cache_reason, nullptr);
}
#ifdef V8_SCRIPTORMODULE_LEGACY_LIFETIME
// static
MaybeLocal<Function> ScriptCompiler::CompileFunctionInContext(
Local<Context> context, Source* source, size_t arguments_count,
Local<String> arguments[], size_t context_extension_count,
Local<Object> context_extensions[], CompileOptions options,
NoCacheReason no_cache_reason,
Local<ScriptOrModule>* script_or_module_out) {
return CompileFunctionInternal(
context, source, arguments_count, arguments, context_extension_count,
context_extensions, options, no_cache_reason, script_or_module_out);
}
#endif // V8_SCRIPTORMODULE_LEGACY_LIFETIME
MaybeLocal<Function> ScriptCompiler::CompileFunctionInternal(
Local<Context> v8_context, Source* source, size_t arguments_count,
Local<String> arguments[], size_t context_extension_count,
Local<Object> context_extensions[], CompileOptions options,
NoCacheReason no_cache_reason,
Local<ScriptOrModule>* script_or_module_out) {
Local<Function> result;
{
PREPARE_FOR_EXECUTION(v8_context, ScriptCompiler, CompileFunction,
Function);
TRACE_EVENT_CALL_STATS_SCOPED(i_isolate, "v8", "V8.ScriptCompiler");
DCHECK(options == CompileOptions::kConsumeCodeCache ||
options == CompileOptions::kEagerCompile ||
options == CompileOptions::kNoCompileOptions);
i::Handle<i::Context> context = Utils::OpenHandle(*v8_context);
DCHECK(IsNativeContext(*context));
i::Handle<i::FixedArray> arguments_list =
i_isolate->factory()->NewFixedArray(static_cast<int>(arguments_count));
for (int i = 0; i < static_cast<int>(arguments_count); i++) {
i::Handle<i::String> argument = Utils::OpenHandle(*arguments[i]);
if (!i::String::IsIdentifier(i_isolate, argument))
return Local<Function>();
arguments_list->set(i, *argument);
}
for (size_t i = 0; i < context_extension_count; ++i) {
i::Handle<i::JSReceiver> extension =
Utils::OpenHandle(*context_extensions[i]);
if (!IsJSObject(*extension)) return Local<Function>();
context = i_isolate->factory()->NewWithContext(
context,
i::ScopeInfo::CreateForWithScope(
i_isolate,
IsNativeContext(*context)
? i::Handle<i::ScopeInfo>::null()
: i::Handle<i::ScopeInfo>(context->scope_info(), i_isolate)),
extension);
}
i::ScriptDetails script_details = GetScriptDetails(
i_isolate, source->resource_name, source->resource_line_offset,
source->resource_column_offset, source->source_map_url,
source->host_defined_options, source->resource_options);
std::unique_ptr<i::AlignedCachedData> cached_data;
if (options == kConsumeCodeCache) {
DCHECK(source->cached_data);
// ScriptData takes care of pointer-aligning the data.
cached_data.reset(new i::AlignedCachedData(source->cached_data->data,
source->cached_data->length));
}
i::Handle<i::JSFunction> scoped_result;
has_pending_exception =
!i::Compiler::GetWrappedFunction(
Utils::OpenHandle(*source->source_string), arguments_list, context,
script_details, cached_data.get(), options, no_cache_reason)
.ToHandle(&scoped_result);
if (options == kConsumeCodeCache) {
source->cached_data->rejected = cached_data->rejected();
}
RETURN_ON_FAILED_EXECUTION(Function);
result = handle_scope.Escape(Utils::CallableToLocal(scoped_result));
}
// TODO(cbruni): remove script_or_module_out paramater
if (script_or_module_out != nullptr) {
i::Handle<i::JSFunction> function =
i::Handle<i::JSFunction>::cast(Utils::OpenHandle(*result));
i::Isolate* i_isolate = function->GetIsolate();
i::Handle<i::SharedFunctionInfo> shared(function->shared(), i_isolate);
i::Handle<i::Script> script(i::Script::cast(shared->script()), i_isolate);
// TODO(cbruni, v8:12302): Avoid creating tempory ScriptOrModule objects.
auto script_or_module = i::Handle<i::ScriptOrModule>::cast(
i_isolate->factory()->NewStruct(i::SCRIPT_OR_MODULE_TYPE));
script_or_module->set_resource_name(script->name());
script_or_module->set_host_defined_options(script->host_defined_options());
#ifdef V8_SCRIPTORMODULE_LEGACY_LIFETIME
i::Handle<i::ArrayList> list =
i::handle(script->script_or_modules(), i_isolate);
list = i::ArrayList::Add(i_isolate, list, script_or_module);
script->set_script_or_modules(*list);
#endif // V8_SCRIPTORMODULE_LEGACY_LIFETIME
*script_or_module_out = v8::Utils::ToLocal(script_or_module);
}
return result;
}
void ScriptCompiler::ScriptStreamingTask::Run() { data_->task->Run(); }
ScriptCompiler::ScriptStreamingTask* ScriptCompiler::StartStreaming(
Isolate* v8_isolate, StreamedSource* source, v8::ScriptType type,
CompileOptions options, CompileHintCallback compile_hint_callback,
void* compile_hint_callback_data) {
Utils::ApiCheck(
options == kNoCompileOptions || options == kEagerCompile ||
options == kProduceCompileHints || options == kConsumeCompileHints,
"v8::ScriptCompiler::StartStreaming", "Invalid CompileOptions");
if (!i::v8_flags.script_streaming) return nullptr;
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::ScriptStreamingData* data = source->impl();
std::unique_ptr<i::BackgroundCompileTask> task =
std::make_unique<i::BackgroundCompileTask>(data, i_isolate, type, options,
compile_hint_callback,
compile_hint_callback_data);
data->task = std::move(task);
return new ScriptCompiler::ScriptStreamingTask(data);
}
ScriptCompiler::ConsumeCodeCacheTask::ConsumeCodeCacheTask(
std::unique_ptr<i::BackgroundDeserializeTask> impl)
: impl_(std::move(impl)) {}
ScriptCompiler::ConsumeCodeCacheTask::~ConsumeCodeCacheTask() = default;
void ScriptCompiler::ConsumeCodeCacheTask::Run() { impl_->Run(); }
void ScriptCompiler::ConsumeCodeCacheTask::SourceTextAvailable(
Isolate* v8_isolate, Local<String> source_text,
const ScriptOrigin& origin) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
DCHECK_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::String> str = Utils::OpenHandle(*(source_text));
i::ScriptDetails script_details =
GetScriptDetails(i_isolate, origin.ResourceName(), origin.LineOffset(),
origin.ColumnOffset(), origin.SourceMapUrl(),
origin.GetHostDefinedOptions(), origin.Options());
impl_->SourceTextAvailable(i_isolate, str, script_details);
}
bool ScriptCompiler::ConsumeCodeCacheTask::ShouldMergeWithExistingScript()
const {
if (!i::v8_flags
.merge_background_deserialized_script_with_compilation_cache) {
return false;
}
return impl_->ShouldMergeWithExistingScript();
}
void ScriptCompiler::ConsumeCodeCacheTask::MergeWithExistingScript() {
DCHECK(
i::v8_flags.merge_background_deserialized_script_with_compilation_cache);
impl_->MergeWithExistingScript();
}
ScriptCompiler::ConsumeCodeCacheTask* ScriptCompiler::StartConsumingCodeCache(
Isolate* v8_isolate, std::unique_ptr<CachedData> cached_data) {
if (!i::v8_flags.concurrent_cache_deserialization) return nullptr;
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
DCHECK_NO_SCRIPT_NO_EXCEPTION(i_isolate);
return new ScriptCompiler::ConsumeCodeCacheTask(
std::make_unique<i::BackgroundDeserializeTask>(i_isolate,
std::move(cached_data)));
}
namespace {
i::MaybeHandle<i::SharedFunctionInfo> CompileStreamedSource(
i::Isolate* i_isolate, ScriptCompiler::StreamedSource* v8_source,
Local<String> full_source_string, const ScriptOrigin& origin) {
i::Handle<i::String> str = Utils::OpenHandle(*(full_source_string));
i::ScriptDetails script_details =
GetScriptDetails(i_isolate, origin.ResourceName(), origin.LineOffset(),
origin.ColumnOffset(), origin.SourceMapUrl(),
origin.GetHostDefinedOptions(), origin.Options());
i::ScriptStreamingData* data = v8_source->impl();
return i::Compiler::GetSharedFunctionInfoForStreamedScript(
i_isolate, str, script_details, data);
}
} // namespace
MaybeLocal<Script> ScriptCompiler::Compile(Local<Context> context,
StreamedSource* v8_source,
Local<String> full_source_string,
const ScriptOrigin& origin) {
PREPARE_FOR_EXECUTION(context, ScriptCompiler, Compile, Script);
TRACE_EVENT_CALL_STATS_SCOPED(i_isolate, "v8", "V8.ScriptCompiler");
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"),
"V8.CompileStreamedScript");
i::Handle<i::SharedFunctionInfo> sfi;
i::MaybeHandle<i::SharedFunctionInfo> maybe_sfi =
CompileStreamedSource(i_isolate, v8_source, full_source_string, origin);
has_pending_exception = !maybe_sfi.ToHandle(&sfi);
if (has_pending_exception) i_isolate->ReportPendingMessages();
RETURN_ON_FAILED_EXECUTION(Script);
Local<UnboundScript> generic = ToApiHandle<UnboundScript>(sfi);
if (generic.IsEmpty()) return Local<Script>();
Local<Script> bound = generic->BindToCurrentContext();
if (bound.IsEmpty()) return Local<Script>();
RETURN_ESCAPED(bound);
}
MaybeLocal<Module> ScriptCompiler::CompileModule(
Local<Context> context, StreamedSource* v8_source,
Local<String> full_source_string, const ScriptOrigin& origin) {
PREPARE_FOR_EXECUTION(context, ScriptCompiler, Compile, Module);
TRACE_EVENT_CALL_STATS_SCOPED(i_isolate, "v8", "V8.ScriptCompiler");
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"),
"V8.CompileStreamedModule");
i::Handle<i::SharedFunctionInfo> sfi;
i::MaybeHandle<i::SharedFunctionInfo> maybe_sfi =
CompileStreamedSource(i_isolate, v8_source, full_source_string, origin);
has_pending_exception = !maybe_sfi.ToHandle(&sfi);
if (has_pending_exception) i_isolate->ReportPendingMessages();
RETURN_ON_FAILED_EXECUTION(Module);
RETURN_ESCAPED(
ToApiHandle<Module>(i_isolate->factory()->NewSourceTextModule(sfi)));
}
uint32_t ScriptCompiler::CachedDataVersionTag() {
return static_cast<uint32_t>(base::hash_combine(
internal::Version::Hash(), internal::FlagList::Hash(),
static_cast<uint32_t>(internal::CpuFeatures::SupportedFeatures())));
}
ScriptCompiler::CachedData* ScriptCompiler::CreateCodeCache(
Local<UnboundScript> unbound_script) {
i::Handle<i::SharedFunctionInfo> shared = Utils::OpenHandle(*unbound_script);
// TODO(jgruber): Remove this DCHECK once Function::GetUnboundScript is gone.
DCHECK(!shared->InReadOnlySpace());
i::Isolate* i_isolate = i::GetIsolateFromWritableObject(*shared);
DCHECK_NO_SCRIPT_NO_EXCEPTION(i_isolate);
DCHECK(shared->is_toplevel());
return i::CodeSerializer::Serialize(i_isolate, shared);
}
// static
ScriptCompiler::CachedData* ScriptCompiler::CreateCodeCache(
Local<UnboundModuleScript> unbound_module_script) {
i::Handle<i::SharedFunctionInfo> shared =
Utils::OpenHandle(*unbound_module_script);
// TODO(jgruber): Remove this DCHECK once Function::GetUnboundScript is gone.
DCHECK(!shared->InReadOnlySpace());
i::Isolate* i_isolate = i::GetIsolateFromWritableObject(*shared);
DCHECK_NO_SCRIPT_NO_EXCEPTION(i_isolate);
DCHECK(shared->is_toplevel());
return i::CodeSerializer::Serialize(i_isolate, shared);
}
ScriptCompiler::CachedData* ScriptCompiler::CreateCodeCacheForFunction(
Local<Function> function) {
i::Handle<i::JSFunction> js_function =
i::Handle<i::JSFunction>::cast(Utils::OpenHandle(*function));
i::Isolate* i_isolate = js_function->GetIsolate();
i::Handle<i::SharedFunctionInfo> shared(js_function->shared(), i_isolate);
DCHECK_NO_SCRIPT_NO_EXCEPTION(i_isolate);
Utils::ApiCheck(shared->is_wrapped(),
"v8::ScriptCompiler::CreateCodeCacheForFunction",
"Expected SharedFunctionInfo with wrapped source code");
return i::CodeSerializer::Serialize(i_isolate, shared);
}
MaybeLocal<Script> Script::Compile(Local<Context> context, Local<String> source,
ScriptOrigin* origin) {
if (origin) {
ScriptCompiler::Source script_source(source, *origin);
return ScriptCompiler::Compile(context, &script_source);
}
ScriptCompiler::Source script_source(source);
return ScriptCompiler::Compile(context, &script_source);
}
// --- E x c e p t i o n s ---
v8::TryCatch::TryCatch(v8::Isolate* v8_isolate)
: i_isolate_(reinterpret_cast<i::Isolate*>(v8_isolate)),
next_(i_isolate_->try_catch_handler()),
is_verbose_(false),
can_continue_(true),
capture_message_(true),
rethrow_(false),
has_terminated_(false) {
ResetInternal();
// Special handling for simulators which have a separate JS stack.
js_stack_comparable_address_ = static_cast<internal::Address>(
i::SimulatorStack::RegisterJSStackComparableAddress(i_isolate_));
i_isolate_->RegisterTryCatchHandler(this);
}
v8::TryCatch::~TryCatch() {
if (rethrow_) {
v8::Isolate* v8_isolate = reinterpret_cast<Isolate*>(i_isolate_);
v8::HandleScope scope(v8_isolate);
v8::Local<v8::Value> exc =
v8::Local<v8::Value>::New(v8_isolate, Exception());
if (HasCaught() && capture_message_) {
// If an exception was caught and rethrow_ is indicated, the saved
// message, script, and location need to be restored to Isolate TLS
// for reuse. capture_message_ needs to be disabled so that Throw()
// does not create a new message.
i_isolate_->thread_local_top()->rethrowing_message_ = true;
i_isolate_->RestorePendingMessageFromTryCatch(this);
}
i_isolate_->UnregisterTryCatchHandler(this);
i::SimulatorStack::UnregisterJSStackComparableAddress(i_isolate_);
reinterpret_cast<v8::Isolate*>(i_isolate_)->ThrowException(exc);
DCHECK(!i_isolate_->thread_local_top()->rethrowing_message_);
} else {
if (HasCaught() && i_isolate_->has_scheduled_exception()) {
// If an exception was caught but is still scheduled because no API call
// promoted it, then it is canceled to prevent it from being propagated.
// Note that this will not cancel termination exceptions.
i_isolate_->CancelScheduledExceptionFromTryCatch(this);
}
i_isolate_->UnregisterTryCatchHandler(this);
i::SimulatorStack::UnregisterJSStackComparableAddress(i_isolate_);
}
}
void* v8::TryCatch::operator new(size_t) { base::OS::Abort(); }
void* v8::TryCatch::operator new[](size_t) { base::OS::Abort(); }
void v8::TryCatch::operator delete(void*, size_t) { base::OS::Abort(); }
void v8::TryCatch::operator delete[](void*, size_t) { base::OS::Abort(); }
bool v8::TryCatch::HasCaught() const {
return !IsTheHole(
i::Tagged<i::Object>(reinterpret_cast<i::Address>(exception_)),
i_isolate_);
}
bool v8::TryCatch::CanContinue() const { return can_continue_; }
bool v8::TryCatch::HasTerminated() const { return has_terminated_; }
v8::Local<v8::Value> v8::TryCatch::ReThrow() {
if (!HasCaught()) return v8::Local<v8::Value>();
rethrow_ = true;
return v8::Undefined(reinterpret_cast<v8::Isolate*>(i_isolate_));
}
v8::Local<Value> v8::TryCatch::Exception() const {
if (HasCaught()) {
// Check for out of memory exception.
i::Tagged<i::Object> exception(reinterpret_cast<i::Address>(exception_));
return v8::Utils::ToLocal(i::Handle<i::Object>(exception, i_isolate_));
} else {
return v8::Local<Value>();
}
}
MaybeLocal<Value> v8::TryCatch::StackTrace(Local<Context> context,
Local<Value> exception) {
i::Handle<i::Object> i_exception = Utils::OpenHandle(*exception);
if (!IsJSObject(*i_exception)) return v8::Local<Value>();
PREPARE_FOR_EXECUTION(context, TryCatch, StackTrace, Value);
auto obj = i::Handle<i::JSObject>::cast(i_exception);
i::Handle<i::String> name = i_isolate->factory()->stack_string();
Maybe<bool> maybe = i::JSReceiver::HasProperty(i_isolate, obj, name);
has_pending_exception = maybe.IsNothing();
RETURN_ON_FAILED_EXECUTION(Value);
if (!maybe.FromJust()) return v8::Local<Value>();
Local<Value> result;
has_pending_exception = !ToLocal<Value>(
i::JSReceiver::GetProperty(i_isolate, obj, name), &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
MaybeLocal<Value> v8::TryCatch::StackTrace(Local<Context> context) const {
if (!HasCaught()) return v8::Local<Value>();
return StackTrace(context, Exception());
}
v8::Local<v8::Message> v8::TryCatch::Message() const {
i::Tagged<i::Object> message(reinterpret_cast<i::Address>(message_obj_));
DCHECK(IsJSMessageObject(message) || IsTheHole(message, i_isolate_));
if (HasCaught() && !IsTheHole(message, i_isolate_)) {
return v8::Utils::MessageToLocal(i::Handle<i::Object>(message, i_isolate_));
} else {
return v8::Local<v8::Message>();
}
}
void v8::TryCatch::Reset() {
if (!rethrow_ && HasCaught() && i_isolate_->has_scheduled_exception()) {
// If an exception was caught but is still scheduled because no API call
// promoted it, then it is canceled to prevent it from being propagated.
// Note that this will not cancel termination exceptions.
i_isolate_->CancelScheduledExceptionFromTryCatch(this);
}
ResetInternal();
}
void v8::TryCatch::ResetInternal() {
i::Tagged<i::Object> the_hole = i::ReadOnlyRoots(i_isolate_).the_hole_value();
exception_ = reinterpret_cast<void*>(the_hole.ptr());
message_obj_ = reinterpret_cast<void*>(the_hole.ptr());
}
void v8::TryCatch::SetVerbose(bool value) { is_verbose_ = value; }
bool v8::TryCatch::IsVerbose() const { return is_verbose_; }
void v8::TryCatch::SetCaptureMessage(bool value) { capture_message_ = value; }
// --- M e s s a g e ---
Local<String> Message::Get() const {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
EscapableHandleScope scope(reinterpret_cast<Isolate*>(i_isolate));
i::Handle<i::String> raw_result =
i::MessageHandler::GetMessage(i_isolate, self);
Local<String> result = Utils::ToLocal(raw_result);
return scope.Escape(result);
}
v8::Isolate* Message::GetIsolate() const {
i::Isolate* i_isolate = Utils::OpenHandle(this)->GetIsolate();
return reinterpret_cast<Isolate*>(i_isolate);
}
ScriptOrigin Message::GetScriptOrigin() const {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::Script> script(self->script(), i_isolate);
return GetScriptOriginForScript(i_isolate, script);
}
void ScriptOrigin::VerifyHostDefinedOptions() const {
// TODO(cbruni, chromium:1244145): Remove checks once we allow arbitrary
// host-defined options.
USE(v8_isolate_);
if (host_defined_options_.IsEmpty()) return;
Utils::ApiCheck(host_defined_options_->IsFixedArray(), "ScriptOrigin()",
"Host-defined options has to be a PrimitiveArray");
i::Handle<i::FixedArray> options =
Utils::OpenHandle(*host_defined_options_.As<FixedArray>());
for (int i = 0; i < options->length(); i++) {
Utils::ApiCheck(i::IsPrimitive(options->get(i)), "ScriptOrigin()",
"PrimitiveArray can only contain primtive values");
}
}
v8::Local<Value> Message::GetScriptResourceName() const {
DCHECK_NO_SCRIPT_NO_EXCEPTION(Utils::OpenHandle(this)->GetIsolate());
return GetScriptOrigin().ResourceName();
}
v8::Local<v8::StackTrace> Message::GetStackTrace() const {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
EscapableHandleScope scope(reinterpret_cast<Isolate*>(i_isolate));
i::Handle<i::Object> stackFramesObj(self->stack_frames(), i_isolate);
if (!IsFixedArray(*stackFramesObj)) return v8::Local<v8::StackTrace>();
auto stackTrace = i::Handle<i::FixedArray>::cast(stackFramesObj);
return scope.Escape(Utils::StackTraceToLocal(stackTrace));
}
Maybe<int> Message::GetLineNumber(Local<Context> context) const {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(i_isolate));
i::JSMessageObject::EnsureSourcePositionsAvailable(i_isolate, self);
return Just(self->GetLineNumber());
}
int Message::GetStartPosition() const {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(i_isolate));
i::JSMessageObject::EnsureSourcePositionsAvailable(i_isolate, self);
return self->GetStartPosition();
}
int Message::GetEndPosition() const {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(i_isolate));
i::JSMessageObject::EnsureSourcePositionsAvailable(i_isolate, self);
return self->GetEndPosition();
}
int Message::ErrorLevel() const {
auto self = Utils::OpenHandle(this);
DCHECK_NO_SCRIPT_NO_EXCEPTION(self->GetIsolate());
return self->error_level();
}
int Message::GetStartColumn() const {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(i_isolate));
i::JSMessageObject::EnsureSourcePositionsAvailable(i_isolate, self);
return self->GetColumnNumber();
}
int Message::GetWasmFunctionIndex() const {
#if V8_ENABLE_WEBASSEMBLY
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(i_isolate));
i::JSMessageObject::EnsureSourcePositionsAvailable(i_isolate, self);
int start_position = self->GetColumnNumber();
if (start_position == -1) return Message::kNoWasmFunctionIndexInfo;
i::Handle<i::Script> script(self->script(), i_isolate);
if (script->type() != i::Script::Type::kWasm) {
return Message::kNoWasmFunctionIndexInfo;
}
auto debug_script = ToApiHandle<debug::Script>(script);
return Local<debug::WasmScript>::Cast(debug_script)
->GetContainingFunction(start_position);
#else
return Message::kNoWasmFunctionIndexInfo;
#endif // V8_ENABLE_WEBASSEMBLY
}
Maybe<int> Message::GetStartColumn(Local<Context> context) const {
return Just(GetStartColumn());
}
int Message::GetEndColumn() const {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(i_isolate));
i::JSMessageObject::EnsureSourcePositionsAvailable(i_isolate, self);
const int column_number = self->GetColumnNumber();
if (column_number == -1) return -1;
const int start = self->GetStartPosition();
const int end = self->GetEndPosition();
return column_number + (end - start);
}
Maybe<int> Message::GetEndColumn(Local<Context> context) const {
return Just(GetEndColumn());
}
bool Message::IsSharedCrossOrigin() const {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
return self->script()->origin_options().IsSharedCrossOrigin();
}
bool Message::IsOpaque() const {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
return self->script()->origin_options().IsOpaque();
}
MaybeLocal<String> Message::GetSource(Local<Context> context) const {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(i_isolate));
i::Handle<i::String> source(self->GetSource(), i_isolate);
RETURN_ESCAPED(Utils::ToLocal(source));
}
MaybeLocal<String> Message::GetSourceLine(Local<Context> context) const {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(i_isolate));
i::JSMessageObject::EnsureSourcePositionsAvailable(i_isolate, self);
RETURN_ESCAPED(Utils::ToLocal(self->GetSourceLine()));
}
void Message::PrintCurrentStackTrace(Isolate* v8_isolate, std::ostream& out) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i_isolate->PrintCurrentStackTrace(out);
}
// --- S t a c k T r a c e ---
Local<StackFrame> StackTrace::GetFrame(Isolate* v8_isolate,
uint32_t index) const {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::Handle<i::StackFrameInfo> info(
i::StackFrameInfo::cast(Utils::OpenHandle(this)->get(index)), i_isolate);
return Utils::StackFrameToLocal(info);
}
int StackTrace::GetFrameCount() const {
return Utils::OpenHandle(this)->length();
}
Local<StackTrace> StackTrace::CurrentStackTrace(Isolate* v8_isolate,
int frame_limit,
StackTraceOptions options) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::FixedArray> stackTrace =
i_isolate->CaptureDetailedStackTrace(frame_limit, options);
return Utils::StackTraceToLocal(stackTrace);
}
Local<String> StackTrace::CurrentScriptNameOrSourceURL(Isolate* v8_isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::String> name_or_source_url =
i_isolate->CurrentScriptNameOrSourceURL();
return Utils::ToLocal(name_or_source_url);
}
// --- S t a c k F r a m e ---
Location StackFrame::GetLocation() const {
i::Handle<i::StackFrameInfo> self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
i::Handle<i::Script> script(self->script(), i_isolate);
i::Script::PositionInfo info;
CHECK(i::Script::GetPositionInfo(
script, i::StackFrameInfo::GetSourcePosition(self), &info));
if (script->HasSourceURLComment()) {
info.line -= script->line_offset();
if (info.line == 0) {
info.column -= script->column_offset();
}
}
return {info.line, info.column};
}
int StackFrame::GetScriptId() const {
return Utils::OpenHandle(this)->script()->id();
}
Local<String> StackFrame::GetScriptName() const {
i::Handle<i::StackFrameInfo> self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
i::Handle<i::Object> name(self->script()->name(), i_isolate);
if (!IsString(*name)) return {};
return Utils::ToLocal(i::Handle<i::String>::cast(name));
}
Local<String> StackFrame::GetScriptNameOrSourceURL() const {
i::Handle<i::StackFrameInfo> self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
i::Handle<i::Object> name_or_source_url(self->script()->GetNameOrSourceURL(),
i_isolate);
if (!IsString(*name_or_source_url)) return {};
return Utils::ToLocal(i::Handle<i::String>::cast(name_or_source_url));
}
Local<String> StackFrame::GetScriptSource() const {
i::Handle<i::StackFrameInfo> self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
if (!self->script()->HasValidSource()) return {};
i::Handle<i::PrimitiveHeapObject> source(self->script()->source(), i_isolate);
if (!IsString(*source)) return {};
return Utils::ToLocal(i::Handle<i::String>::cast(source));
}
Local<String> StackFrame::GetScriptSourceMappingURL() const {
i::Handle<i::StackFrameInfo> self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
i::Handle<i::Object> source_mapping_url(self->script()->source_mapping_url(),
i_isolate);
if (!IsString(*source_mapping_url)) return {};
return Utils::ToLocal(i::Handle<i::String>::cast(source_mapping_url));
}
Local<String> StackFrame::GetFunctionName() const {
i::Handle<i::StackFrameInfo> self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
i::Handle<i::String> name(self->function_name(), i_isolate);
if (name->length() == 0) return {};
return Utils::ToLocal(name);
}
bool StackFrame::IsEval() const {
i::Handle<i::StackFrameInfo> self = Utils::OpenHandle(this);
return self->script()->compilation_type() ==
i::Script::CompilationType::kEval;
}
bool StackFrame::IsConstructor() const {
return Utils::OpenHandle(this)->is_constructor();
}
bool StackFrame::IsWasm() const { return !IsUserJavaScript(); }
bool StackFrame::IsUserJavaScript() const {
return Utils::OpenHandle(this)->script()->IsUserJavaScript();
}
// --- J S O N ---
MaybeLocal<Value> JSON::Parse(Local<Context> context,
Local<String> json_string) {
PREPARE_FOR_EXECUTION(context, JSON, Parse, Value);
i::Handle<i::String> string = Utils::OpenHandle(*json_string);
i::Handle<i::String> source = i::String::Flatten(i_isolate, string);
i::Handle<i::Object> undefined = i_isolate->factory()->undefined_value();
auto maybe =
source->IsOneByteRepresentation()
? i::JsonParser<uint8_t>::Parse(i_isolate, source, undefined)
: i::JsonParser<uint16_t>::Parse(i_isolate, source, undefined);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(maybe, &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
MaybeLocal<String> JSON::Stringify(Local<Context> context,
Local<Value> json_object,
Local<String> gap) {
PREPARE_FOR_EXECUTION(context, JSON, Stringify, String);
i::Handle<i::Object> object = Utils::OpenHandle(*json_object);
i::Handle<i::Object> replacer = i_isolate->factory()->undefined_value();
i::Handle<i::String> gap_string = gap.IsEmpty()
? i_isolate->factory()->empty_string()
: Utils::OpenHandle(*gap);
i::Handle<i::Object> maybe;
has_pending_exception =
!i::JsonStringify(i_isolate, object, replacer, gap_string)
.ToHandle(&maybe);
RETURN_ON_FAILED_EXECUTION(String);
Local<String> result;
has_pending_exception =
!ToLocal<String>(i::Object::ToString(i_isolate, maybe), &result);
RETURN_ON_FAILED_EXECUTION(String);
RETURN_ESCAPED(result);
}
// --- V a l u e S e r i a l i z a t i o n ---
SharedValueConveyor::SharedValueConveyor(SharedValueConveyor&& other) noexcept
: private_(std::move(other.private_)) {}
SharedValueConveyor::~SharedValueConveyor() = default;
SharedValueConveyor& SharedValueConveyor::operator=(
SharedValueConveyor&& other) noexcept {
private_ = std::move(other.private_);
return *this;
}
SharedValueConveyor::SharedValueConveyor(Isolate* v8_isolate)
: private_(std::make_unique<i::SharedObjectConveyorHandles>(
reinterpret_cast<i::Isolate*>(v8_isolate))) {}
Maybe<bool> ValueSerializer::Delegate::WriteHostObject(Isolate* v8_isolate,
Local<Object> object) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i_isolate->ScheduleThrow(*i_isolate->factory()->NewError(
i_isolate->error_function(), i::MessageTemplate::kDataCloneError,
Utils::OpenHandle(*object)));
return Nothing<bool>();
}
bool ValueSerializer::Delegate::HasCustomHostObject(Isolate* v8_isolate) {
return false;
}
Maybe<bool> ValueSerializer::Delegate::IsHostObject(Isolate* v8_isolate,
Local<Object> object) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::Handle<i::JSObject> js_object =
i::Handle<i::JSObject>::cast(Utils::OpenHandle(*object));
return Just<bool>(
i::JSObject::GetEmbedderFieldCount(js_object->map(i_isolate)));
}
Maybe<uint32_t> ValueSerializer::Delegate::GetSharedArrayBufferId(
Isolate* v8_isolate, Local<SharedArrayBuffer> shared_array_buffer) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i_isolate->ScheduleThrow(*i_isolate->factory()->NewError(
i_isolate->error_function(), i::MessageTemplate::kDataCloneError,
Utils::OpenHandle(*shared_array_buffer)));
return Nothing<uint32_t>();
}
Maybe<uint32_t> ValueSerializer::Delegate::GetWasmModuleTransferId(
Isolate* v8_isolate, Local<WasmModuleObject> module) {
return Nothing<uint32_t>();
}
bool ValueSerializer::Delegate::AdoptSharedValueConveyor(
Isolate* v8_isolate, SharedValueConveyor&& conveyor) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i_isolate->ScheduleThrow(*i_isolate->factory()->NewError(
i_isolate->error_function(), i::MessageTemplate::kDataCloneError,
i_isolate->factory()->NewStringFromAsciiChecked("shared value")));
return false;
}
void* ValueSerializer::Delegate::ReallocateBufferMemory(void* old_buffer,
size_t size,
size_t* actual_size) {
*actual_size = size;
return base::Realloc(old_buffer, size);
}
void ValueSerializer::Delegate::FreeBufferMemory(void* buffer) {
return base::Free(buffer);
}
struct ValueSerializer::PrivateData {
explicit PrivateData(i::Isolate* i, ValueSerializer::Delegate* delegate)
: isolate(i), serializer(i, delegate) {}
i::Isolate* isolate;
i::ValueSerializer serializer;
};
ValueSerializer::ValueSerializer(Isolate* v8_isolate)
: ValueSerializer(v8_isolate, nullptr) {}
ValueSerializer::ValueSerializer(Isolate* v8_isolate, Delegate* delegate)
: private_(new PrivateData(reinterpret_cast<i::Isolate*>(v8_isolate),
delegate)) {}
ValueSerializer::~ValueSerializer() { delete private_; }
void ValueSerializer::WriteHeader() { private_->serializer.WriteHeader(); }
void ValueSerializer::SetTreatArrayBufferViewsAsHostObjects(bool mode) {
private_->serializer.SetTreatArrayBufferViewsAsHostObjects(mode);
}
Maybe<bool> ValueSerializer::WriteValue(Local<Context> context,
Local<Value> value) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, ValueSerializer, WriteValue, Nothing<bool>(),
i::HandleScope);
i::Handle<i::Object> object = Utils::OpenHandle(*value);
Maybe<bool> result = private_->serializer.WriteObject(object);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
std::pair<uint8_t*, size_t> ValueSerializer::Release() {
return private_->serializer.Release();
}
void ValueSerializer::TransferArrayBuffer(uint32_t transfer_id,
Local<ArrayBuffer> array_buffer) {
private_->serializer.TransferArrayBuffer(transfer_id,
Utils::OpenHandle(*array_buffer));
}
void ValueSerializer::WriteUint32(uint32_t value) {
private_->serializer.WriteUint32(value);
}
void ValueSerializer::WriteUint64(uint64_t value) {
private_->serializer.WriteUint64(value);
}
void ValueSerializer::WriteDouble(double value) {
private_->serializer.WriteDouble(value);
}
void ValueSerializer::WriteRawBytes(const void* source, size_t length) {
private_->serializer.WriteRawBytes(source, length);
}
MaybeLocal<Object> ValueDeserializer::Delegate::ReadHostObject(
Isolate* v8_isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i_isolate->ScheduleThrow(*i_isolate->factory()->NewError(
i_isolate->error_function(),
i::MessageTemplate::kDataCloneDeserializationError));
return MaybeLocal<Object>();
}
MaybeLocal<WasmModuleObject> ValueDeserializer::Delegate::GetWasmModuleFromId(
Isolate* v8_isolate, uint32_t id) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i_isolate->ScheduleThrow(*i_isolate->factory()->NewError(
i_isolate->error_function(),
i::MessageTemplate::kDataCloneDeserializationError));
return MaybeLocal<WasmModuleObject>();
}
MaybeLocal<SharedArrayBuffer>
ValueDeserializer::Delegate::GetSharedArrayBufferFromId(Isolate* v8_isolate,
uint32_t id) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i_isolate->ScheduleThrow(*i_isolate->factory()->NewError(
i_isolate->error_function(),
i::MessageTemplate::kDataCloneDeserializationError));
return MaybeLocal<SharedArrayBuffer>();
}
const SharedValueConveyor* ValueDeserializer::Delegate::GetSharedValueConveyor(
Isolate* v8_isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i_isolate->ScheduleThrow(*i_isolate->factory()->NewError(
i_isolate->error_function(),
i::MessageTemplate::kDataCloneDeserializationError));
return nullptr;
}
struct ValueDeserializer::PrivateData {
PrivateData(i::Isolate* i_isolate, base::Vector<const uint8_t> data,
Delegate* delegate)
: isolate(i_isolate), deserializer(i_isolate, data, delegate) {}
i::Isolate* isolate;
i::ValueDeserializer deserializer;
bool supports_legacy_wire_format = false;
};
ValueDeserializer::ValueDeserializer(Isolate* v8_isolate, const uint8_t* data,
size_t size)
: ValueDeserializer(v8_isolate, data, size, nullptr) {}
ValueDeserializer::ValueDeserializer(Isolate* v8_isolate, const uint8_t* data,
size_t size, Delegate* delegate) {
private_ = new PrivateData(reinterpret_cast<i::Isolate*>(v8_isolate),
base::Vector<const uint8_t>(data, size), delegate);
}
ValueDeserializer::~ValueDeserializer() { delete private_; }
Maybe<bool> ValueDeserializer::ReadHeader(Local<Context> context) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8_NO_SCRIPT(i_isolate, context, ValueDeserializer, ReadHeader,
Nothing<bool>(), i::HandleScope);
bool read_header = false;
has_pending_exception = !private_->deserializer.ReadHeader().To(&read_header);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
DCHECK(read_header);
static const uint32_t kMinimumNonLegacyVersion = 13;
if (GetWireFormatVersion() < kMinimumNonLegacyVersion &&
!private_->supports_legacy_wire_format) {
i_isolate->Throw(*i_isolate->factory()->NewError(
i::MessageTemplate::kDataCloneDeserializationVersionError));
has_pending_exception = true;
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
}
return Just(true);
}
void ValueDeserializer::SetSupportsLegacyWireFormat(
bool supports_legacy_wire_format) {
private_->supports_legacy_wire_format = supports_legacy_wire_format;
}
uint32_t ValueDeserializer::GetWireFormatVersion() const {
return private_->deserializer.GetWireFormatVersion();
}
MaybeLocal<Value> ValueDeserializer::ReadValue(Local<Context> context) {
PREPARE_FOR_EXECUTION(context, ValueDeserializer, ReadValue, Value);
i::MaybeHandle<i::Object> result;
if (GetWireFormatVersion() > 0) {
result = private_->deserializer.ReadObjectWrapper();
} else {
result =
private_->deserializer.ReadObjectUsingEntireBufferForLegacyFormat();
}
Local<Value> value;
has_pending_exception = !ToLocal(result, &value);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(value);
}
void ValueDeserializer::TransferArrayBuffer(uint32_t transfer_id,
Local<ArrayBuffer> array_buffer) {
private_->deserializer.TransferArrayBuffer(transfer_id,
Utils::OpenHandle(*array_buffer));
}
void ValueDeserializer::TransferSharedArrayBuffer(
uint32_t transfer_id, Local<SharedArrayBuffer> shared_array_buffer) {
private_->deserializer.TransferArrayBuffer(
transfer_id, Utils::OpenHandle(*shared_array_buffer));
}
bool ValueDeserializer::ReadUint32(uint32_t* value) {
return private_->deserializer.ReadUint32(value);
}
bool ValueDeserializer::ReadUint64(uint64_t* value) {
return private_->deserializer.ReadUint64(value);
}
bool ValueDeserializer::ReadDouble(double* value) {
return private_->deserializer.ReadDouble(value);
}
bool ValueDeserializer::ReadRawBytes(size_t length, const void** data) {
return private_->deserializer.ReadRawBytes(length, data);
}
// --- D a t a ---
bool Value::FullIsUndefined() const {
i::Handle<i::Object> object = Utils::OpenHandle(this);
bool result = i::IsUndefined(*object);
DCHECK_EQ(result, QuickIsUndefined());
return result;
}
bool Value::FullIsNull() const {
i::Handle<i::Object> object = Utils::OpenHandle(this);
bool result = i::IsNull(*object);
DCHECK_EQ(result, QuickIsNull());
return result;
}
bool Value::IsTrue() const {
i::Tagged<i::Object> object = *Utils::OpenHandle(this);
if (i::IsSmi(object)) return false;
return i::IsTrue(object);
}
bool Value::IsFalse() const {
i::Tagged<i::Object> object = *Utils::OpenHandle(this);
if (i::IsSmi(object)) return false;
return i::IsFalse(object);
}
bool Value::IsFunction() const { return IsCallable(*Utils::OpenHandle(this)); }
bool Value::IsName() const { return i::IsName(*Utils::OpenHandle(this)); }
bool Value::FullIsString() const {
bool result = i::IsString(*Utils::OpenHandle(this));
DCHECK_EQ(result, QuickIsString());
return result;
}
bool Value::IsSymbol() const {
return IsPublicSymbol(*Utils::OpenHandle(this));
}
bool Value::IsArray() const { return IsJSArray(*Utils::OpenHandle(this)); }
bool Value::IsArrayBuffer() const {
i::Tagged<i::Object> obj = *Utils::OpenHandle(this);
if (!IsJSArrayBuffer(obj)) return false;
return !i::JSArrayBuffer::cast(obj)->is_shared();
}
bool Value::IsArrayBufferView() const {
return IsJSArrayBufferView(*Utils::OpenHandle(this));
}
bool Value::IsTypedArray() const {
return IsJSTypedArray(*Utils::OpenHandle(this));
}
#define VALUE_IS_TYPED_ARRAY(Type, typeName, TYPE, ctype) \
bool Value::Is##Type##Array() const { \
i::Handle<i::Object> obj = Utils::OpenHandle(this); \
return i::IsJSTypedArray(*obj) && \
i::JSTypedArray::cast(*obj)->type() == i::kExternal##Type##Array; \
}
TYPED_ARRAYS(VALUE_IS_TYPED_ARRAY)
#undef VALUE_IS_TYPED_ARRAY
bool Value::IsDataView() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return IsJSDataView(*obj) || IsJSRabGsabDataView(*obj);
}
bool Value::IsSharedArrayBuffer() const {
i::Tagged<i::Object> obj = *Utils::OpenHandle(this);
if (!IsJSArrayBuffer(obj)) return false;
return i::JSArrayBuffer::cast(obj)->is_shared();
}
bool Value::IsObject() const {
return i::IsJSReceiver(*Utils::OpenHandle(this));
}
bool Value::IsNumber() const { return i::IsNumber(*Utils::OpenHandle(this)); }
bool Value::IsBigInt() const { return i::IsBigInt(*Utils::OpenHandle(this)); }
bool Value::IsProxy() const { return i::IsJSProxy(*Utils::OpenHandle(this)); }
#define VALUE_IS_SPECIFIC_TYPE(Type, Check) \
bool Value::Is##Type() const { \
i::Handle<i::Object> obj = Utils::OpenHandle(this); \
return i::Is##Check(*obj); \
}
VALUE_IS_SPECIFIC_TYPE(ArgumentsObject, JSArgumentsObject)
VALUE_IS_SPECIFIC_TYPE(BigIntObject, BigIntWrapper)
VALUE_IS_SPECIFIC_TYPE(BooleanObject, BooleanWrapper)
VALUE_IS_SPECIFIC_TYPE(NumberObject, NumberWrapper)
VALUE_IS_SPECIFIC_TYPE(StringObject, StringWrapper)
VALUE_IS_SPECIFIC_TYPE(SymbolObject, SymbolWrapper)
VALUE_IS_SPECIFIC_TYPE(Date, JSDate)
VALUE_IS_SPECIFIC_TYPE(Map, JSMap)
VALUE_IS_SPECIFIC_TYPE(Set, JSSet)
#if V8_ENABLE_WEBASSEMBLY
VALUE_IS_SPECIFIC_TYPE(WasmMemoryObject, WasmMemoryObject)
VALUE_IS_SPECIFIC_TYPE(WasmModuleObject, WasmModuleObject)
VALUE_IS_SPECIFIC_TYPE(WasmNull, WasmNull)
#else
bool Value::IsWasmMemoryObject() const { return false; }
bool Value::IsWasmModuleObject() const { return false; }
bool Value::IsWasmNull() const { return false; }
#endif // V8_ENABLE_WEBASSEMBLY
VALUE_IS_SPECIFIC_TYPE(WeakMap, JSWeakMap)
VALUE_IS_SPECIFIC_TYPE(WeakSet, JSWeakSet)
VALUE_IS_SPECIFIC_TYPE(WeakRef, JSWeakRef)
#undef VALUE_IS_SPECIFIC_TYPE
bool Value::IsBoolean() const { return i::IsBoolean(*Utils::OpenHandle(this)); }
bool Value::IsExternal() const {
i::Tagged<i::Object> obj = *Utils::OpenHandle(this);
return IsJSExternalObject(obj);
}
bool Value::IsInt32() const {
i::Tagged<i::Object> obj = *Utils::OpenHandle(this);
if (i::IsSmi(obj)) return true;
if (i::IsNumber(obj)) {
return i::IsInt32Double(i::Object::Number(obj));
}
return false;
}
bool Value::IsUint32() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (i::IsSmi(*obj)) return i::Smi::ToInt(*obj) >= 0;
if (i::IsNumber(*obj)) {
double value = i::Object::Number(*obj);
return !i::IsMinusZero(value) && value >= 0 && value <= i::kMaxUInt32 &&
value == i::FastUI2D(i::FastD2UI(value));
}
return false;
}
bool Value::IsNativeError() const {
return IsJSError(*Utils::OpenHandle(this));
}
bool Value::IsRegExp() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return IsJSRegExp(*obj);
}
bool Value::IsAsyncFunction() const {
i::Tagged<i::Object> obj = *Utils::OpenHandle(this);
if (!IsJSFunction(obj)) return false;
i::Tagged<i::JSFunction> func = i::JSFunction::cast(obj);
return i::IsAsyncFunction(func->shared()->kind());
}
bool Value::IsGeneratorFunction() const {
i::Tagged<i::Object> obj = *Utils::OpenHandle(this);
if (!IsJSFunction(obj)) return false;
i::Tagged<i::JSFunction> func = i::JSFunction::cast(obj);
DCHECK_NO_SCRIPT_NO_EXCEPTION(func->GetIsolate());
return i::IsGeneratorFunction(func->shared()->kind());
}
bool Value::IsGeneratorObject() const {
return IsJSGeneratorObject(*Utils::OpenHandle(this));
}
bool Value::IsMapIterator() const {
return IsJSMapIterator(*Utils::OpenHandle(this));
}
bool Value::IsSetIterator() const {
return IsJSSetIterator(*Utils::OpenHandle(this));
}
bool Value::IsPromise() const { return IsJSPromise(*Utils::OpenHandle(this)); }
bool Value::IsModuleNamespaceObject() const {
return IsJSModuleNamespace(*Utils::OpenHandle(this));
}
MaybeLocal<String> Value::ToString(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (i::IsString(*obj)) return ToApiHandle<String>(obj);
PREPARE_FOR_EXECUTION(context, Object, ToString, String);
Local<String> result;
has_pending_exception =
!ToLocal<String>(i::Object::ToString(i_isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(String);
RETURN_ESCAPED(result);
}
MaybeLocal<String> Value::ToDetailString(Local<Context> context) const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (i::IsString(*obj)) return ToApiHandle<String>(obj);
PREPARE_FOR_EXECUTION(context, Object, ToDetailString, String);
Local<String> result =
Utils::ToLocal(i::Object::NoSideEffectsToString(i_isolate, obj));
RETURN_ON_FAILED_EXECUTION(String);
RETURN_ESCAPED(result);
}
MaybeLocal<Object> Value::ToObject(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (i::IsJSReceiver(*obj)) return ToApiHandle<Object>(obj);
PREPARE_FOR_EXECUTION(context, Object, ToObject, Object);
Local<Object> result;
has_pending_exception =
!ToLocal<Object>(i::Object::ToObject(i_isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(Object);
RETURN_ESCAPED(result);
}
MaybeLocal<BigInt> Value::ToBigInt(Local<Context> context) const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (i::IsBigInt(*obj)) return ToApiHandle<BigInt>(obj);
PREPARE_FOR_EXECUTION(context, Object, ToBigInt, BigInt);
Local<BigInt> result;
has_pending_exception =
!ToLocal<BigInt>(i::BigInt::FromObject(i_isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(BigInt);
RETURN_ESCAPED(result);
}
bool Value::BooleanValue(Isolate* v8_isolate) const {
return i::Object::BooleanValue(*Utils::OpenHandle(this),
reinterpret_cast<i::Isolate*>(v8_isolate));
}
MaybeLocal<Primitive> Value::ToPrimitive(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (i::IsPrimitive(*obj)) return ToApiHandle<Primitive>(obj);
PREPARE_FOR_EXECUTION(context, Object, ToPrimitive, Primitive);
Local<Primitive> result;
has_pending_exception =
!ToLocal<Primitive>(i::Object::ToPrimitive(i_isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(Primitive);
RETURN_ESCAPED(result);
}
MaybeLocal<Numeric> Value::ToNumeric(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (i::IsNumeric(*obj)) return ToApiHandle<Numeric>(obj);
PREPARE_FOR_EXECUTION(context, Object, ToNumeric, Numeric);
Local<Numeric> result;
has_pending_exception =
!ToLocal<Numeric>(i::Object::ToNumeric(i_isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(Numeric);
RETURN_ESCAPED(result);
}
Local<Boolean> Value::ToBoolean(Isolate* v8_isolate) const {
auto i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
DCHECK_NO_SCRIPT_NO_EXCEPTION(i_isolate);
return ToApiHandle<Boolean>(
i_isolate->factory()->ToBoolean(BooleanValue(v8_isolate)));
}
MaybeLocal<Number> Value::ToNumber(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (i::IsNumber(*obj)) return ToApiHandle<Number>(obj);
PREPARE_FOR_EXECUTION(context, Object, ToNumber, Number);
Local<Number> result;
has_pending_exception =
!ToLocal<Number>(i::Object::ToNumber(i_isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(Number);
RETURN_ESCAPED(result);
}
MaybeLocal<Integer> Value::ToInteger(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (i::IsSmi(*obj)) return ToApiHandle<Integer>(obj);
PREPARE_FOR_EXECUTION(context, Object, ToInteger, Integer);
Local<Integer> result;
has_pending_exception =
!ToLocal<Integer>(i::Object::ToInteger(i_isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(Integer);
RETURN_ESCAPED(result);
}
MaybeLocal<Int32> Value::ToInt32(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (i::IsSmi(*obj)) return ToApiHandle<Int32>(obj);
Local<Int32> result;
PREPARE_FOR_EXECUTION(context, Object, ToInt32, Int32);
has_pending_exception =
!ToLocal<Int32>(i::Object::ToInt32(i_isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(Int32);
RETURN_ESCAPED(result);
}
MaybeLocal<Uint32> Value::ToUint32(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (i::IsSmi(*obj)) return ToApiHandle<Uint32>(obj);
Local<Uint32> result;
PREPARE_FOR_EXECUTION(context, Object, ToUint32, Uint32);
has_pending_exception =
!ToLocal<Uint32>(i::Object::ToUint32(i_isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(Uint32);
RETURN_ESCAPED(result);
}
i::Isolate* i::IsolateFromNeverReadOnlySpaceObject(i::Address obj) {
return i::GetIsolateFromWritableObject(
i::HeapObject::cast(i::Tagged<i::Object>(obj)));
}
bool i::ShouldThrowOnError(i::Isolate* i_isolate) {
return i::GetShouldThrow(i_isolate, Nothing<i::ShouldThrow>()) ==
i::ShouldThrow::kThrowOnError;
}
void i::Internals::CheckInitializedImpl(v8::Isolate* external_isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(external_isolate);
Utils::ApiCheck(i_isolate != nullptr && !i_isolate->IsDead(),
"v8::internal::Internals::CheckInitialized",
"Isolate is not initialized or V8 has died");
}
void v8::Value::CheckCast(Data* that) {
Utils::ApiCheck(that->IsValue(), "v8::Value::Cast", "Data is not a Value");
}
void External::CheckCast(v8::Value* that) {
Utils::ApiCheck(that->IsExternal(), "v8::External::Cast",
"Value is not an External");
}
void v8::Object::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsJSReceiver(*obj), "v8::Object::Cast",
"Value is not an Object");
}
void v8::Function::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsCallable(*obj), "v8::Function::Cast",
"Value is not a Function");
}
void v8::Boolean::CheckCast(v8::Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsBoolean(*obj), "v8::Boolean::Cast",
"Value is not a Boolean");
}
void v8::Name::CheckCast(v8::Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsName(*obj), "v8::Name::Cast", "Value is not a Name");
}
void v8::String::CheckCast(v8::Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsString(*obj), "v8::String::Cast",
"Value is not a String");
}
void v8::Symbol::CheckCast(v8::Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsSymbol(*obj), "v8::Symbol::Cast",
"Value is not a Symbol");
}
void v8::Private::CheckCast(v8::Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(
IsSymbol(*obj) && i::Handle<i::Symbol>::cast(obj)->is_private(),
"v8::Private::Cast", "Value is not a Private");
}
void v8::FixedArray::CheckCast(v8::Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsFixedArray(*obj), "v8::FixedArray::Cast",
"Value is not a FixedArray");
}
void v8::ModuleRequest::CheckCast(v8::Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsModuleRequest(*obj), "v8::ModuleRequest::Cast",
"Value is not a ModuleRequest");
}
void v8::Module::CheckCast(v8::Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsModule(*obj), "v8::Module::Cast",
"Value is not a Module");
}
void v8::Numeric::CheckCast(v8::Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsNumeric(*obj), "v8::Numeric::Cast()",
"Value is not a Numeric");
}
void v8::Number::CheckCast(v8::Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsNumber(*obj), "v8::Number::Cast()",
"Value is not a Number");
}
void v8::Integer::CheckCast(v8::Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsNumber(*obj), "v8::Integer::Cast",
"Value is not an Integer");
}
void v8::Int32::CheckCast(v8::Data* that) {
Utils::ApiCheck(Value::Cast(that)->IsInt32(), "v8::Int32::Cast",
"Value is not a 32-bit signed integer");
}
void v8::Uint32::CheckCast(v8::Data* that) {
Utils::ApiCheck(Value::Cast(that)->IsUint32(), "v8::Uint32::Cast",
"Value is not a 32-bit unsigned integer");
}
void v8::BigInt::CheckCast(v8::Data* that) {
Utils::ApiCheck(Value::Cast(that)->IsBigInt(), "v8::BigInt::Cast",
"Value is not a BigInt");
}
void v8::Context::CheckCast(v8::Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsContext(*obj), "v8::Context::Cast",
"Value is not a Context");
}
void v8::Array::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsJSArray(*obj), "v8::Array::Cast",
"Value is not an Array");
}
void v8::Map::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsJSMap(*obj), "v8::Map::Cast", "Value is not a Map");
}
void v8::Set::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsJSSet(*obj), "v8_Set_Cast", "Value is not a Set");
}
void v8::Promise::CheckCast(Value* that) {
Utils::ApiCheck(that->IsPromise(), "v8::Promise::Cast",
"Value is not a Promise");
}
void v8::Promise::Resolver::CheckCast(Value* that) {
Utils::ApiCheck(that->IsPromise(), "v8::Promise::Resolver::Cast",
"Value is not a Promise::Resolver");
}
void v8::Proxy::CheckCast(Value* that) {
Utils::ApiCheck(that->IsProxy(), "v8::Proxy::Cast", "Value is not a Proxy");
}
void v8::WasmMemoryObject::CheckCast(Value* that) {
Utils::ApiCheck(that->IsWasmMemoryObject(), "v8::WasmMemoryObject::Cast",
"Value is not a WasmMemoryObject");
}
void v8::WasmModuleObject::CheckCast(Value* that) {
Utils::ApiCheck(that->IsWasmModuleObject(), "v8::WasmModuleObject::Cast",
"Value is not a WasmModuleObject");
}
v8::BackingStore::~BackingStore() {
auto i_this = reinterpret_cast<const i::BackingStore*>(this);
i_this->~BackingStore(); // manually call internal destructor
}
void* v8::BackingStore::Data() const {
return reinterpret_cast<const i::BackingStore*>(this)->buffer_start();
}
size_t v8::BackingStore::ByteLength() const {
return reinterpret_cast<const i::BackingStore*>(this)->byte_length();
}
size_t v8::BackingStore::MaxByteLength() const {
return reinterpret_cast<const i::BackingStore*>(this)->max_byte_length();
}
bool v8::BackingStore::IsShared() const {
return reinterpret_cast<const i::BackingStore*>(this)->is_shared();
}
bool v8::BackingStore::IsResizableByUserJavaScript() const {
return reinterpret_cast<const i::BackingStore*>(this)->is_resizable_by_js();
}
// static
std::unique_ptr<v8::BackingStore> v8::BackingStore::Reallocate(
v8::Isolate* v8_isolate, std::unique_ptr<v8::BackingStore> backing_store,
size_t byte_length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, ArrayBuffer, BackingStore_Reallocate);
Utils::ApiCheck(byte_length <= i::JSArrayBuffer::kMaxByteLength,
"v8::BackingStore::Reallocate", "byte_lenght is too large");
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::BackingStore* i_backing_store =
reinterpret_cast<i::BackingStore*>(backing_store.get());
if (!i_backing_store->Reallocate(i_isolate, byte_length)) {
i::V8::FatalProcessOutOfMemory(i_isolate, "v8::BackingStore::Reallocate");
}
return backing_store;
}
// static
void v8::BackingStore::EmptyDeleter(void* data, size_t length,
void* deleter_data) {
DCHECK_NULL(deleter_data);
}
std::shared_ptr<v8::BackingStore> v8::ArrayBuffer::GetBackingStore() {
i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this);
std::shared_ptr<i::BackingStore> backing_store = self->GetBackingStore();
if (!backing_store) {
backing_store =
i::BackingStore::EmptyBackingStore(i::SharedFlag::kNotShared);
}
std::shared_ptr<i::BackingStoreBase> bs_base = backing_store;
return std::static_pointer_cast<v8::BackingStore>(bs_base);
}
void* v8::ArrayBuffer::Data() const {
i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this);
return self->backing_store();
}
std::shared_ptr<v8::BackingStore> v8::SharedArrayBuffer::GetBackingStore() {
i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this);
std::shared_ptr<i::BackingStore> backing_store = self->GetBackingStore();
if (!backing_store) {
backing_store = i::BackingStore::EmptyBackingStore(i::SharedFlag::kShared);
}
std::shared_ptr<i::BackingStoreBase> bs_base = backing_store;
return std::static_pointer_cast<v8::BackingStore>(bs_base);
}
void* v8::SharedArrayBuffer::Data() const {
i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this);
return self->backing_store();
}
void v8::ArrayBuffer::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(
IsJSArrayBuffer(*obj) && !i::JSArrayBuffer::cast(*obj)->is_shared(),
"v8::ArrayBuffer::Cast()", "Value is not an ArrayBuffer");
}
void v8::ArrayBufferView::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsJSArrayBufferView(*obj), "v8::ArrayBufferView::Cast()",
"Value is not an ArrayBufferView");
}
void v8::TypedArray::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsJSTypedArray(*obj), "v8::TypedArray::Cast()",
"Value is not a TypedArray");
}
#define CHECK_TYPED_ARRAY_CAST(Type, typeName, TYPE, ctype) \
void v8::Type##Array::CheckCast(Value* that) { \
i::Handle<i::Object> obj = Utils::OpenHandle(that); \
Utils::ApiCheck( \
i::IsJSTypedArray(*obj) && \
i::JSTypedArray::cast(*obj)->type() == i::kExternal##Type##Array, \
"v8::" #Type "Array::Cast()", "Value is not a " #Type "Array"); \
}
TYPED_ARRAYS(CHECK_TYPED_ARRAY_CAST)
#undef CHECK_TYPED_ARRAY_CAST
void v8::DataView::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsJSDataView(*obj) || IsJSRabGsabDataView(*obj),
"v8::DataView::Cast()", "Value is not a DataView");
}
void v8::SharedArrayBuffer::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(
IsJSArrayBuffer(*obj) && i::JSArrayBuffer::cast(*obj)->is_shared(),
"v8::SharedArrayBuffer::Cast()", "Value is not a SharedArrayBuffer");
}
void v8::Date::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsJSDate(*obj), "v8::Date::Cast()", "Value is not a Date");
}
void v8::StringObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsStringWrapper(*obj), "v8::StringObject::Cast()",
"Value is not a StringObject");
}
void v8::SymbolObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsSymbolWrapper(*obj), "v8::SymbolObject::Cast()",
"Value is not a SymbolObject");
}
void v8::NumberObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsNumberWrapper(*obj), "v8::NumberObject::Cast()",
"Value is not a NumberObject");
}
void v8::BigIntObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsBigIntWrapper(*obj), "v8::BigIntObject::Cast()",
"Value is not a BigIntObject");
}
void v8::BooleanObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsBooleanWrapper(*obj), "v8::BooleanObject::Cast()",
"Value is not a BooleanObject");
}
void v8::RegExp::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsJSRegExp(*obj), "v8::RegExp::Cast()",
"Value is not a RegExp");
}
Maybe<double> Value::NumberValue(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (i::IsNumber(*obj)) return Just(i::Object::Number(*obj));
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Value, NumberValue, Nothing<double>(),
i::HandleScope);
i::Handle<i::Object> num;
has_pending_exception = !i::Object::ToNumber(i_isolate, obj).ToHandle(&num);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(double);
return Just(i::Object::Number(*num));
}
Maybe<int64_t> Value::IntegerValue(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (i::IsNumber(*obj)) {
return Just(NumberToInt64(*obj));
}
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Value, IntegerValue, Nothing<int64_t>(),
i::HandleScope);
i::Handle<i::Object> num;
has_pending_exception = !i::Object::ToInteger(i_isolate, obj).ToHandle(&num);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(int64_t);
return Just(NumberToInt64(*num));
}
Maybe<int32_t> Value::Int32Value(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (i::IsNumber(*obj)) return Just(NumberToInt32(*obj));
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Value, Int32Value, Nothing<int32_t>(),
i::HandleScope);
i::Handle<i::Object> num;
has_pending_exception = !i::Object::ToInt32(i_isolate, obj).ToHandle(&num);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(int32_t);
return Just(IsSmi(*num) ? i::Smi::ToInt(*num)
: static_cast<int32_t>(i::Object::Number(*num)));
}
Maybe<uint32_t> Value::Uint32Value(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (i::IsNumber(*obj)) return Just(NumberToUint32(*obj));
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Value, Uint32Value, Nothing<uint32_t>(),
i::HandleScope);
i::Handle<i::Object> num;
has_pending_exception = !i::Object::ToUint32(i_isolate, obj).ToHandle(&num);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(uint32_t);
return Just(IsSmi(*num) ? static_cast<uint32_t>(i::Smi::ToInt(*num))
: static_cast<uint32_t>(i::Object::Number(*num)));
}
MaybeLocal<Uint32> Value::ToArrayIndex(Local<Context> context) const {
auto self = Utils::OpenHandle(this);
if (i::IsSmi(*self)) {
if (i::Smi::ToInt(*self) >= 0) return Utils::Uint32ToLocal(self);
return Local<Uint32>();
}
PREPARE_FOR_EXECUTION(context, Object, ToArrayIndex, Uint32);
i::Handle<i::Object> string_obj;
has_pending_exception =
!i::Object::ToString(i_isolate, self).ToHandle(&string_obj);
RETURN_ON_FAILED_EXECUTION(Uint32);
i::Handle<i::String> str = i::Handle<i::String>::cast(string_obj);
uint32_t index;
if (str->AsArrayIndex(&index)) {
i::Handle<i::Object> value;
if (index <= static_cast<uint32_t>(i::Smi::kMaxValue)) {
value = i::Handle<i::Object>(i::Smi::FromInt(index), i_isolate);
} else {
value = i_isolate->factory()->NewNumber(index);
}
RETURN_ESCAPED(Utils::Uint32ToLocal(value));
}
return Local<Uint32>();
}
Maybe<bool> Value::Equals(Local<Context> context, Local<Value> that) const {
i::Isolate* i_isolate = Utils::OpenHandle(*context)->GetIsolate();
ENTER_V8(i_isolate, context, Value, Equals, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
auto other = Utils::OpenHandle(*that);
Maybe<bool> result = i::Object::Equals(i_isolate, self, other);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
bool Value::StrictEquals(Local<Value> that) const {
auto self = Utils::OpenHandle(this);
auto other = Utils::OpenHandle(*that);
return i::Object::StrictEquals(*self, *other);
}
bool Value::SameValue(Local<Value> that) const {
auto self = Utils::OpenHandle(this);
auto other = Utils::OpenHandle(*that);
return i::Object::SameValue(*self, *other);
}
Local<String> Value::TypeOf(v8::Isolate* external_isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(external_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
API_RCS_SCOPE(i_isolate, Value, TypeOf);
return Utils::ToLocal(i::Object::TypeOf(i_isolate, Utils::OpenHandle(this)));
}
Maybe<bool> Value::InstanceOf(v8::Local<v8::Context> context,
v8::Local<v8::Object> object) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Value, InstanceOf, Nothing<bool>(),
i::HandleScope);
auto left = Utils::OpenHandle(this);
auto right = Utils::OpenHandle(*object);
i::Handle<i::Object> result;
has_pending_exception =
!i::Object::InstanceOf(i_isolate, left, right).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(i::IsTrue(*result, i_isolate));
}
Maybe<bool> v8::Object::Set(v8::Local<v8::Context> context,
v8::Local<Value> key, v8::Local<Value> value) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Object, Set, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
auto value_obj = Utils::OpenHandle(*value);
has_pending_exception =
i::Runtime::SetObjectProperty(i_isolate, self, key_obj, value_obj,
i::StoreOrigin::kMaybeKeyed,
Just(i::ShouldThrow::kDontThrow))
.is_null();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
Maybe<bool> v8::Object::Set(v8::Local<v8::Context> context, uint32_t index,
v8::Local<Value> value) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Object, Set, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
auto value_obj = Utils::OpenHandle(*value);
has_pending_exception =
i::Object::SetElement(i_isolate, self, index, value_obj,
i::ShouldThrow::kDontThrow)
.is_null();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
Maybe<bool> v8::Object::CreateDataProperty(v8::Local<v8::Context> context,
v8::Local<Name> key,
v8::Local<Value> value) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
i::Handle<i::Name> key_obj = Utils::OpenHandle(*key);
i::Handle<i::Object> value_obj = Utils::OpenHandle(*value);
i::PropertyKey lookup_key(i_isolate, key_obj);
i::LookupIterator it(i_isolate, self, lookup_key, i::LookupIterator::OWN);
if (i::IsJSProxy(*self)) {
ENTER_V8(i_isolate, context, Object, CreateDataProperty, Nothing<bool>(),
i::HandleScope);
Maybe<bool> result =
i::JSReceiver::CreateDataProperty(&it, value_obj, Just(i::kDontThrow));
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
} else {
ENTER_V8_NO_SCRIPT(i_isolate, context, Object, CreateDataProperty,
Nothing<bool>(), i::HandleScope);
Maybe<bool> result =
i::JSObject::CreateDataProperty(&it, value_obj, Just(i::kDontThrow));
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
}
Maybe<bool> v8::Object::CreateDataProperty(v8::Local<v8::Context> context,
uint32_t index,
v8::Local<Value> value) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
i::Handle<i::Object> value_obj = Utils::OpenHandle(*value);
i::LookupIterator it(i_isolate, self, index, self, i::LookupIterator::OWN);
if (i::IsJSProxy(*self)) {
ENTER_V8(i_isolate, context, Object, CreateDataProperty, Nothing<bool>(),
i::HandleScope);
Maybe<bool> result =
i::JSReceiver::CreateDataProperty(&it, value_obj, Just(i::kDontThrow));
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
} else {
ENTER_V8_NO_SCRIPT(i_isolate, context, Object, CreateDataProperty,
Nothing<bool>(), i::HandleScope);
Maybe<bool> result =
i::JSObject::CreateDataProperty(&it, value_obj, Just(i::kDontThrow));
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
}
struct v8::PropertyDescriptor::PrivateData {
PrivateData() : desc() {}
i::PropertyDescriptor desc;
};
v8::PropertyDescriptor::PropertyDescriptor() : private_(new PrivateData()) {}
// DataDescriptor
v8::PropertyDescriptor::PropertyDescriptor(v8::Local<v8::Value> value)
: private_(new PrivateData()) {
private_->desc.set_value(Utils::OpenHandle(*value, true));
}
// DataDescriptor with writable field
v8::PropertyDescriptor::PropertyDescriptor(v8::Local<v8::Value> value,
bool writable)
: private_(new PrivateData()) {
private_->desc.set_value(Utils::OpenHandle(*value, true));
private_->desc.set_writable(writable);
}
// AccessorDescriptor
v8::PropertyDescriptor::PropertyDescriptor(v8::Local<v8::Value> get,
v8::Local<v8::Value> set)
: private_(new PrivateData()) {
DCHECK(get.IsEmpty() || get->IsUndefined() || get->IsFunction());
DCHECK(set.IsEmpty() || set->IsUndefined() || set->IsFunction());
private_->desc.set_get(Utils::OpenHandle(*get, true));
private_->desc.set_set(Utils::OpenHandle(*set, true));
}
v8::PropertyDescriptor::~PropertyDescriptor() { delete private_; }
v8::Local<Value> v8::PropertyDescriptor::value() const {
DCHECK(private_->desc.has_value());
return Utils::ToLocal(private_->desc.value());
}
v8::Local<Value> v8::PropertyDescriptor::get() const {
DCHECK(private_->desc.has_get());
return Utils::ToLocal(private_->desc.get());
}
v8::Local<Value> v8::PropertyDescriptor::set() const {
DCHECK(private_->desc.has_set());
return Utils::ToLocal(private_->desc.set());
}
bool v8::PropertyDescriptor::has_value() const {
return private_->desc.has_value();
}
bool v8::PropertyDescriptor::has_get() const {
return private_->desc.has_get();
}
bool v8::PropertyDescriptor::has_set() const {
return private_->desc.has_set();
}
bool v8::PropertyDescriptor::writable() const {
DCHECK(private_->desc.has_writable());
return private_->desc.writable();
}
bool v8::PropertyDescriptor::has_writable() const {
return private_->desc.has_writable();
}
void v8::PropertyDescriptor::set_enumerable(bool enumerable) {
private_->desc.set_enumerable(enumerable);
}
bool v8::PropertyDescriptor::enumerable() const {
DCHECK(private_->desc.has_enumerable());
return private_->desc.enumerable();
}
bool v8::PropertyDescriptor::has_enumerable() const {
return private_->desc.has_enumerable();
}
void v8::PropertyDescriptor::set_configurable(bool configurable) {
private_->desc.set_configurable(configurable);
}
bool v8::PropertyDescriptor::configurable() const {
DCHECK(private_->desc.has_configurable());
return private_->desc.configurable();
}
bool v8::PropertyDescriptor::has_configurable() const {
return private_->desc.has_configurable();
}
Maybe<bool> v8::Object::DefineOwnProperty(v8::Local<v8::Context> context,
v8::Local<Name> key,
v8::Local<Value> value,
v8::PropertyAttribute attributes) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
i::Handle<i::Name> key_obj = Utils::OpenHandle(*key);
i::Handle<i::Object> value_obj = Utils::OpenHandle(*value);
i::PropertyDescriptor desc;
desc.set_writable(!(attributes & v8::ReadOnly));
desc.set_enumerable(!(attributes & v8::DontEnum));
desc.set_configurable(!(attributes & v8::DontDelete));
desc.set_value(value_obj);
if (i::IsJSProxy(*self)) {
ENTER_V8(i_isolate, context, Object, DefineOwnProperty, Nothing<bool>(),
i::HandleScope);
Maybe<bool> success = i::JSReceiver::DefineOwnProperty(
i_isolate, self, key_obj, &desc, Just(i::kDontThrow));
// Even though we said kDontThrow, there might be accessors that do throw.
has_pending_exception = success.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return success;
} else {
// If it's not a JSProxy, i::JSReceiver::DefineOwnProperty should never run
// a script.
ENTER_V8_NO_SCRIPT(i_isolate, context, Object, DefineOwnProperty,
Nothing<bool>(), i::HandleScope);
Maybe<bool> success = i::JSReceiver::DefineOwnProperty(
i_isolate, self, key_obj, &desc, Just(i::kDontThrow));
has_pending_exception = success.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return success;
}
}
Maybe<bool> v8::Object::DefineProperty(v8::Local<v8::Context> context,
v8::Local<Name> key,
PropertyDescriptor& descriptor) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Object, DefineOwnProperty, Nothing<bool>(),
i::HandleScope);
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
i::Handle<i::Name> key_obj = Utils::OpenHandle(*key);
Maybe<bool> success = i::JSReceiver::DefineOwnProperty(
i_isolate, self, key_obj, &descriptor.get_private()->desc,
Just(i::kDontThrow));
has_pending_exception = success.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return success;
}
Maybe<bool> v8::Object::SetPrivate(Local<Context> context, Local<Private> key,
Local<Value> value) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8_NO_SCRIPT(i_isolate, context, Object, SetPrivate, Nothing<bool>(),
i::HandleScope);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(reinterpret_cast<Name*>(*key));
auto value_obj = Utils::OpenHandle(*value);
if (i::IsJSProxy(*self)) {
i::PropertyDescriptor desc;
desc.set_writable(true);
desc.set_enumerable(false);
desc.set_configurable(true);
desc.set_value(value_obj);
return i::JSProxy::SetPrivateSymbol(
i_isolate, i::Handle<i::JSProxy>::cast(self),
i::Handle<i::Symbol>::cast(key_obj), &desc, Just(i::kDontThrow));
}
auto js_object = i::Handle<i::JSObject>::cast(self);
i::LookupIterator it(i_isolate, js_object, key_obj, js_object);
has_pending_exception = i::JSObject::DefineOwnPropertyIgnoreAttributes(
&it, value_obj, i::DONT_ENUM)
.is_null();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
MaybeLocal<Value> v8::Object::Get(Local<v8::Context> context,
Local<Value> key) {
PREPARE_FOR_EXECUTION(context, Object, Get, Value);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
i::Handle<i::Object> result;
has_pending_exception =
!i::Runtime::GetObjectProperty(i_isolate, self, key_obj)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(Utils::ToLocal(result));
}
MaybeLocal<Value> v8::Object::Get(Local<Context> context, uint32_t index) {
PREPARE_FOR_EXECUTION(context, Object, Get, Value);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
has_pending_exception =
!i::JSReceiver::GetElement(i_isolate, self, index).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(Utils::ToLocal(result));
}
MaybeLocal<Value> v8::Object::GetPrivate(Local<Context> context,
Local<Private> key) {
return Get(context, key.UnsafeAs<Value>());
}
Maybe<PropertyAttribute> v8::Object::GetPropertyAttributes(
Local<Context> context, Local<Value> key) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Object, GetPropertyAttributes,
Nothing<PropertyAttribute>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
if (!i::IsName(*key_obj)) {
has_pending_exception =
!i::Object::ToString(i_isolate, key_obj).ToHandle(&key_obj);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute);
}
auto key_name = i::Handle<i::Name>::cast(key_obj);
auto result = i::JSReceiver::GetPropertyAttributes(self, key_name);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute);
if (result.FromJust() == i::ABSENT) {
return Just(static_cast<PropertyAttribute>(i::NONE));
}
return Just(static_cast<PropertyAttribute>(result.FromJust()));
}
MaybeLocal<Value> v8::Object::GetOwnPropertyDescriptor(Local<Context> context,
Local<Name> key) {
PREPARE_FOR_EXECUTION(context, Object, GetOwnPropertyDescriptor, Value);
i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this);
i::Handle<i::Name> key_name = Utils::OpenHandle(*key);
i::PropertyDescriptor desc;
Maybe<bool> found =
i::JSReceiver::GetOwnPropertyDescriptor(i_isolate, obj, key_name, &desc);
has_pending_exception = found.IsNothing();
RETURN_ON_FAILED_EXECUTION(Value);
if (!found.FromJust()) {
return v8::Undefined(reinterpret_cast<v8::Isolate*>(i_isolate));
}
RETURN_ESCAPED(Utils::ToLocal(desc.ToObject(i_isolate)));
}
Local<Value> v8::Object::GetPrototype() {
auto self = Utils::OpenHandle(this);
auto i_isolate = self->GetIsolate();
i::PrototypeIterator iter(i_isolate, self);
return Utils::ToLocal(i::PrototypeIterator::GetCurrent(iter));
}
Maybe<bool> v8::Object::SetPrototype(Local<Context> context,
Local<Value> value) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
auto self = Utils::OpenHandle(this);
auto value_obj = Utils::OpenHandle(*value);
if (i::IsJSProxy(*self)) {
ENTER_V8(i_isolate, context, Object, SetPrototype, Nothing<bool>(),
i::HandleScope);
// We do not allow exceptions thrown while setting the prototype
// to propagate outside.
TryCatch try_catch(reinterpret_cast<v8::Isolate*>(i_isolate));
auto result =
i::JSProxy::SetPrototype(i_isolate, i::Handle<i::JSProxy>::cast(self),
value_obj, false, i::kThrowOnError);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
} else {
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
auto result =
i::JSObject::SetPrototype(i_isolate, i::Handle<i::JSObject>::cast(self),
value_obj, false, i::kThrowOnError);
if (result.IsNothing()) {
i_isolate->clear_pending_exception();
return Nothing<bool>();
}
}
return Just(true);
}
Local<Object> v8::Object::FindInstanceInPrototypeChain(
v8::Local<FunctionTemplate> tmpl) {
auto self = Utils::OpenHandle(this);
auto i_isolate = self->GetIsolate();
i::PrototypeIterator iter(i_isolate, *self, i::kStartAtReceiver);
i::Tagged<i::FunctionTemplateInfo> tmpl_info = *Utils::OpenHandle(*tmpl);
while (!tmpl_info->IsTemplateFor(iter.GetCurrent<i::JSObject>())) {
iter.Advance();
if (iter.IsAtEnd()) return Local<Object>();
if (!IsJSObject(iter.GetCurrent())) return Local<Object>();
}
// IsTemplateFor() ensures that iter.GetCurrent() can't be a Proxy here.
return Utils::ToLocal(i::handle(iter.GetCurrent<i::JSObject>(), i_isolate));
}
MaybeLocal<Array> v8::Object::GetPropertyNames(Local<Context> context) {
return GetPropertyNames(
context, v8::KeyCollectionMode::kIncludePrototypes,
static_cast<v8::PropertyFilter>(ONLY_ENUMERABLE | SKIP_SYMBOLS),
v8::IndexFilter::kIncludeIndices);
}
MaybeLocal<Array> v8::Object::GetPropertyNames(
Local<Context> context, KeyCollectionMode mode,
PropertyFilter property_filter, IndexFilter index_filter,
KeyConversionMode key_conversion) {
PREPARE_FOR_EXECUTION(context, Object, GetPropertyNames, Array);
auto self = Utils::OpenHandle(this);
i::Handle<i::FixedArray> value;
i::KeyAccumulator accumulator(
i_isolate, static_cast<i::KeyCollectionMode>(mode),
static_cast<i::PropertyFilter>(property_filter));
accumulator.set_skip_indices(index_filter == IndexFilter::kSkipIndices);
has_pending_exception = accumulator.CollectKeys(self, self).IsNothing();
RETURN_ON_FAILED_EXECUTION(Array);
value =
accumulator.GetKeys(static_cast<i::GetKeysConversion>(key_conversion));
DCHECK(self->map()->EnumLength() == i::kInvalidEnumCacheSentinel ||
self->map()->EnumLength() == 0 ||
self->map()->instance_descriptors(i_isolate)->enum_cache()->keys() !=
*value);
auto result = i_isolate->factory()->NewJSArrayWithElements(value);
RETURN_ESCAPED(Utils::ToLocal(result));
}
MaybeLocal<Array> v8::Object::GetOwnPropertyNames(Local<Context> context) {
return GetOwnPropertyNames(
context, static_cast<v8::PropertyFilter>(ONLY_ENUMERABLE | SKIP_SYMBOLS));
}
MaybeLocal<Array> v8::Object::GetOwnPropertyNames(
Local<Context> context, PropertyFilter filter,
KeyConversionMode key_conversion) {
return GetPropertyNames(context, KeyCollectionMode::kOwnOnly, filter,
v8::IndexFilter::kIncludeIndices, key_conversion);
}
MaybeLocal<String> v8::Object::ObjectProtoToString(Local<Context> context) {
PREPARE_FOR_EXECUTION(context, Object, ObjectProtoToString, String);
auto self = Utils::OpenHandle(this);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(
i::Execution::CallBuiltin(i_isolate, i_isolate->object_to_string(), self,
0, nullptr),
&result);
RETURN_ON_FAILED_EXECUTION(String);
RETURN_ESCAPED(Local<String>::Cast(result));
}
Local<String> v8::Object::GetConstructorName() {
// TODO(v8:12547): Consider adding GetConstructorName(Local<Context>).
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate;
if (self->InWritableSharedSpace()) {
i_isolate = i::Isolate::Current();
} else {
i_isolate = self->GetIsolate();
}
i::Handle<i::String> name =
i::JSReceiver::GetConstructorName(i_isolate, self);
return Utils::ToLocal(name);
}
Maybe<bool> v8::Object::SetIntegrityLevel(Local<Context> context,
IntegrityLevel level) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Object, SetIntegrityLevel, Nothing<bool>(),
i::HandleScope);
auto self = Utils::OpenHandle(this);
i::JSReceiver::IntegrityLevel i_level =
level == IntegrityLevel::kFrozen ? i::FROZEN : i::SEALED;
Maybe<bool> result = i::JSReceiver::SetIntegrityLevel(
i_isolate, self, i_level, i::kThrowOnError);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
Maybe<bool> v8::Object::Delete(Local<Context> context, Local<Value> key) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
if (i::IsJSProxy(*self)) {
ENTER_V8(i_isolate, context, Object, Delete, Nothing<bool>(),
i::HandleScope);
Maybe<bool> result = i::Runtime::DeleteObjectProperty(
i_isolate, self, key_obj, i::LanguageMode::kSloppy);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
} else {
// If it's not a JSProxy, i::Runtime::DeleteObjectProperty should never run
// a script.
ENTER_V8_NO_SCRIPT(i_isolate, context, Object, Delete, Nothing<bool>(),
i::HandleScope);
Maybe<bool> result = i::Runtime::DeleteObjectProperty(
i_isolate, self, key_obj, i::LanguageMode::kSloppy);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
}
Maybe<bool> v8::Object::DeletePrivate(Local<Context> context,
Local<Private> key) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
// In case of private symbols, i::Runtime::DeleteObjectProperty does not run
// any author script.
ENTER_V8_NO_SCRIPT(i_isolate, context, Object, Delete, Nothing<bool>(),
i::HandleScope);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
Maybe<bool> result = i::Runtime::DeleteObjectProperty(
i_isolate, self, key_obj, i::LanguageMode::kSloppy);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
Maybe<bool> v8::Object::Has(Local<Context> context, Local<Value> key) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Object, Has, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
Maybe<bool> maybe = Nothing<bool>();
// Check if the given key is an array index.
uint32_t index = 0;
if (i::Object::ToArrayIndex(*key_obj, &index)) {
maybe = i::JSReceiver::HasElement(i_isolate, self, index);
} else {
// Convert the key to a name - possibly by calling back into JavaScript.
i::Handle<i::Name> name;
if (i::Object::ToName(i_isolate, key_obj).ToHandle(&name)) {
maybe = i::JSReceiver::HasProperty(i_isolate, self, name);
}
}
has_pending_exception = maybe.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return maybe;
}
Maybe<bool> v8::Object::HasPrivate(Local<Context> context, Local<Private> key) {
return HasOwnProperty(context, key.UnsafeAs<Name>());
}
Maybe<bool> v8::Object::Delete(Local<Context> context, uint32_t index) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Object, Delete, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
Maybe<bool> result = i::JSReceiver::DeleteElement(self, index);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
Maybe<bool> v8::Object::Has(Local<Context> context, uint32_t index) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Object, Has, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
auto maybe = i::JSReceiver::HasElement(i_isolate, self, index);
has_pending_exception = maybe.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return maybe;
}
template <typename Getter, typename Setter, typename Data>
static Maybe<bool> ObjectSetAccessor(
Local<Context> context, Object* self, Local<Name> name, Getter getter,
Setter setter, Data data, AccessControl settings,
PropertyAttribute attributes, bool is_special_data_property,
bool replace_on_access, SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8_NO_SCRIPT(i_isolate, context, Object, SetAccessor, Nothing<bool>(),
i::HandleScope);
if (!IsJSObject(*Utils::OpenHandle(self))) return Just(false);
i::Handle<i::JSObject> obj =
i::Handle<i::JSObject>::cast(Utils::OpenHandle(self));
i::Handle<i::AccessorInfo> info =
MakeAccessorInfo(i_isolate, name, getter, setter, data, settings,
is_special_data_property, replace_on_access);
info->set_getter_side_effect_type(getter_side_effect_type);
info->set_setter_side_effect_type(setter_side_effect_type);
if (info.is_null()) return Nothing<bool>();
bool fast = obj->HasFastProperties();
i::Handle<i::Object> result;
i::Handle<i::Name> accessor_name(info->name(), i_isolate);
i::PropertyAttributes attrs = static_cast<i::PropertyAttributes>(attributes);
has_pending_exception =
!i::JSObject::SetAccessor(obj, accessor_name, info, attrs)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
if (i::IsUndefined(*result, i_isolate)) return Just(false);
if (fast) {
i::JSObject::MigrateSlowToFast(obj, 0, "APISetAccessor");
}
return Just(true);
}
Maybe<bool> Object::SetAccessor(Local<Context> context, Local<Name> name,
AccessorNameGetterCallback getter,
AccessorNameSetterCallback setter,
MaybeLocal<Value> data, AccessControl settings,
PropertyAttribute attribute,
SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
return ObjectSetAccessor(context, this, name, getter, setter,
data.FromMaybe(Local<Value>()), settings, attribute,
i::v8_flags.disable_old_api_accessors, false,
getter_side_effect_type, setter_side_effect_type);
}
void Object::SetAccessorProperty(Local<Name> name, Local<Function> getter,
Local<Function> setter,
PropertyAttribute attributes,
AccessControl settings) {
// TODO(verwaest): Remove |settings|.
DCHECK_EQ(v8::DEFAULT, settings);
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
if (!IsJSObject(*self)) return;
i::Handle<i::Object> getter_i = v8::Utils::OpenHandle(*getter);
i::Handle<i::Object> setter_i = v8::Utils::OpenHandle(*setter, true);
if (setter_i.is_null()) setter_i = i_isolate->factory()->null_value();
i::PropertyDescriptor desc;
desc.set_enumerable(!(attributes & v8::DontEnum));
desc.set_configurable(!(attributes & v8::DontDelete));
desc.set_get(getter_i);
desc.set_set(setter_i);
i::Handle<i::Name> name_i = v8::Utils::OpenHandle(*name);
// DefineOwnProperty might still throw if the receiver is a JSProxy and it
// might fail if the receiver is non-extensible or already has this property
// as non-configurable.
Maybe<bool> success = i::JSReceiver::DefineOwnProperty(
i_isolate, self, name_i, &desc, Just(i::kDontThrow));
USE(success);
}
Maybe<bool> Object::SetNativeDataProperty(
v8::Local<v8::Context> context, v8::Local<Name> name,
AccessorNameGetterCallback getter, AccessorNameSetterCallback setter,
v8::Local<Value> data, PropertyAttribute attributes,
SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
return ObjectSetAccessor(context, this, name, getter, setter, data, DEFAULT,
attributes, true, false, getter_side_effect_type,
setter_side_effect_type);
}
Maybe<bool> Object::SetLazyDataProperty(
v8::Local<v8::Context> context, v8::Local<Name> name,
AccessorNameGetterCallback getter, v8::Local<Value> data,
PropertyAttribute attributes, SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
return ObjectSetAccessor(context, this, name, getter,
static_cast<AccessorNameSetterCallback>(nullptr),
data, DEFAULT, attributes, true, true,
getter_side_effect_type, setter_side_effect_type);
}
Maybe<bool> v8::Object::HasOwnProperty(Local<Context> context,
Local<Name> key) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Object, HasOwnProperty, Nothing<bool>(),
i::HandleScope);
auto self = Utils::OpenHandle(this);
auto key_val = Utils::OpenHandle(*key);
auto result = i::JSReceiver::HasOwnProperty(i_isolate, self, key_val);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
Maybe<bool> v8::Object::HasOwnProperty(Local<Context> context, uint32_t index) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Object, HasOwnProperty, Nothing<bool>(),
i::HandleScope);
auto self = Utils::OpenHandle(this);
auto result = i::JSReceiver::HasOwnProperty(i_isolate, self, index);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
Maybe<bool> v8::Object::HasRealNamedProperty(Local<Context> context,
Local<Name> key) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8_NO_SCRIPT(i_isolate, context, Object, HasRealNamedProperty,
Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
if (!IsJSObject(*self)) return Just(false);
auto key_val = Utils::OpenHandle(*key);
auto result = i::JSObject::HasRealNamedProperty(
i_isolate, i::Handle<i::JSObject>::cast(self), key_val);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
Maybe<bool> v8::Object::HasRealIndexedProperty(Local<Context> context,
uint32_t index) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8_NO_SCRIPT(i_isolate, context, Object, HasRealIndexedProperty,
Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
if (!IsJSObject(*self)) return Just(false);
auto result = i::JSObject::HasRealElementProperty(
i_isolate, i::Handle<i::JSObject>::cast(self), index);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
Maybe<bool> v8::Object::HasRealNamedCallbackProperty(Local<Context> context,
Local<Name> key) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8_NO_SCRIPT(i_isolate, context, Object, HasRealNamedCallbackProperty,
Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
if (!IsJSObject(*self)) return Just(false);
auto key_val = Utils::OpenHandle(*key);
auto result = i::JSObject::HasRealNamedCallbackProperty(
i_isolate, i::Handle<i::JSObject>::cast(self), key_val);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
bool v8::Object::HasNamedLookupInterceptor() const {
auto self = *Utils::OpenHandle(this);
if (!IsJSObject(*self)) return false;
return i::JSObject::cast(self)->HasNamedInterceptor();
}
bool v8::Object::HasIndexedLookupInterceptor() const {
auto self = *Utils::OpenHandle(this);
if (!IsJSObject(*self)) return false;
return i::JSObject::cast(self)->HasIndexedInterceptor();
}
MaybeLocal<Value> v8::Object::GetRealNamedPropertyInPrototypeChain(
Local<Context> context, Local<Name> key) {
PREPARE_FOR_EXECUTION(context, Object, GetRealNamedPropertyInPrototypeChain,
Value);
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
if (!IsJSObject(*self)) return MaybeLocal<Value>();
i::Handle<i::Name> key_obj = Utils::OpenHandle(*key);
i::PrototypeIterator iter(i_isolate, self);
if (iter.IsAtEnd()) return MaybeLocal<Value>();
i::Handle<i::JSReceiver> proto =
i::PrototypeIterator::GetCurrent<i::JSReceiver>(iter);
i::PropertyKey lookup_key(i_isolate, key_obj);
i::LookupIterator it(i_isolate, self, lookup_key, proto,
i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(i::Object::GetProperty(&it), &result);
RETURN_ON_FAILED_EXECUTION(Value);
if (!it.IsFound()) return MaybeLocal<Value>();
RETURN_ESCAPED(result);
}
Maybe<PropertyAttribute>
v8::Object::GetRealNamedPropertyAttributesInPrototypeChain(
Local<Context> context, Local<Name> key) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Object,
GetRealNamedPropertyAttributesInPrototypeChain,
Nothing<PropertyAttribute>(), i::HandleScope);
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
if (!IsJSObject(*self)) return Nothing<PropertyAttribute>();
i::Handle<i::Name> key_obj = Utils::OpenHandle(*key);
i::PrototypeIterator iter(i_isolate, self);
if (iter.IsAtEnd()) return Nothing<PropertyAttribute>();
i::Handle<i::JSReceiver> proto =
i::PrototypeIterator::GetCurrent<i::JSReceiver>(iter);
i::PropertyKey lookup_key(i_isolate, key_obj);
i::LookupIterator it(i_isolate, self, lookup_key, proto,
i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
Maybe<i::PropertyAttributes> result =
i::JSReceiver::GetPropertyAttributes(&it);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute);
if (!it.IsFound()) return Nothing<PropertyAttribute>();
if (result.FromJust() == i::ABSENT) return Just(None);
return Just(static_cast<PropertyAttribute>(result.FromJust()));
}
MaybeLocal<Value> v8::Object::GetRealNamedProperty(Local<Context> context,
Local<Name> key) {
PREPARE_FOR_EXECUTION(context, Object, GetRealNamedProperty, Value);
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
i::Handle<i::Name> key_obj = Utils::OpenHandle(*key);
i::PropertyKey lookup_key(i_isolate, key_obj);
i::LookupIterator it(i_isolate, self, lookup_key, self,
i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(i::Object::GetProperty(&it), &result);
RETURN_ON_FAILED_EXECUTION(Value);
if (!it.IsFound()) return MaybeLocal<Value>();
RETURN_ESCAPED(result);
}
Maybe<PropertyAttribute> v8::Object::GetRealNamedPropertyAttributes(
Local<Context> context, Local<Name> key) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Object, GetRealNamedPropertyAttributes,
Nothing<PropertyAttribute>(), i::HandleScope);
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
i::Handle<i::Name> key_obj = Utils::OpenHandle(*key);
i::PropertyKey lookup_key(i_isolate, key_obj);
i::LookupIterator it(i_isolate, self, lookup_key, self,
i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
auto result = i::JSReceiver::GetPropertyAttributes(&it);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute);
if (!it.IsFound()) return Nothing<PropertyAttribute>();
if (result.FromJust() == i::ABSENT) {
return Just(static_cast<PropertyAttribute>(i::NONE));
}
return Just<PropertyAttribute>(
static_cast<PropertyAttribute>(result.FromJust()));
}
Local<v8::Object> v8::Object::Clone() {
auto self = i::Handle<i::JSObject>::cast(Utils::OpenHandle(this));
auto i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::JSObject> result = i_isolate->factory()->CopyJSObject(self);
return Utils::ToLocal(result);
}
MaybeLocal<v8::Context> v8::Object::GetCreationContext() {
auto self = Utils::OpenHandle(this);
i::Handle<i::NativeContext> context;
if (self->GetCreationContext().ToHandle(&context)) {
return Utils::ToLocal(context);
}
return MaybeLocal<v8::Context>();
}
void* v8::Object::GetAlignedPointerFromEmbedderDataInCreationContext(
int index) {
const char* location =
"v8::Object::GetAlignedPointerFromEmbedderDataInCreationContext()";
auto self = Utils::OpenHandle(this);
auto maybe_context = self->GetCreationContextRaw();
if (!maybe_context.has_value()) return nullptr;
// The code below mostly mimics Context::GetAlignedPointerFromEmbedderData()
// but it doesn't try to expand the EmbedderDataArray instance.
i::DisallowGarbageCollection no_gc;
i::Tagged<i::NativeContext> native_context =
i::NativeContext::cast(maybe_context.value());
i::Isolate* i_isolate = native_context->GetIsolate();
DCHECK_NO_SCRIPT_NO_EXCEPTION(i_isolate);
// TODO(ishell): remove cast once embedder_data slot has a proper type.
i::Tagged<i::EmbedderDataArray> data =
i::EmbedderDataArray::cast(native_context->embedder_data());
if (V8_LIKELY(static_cast<unsigned>(index) <
static_cast<unsigned>(data->length()))) {
void* result;
Utils::ApiCheck(
i::EmbedderDataSlot(data, index).ToAlignedPointer(i_isolate, &result),
location, "Pointer is not aligned");
return result;
}
// Bad index, report an API error.
Utils::ApiCheck(index >= 0, location, "Negative index");
Utils::ApiCheck(index < i::EmbedderDataArray::kMaxLength, location,
"Index too large");
return nullptr;
}
Local<v8::Context> v8::Object::GetCreationContextChecked() {
Local<Context> context;
Utils::ApiCheck(GetCreationContext().ToLocal(&context),
"v8::Object::GetCreationContextChecked",
"No creation context available");
return context;
}
int v8::Object::GetIdentityHash() {
i::DisallowGarbageCollection no_gc;
auto self = Utils::OpenHandle(this);
auto i_isolate = self->GetIsolate();
DCHECK_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
return self->GetOrCreateIdentityHash(i_isolate).value();
}
bool v8::Object::IsCallable() const {
auto self = Utils::OpenHandle(this);
return i::IsCallable(*self);
}
bool v8::Object::IsConstructor() const {
auto self = Utils::OpenHandle(this);
return i::IsConstructor(*self);
}
bool v8::Object::IsApiWrapper() const {
auto self = i::Handle<i::JSObject>::cast(Utils::OpenHandle(this));
// Objects with embedder fields can wrap API objects.
return self->MayHaveEmbedderFields();
}
bool v8::Object::IsUndetectable() const {
auto self = i::Handle<i::JSObject>::cast(Utils::OpenHandle(this));
return i::IsUndetectable(*self);
}
MaybeLocal<Value> Object::CallAsFunction(Local<Context> context,
Local<Value> recv, int argc,
Local<Value> argv[]) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
TRACE_EVENT_CALL_STATS_SCOPED(i_isolate, "v8", "V8.Execute");
ENTER_V8(i_isolate, context, Object, CallAsFunction, MaybeLocal<Value>(),
InternalEscapableScope);
i::TimerEventScope<i::TimerEventExecute> timer_scope(i_isolate);
i::NestedTimedHistogramScope execute_timer(i_isolate->counters()->execute(),
i_isolate);
auto self = Utils::OpenHandle(this);
auto recv_obj = Utils::OpenHandle(*recv);
static_assert(sizeof(v8::Local<v8::Value>) == sizeof(i::Handle<i::Object>));
i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(
i::Execution::Call(i_isolate, self, recv_obj, argc, args), &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
MaybeLocal<Value> Object::CallAsConstructor(Local<Context> context, int argc,
Local<Value> argv[]) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
TRACE_EVENT_CALL_STATS_SCOPED(i_isolate, "v8", "V8.Execute");
ENTER_V8(i_isolate, context, Object, CallAsConstructor, MaybeLocal<Value>(),
InternalEscapableScope);
i::TimerEventScope<i::TimerEventExecute> timer_scope(i_isolate);
i::NestedTimedHistogramScope execute_timer(i_isolate->counters()->execute(),
i_isolate);
auto self = Utils::OpenHandle(this);
static_assert(sizeof(v8::Local<v8::Value>) == sizeof(i::Handle<i::Object>));
i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(
i::Execution::New(i_isolate, self, self, argc, args), &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
MaybeLocal<Function> Function::New(Local<Context> context,
FunctionCallback callback, Local<Value> data,
int length, ConstructorBehavior behavior,
SideEffectType side_effect_type) {
i::Isolate* i_isolate = Utils::OpenHandle(*context)->GetIsolate();
API_RCS_SCOPE(i_isolate, Function, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
auto templ =
FunctionTemplateNew(i_isolate, callback, data, Local<Signature>(), length,
behavior, true, Local<Private>(), side_effect_type);
return templ->GetFunction(context);
}
MaybeLocal<Object> Function::NewInstance(Local<Context> context, int argc,
v8::Local<v8::Value> argv[]) const {
return NewInstanceWithSideEffectType(context, argc, argv,
SideEffectType::kHasSideEffect);
}
MaybeLocal<Object> Function::NewInstanceWithSideEffectType(
Local<Context> context, int argc, v8::Local<v8::Value> argv[],
SideEffectType side_effect_type) const {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
TRACE_EVENT_CALL_STATS_SCOPED(i_isolate, "v8", "V8.Execute");
ENTER_V8(i_isolate, context, Function, NewInstance, MaybeLocal<Object>(),
InternalEscapableScope);
i::TimerEventScope<i::TimerEventExecute> timer_scope(i_isolate);
i::NestedTimedHistogramScope execute_timer(i_isolate->counters()->execute(),
i_isolate);
auto self = Utils::OpenHandle(this);
static_assert(sizeof(v8::Local<v8::Value>) == sizeof(i::Handle<i::Object>));
bool should_set_has_no_side_effect =
side_effect_type == SideEffectType::kHasNoSideEffect &&
i_isolate->should_check_side_effects();
if (should_set_has_no_side_effect) {
CHECK(IsJSFunction(*self) &&
i::JSFunction::cast(*self)->shared()->IsApiFunction());
i::Tagged<i::Object> obj =
i::JSFunction::cast(*self)->shared()->api_func_data()->call_code(
kAcquireLoad);
if (i::IsCallHandlerInfo(obj)) {
i::Tagged<i::CallHandlerInfo> handler_info =
i::CallHandlerInfo::cast(obj);
if (handler_info->IsSideEffectCallHandlerInfo()) {
i_isolate->debug()->IgnoreSideEffectsOnNextCallTo(
handle(handler_info, i_isolate));
}
}
}
i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv);
Local<Object> result;
has_pending_exception = !ToLocal<Object>(
i::Execution::New(i_isolate, self, self, argc, args), &result);
RETURN_ON_FAILED_EXECUTION(Object);
RETURN_ESCAPED(result);
}
MaybeLocal<v8::Value> Function::Call(Local<Context> context,
v8::Local<v8::Value> recv, int argc,
v8::Local<v8::Value> argv[]) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
TRACE_EVENT_CALL_STATS_SCOPED(i_isolate, "v8", "V8.Execute");
ENTER_V8(i_isolate, context, Function, Call, MaybeLocal<Value>(),
InternalEscapableScope);
i::TimerEventScope<i::TimerEventExecute> timer_scope(i_isolate);
i::NestedTimedHistogramScope execute_timer(i_isolate->counters()->execute(),
i_isolate);
auto self = Utils::OpenHandle(this);
Utils::ApiCheck(!self.is_null(), "v8::Function::Call",
"Function to be called is a null pointer");
i::Handle<i::Object> recv_obj = Utils::OpenHandle(*recv);
static_assert(sizeof(v8::Local<v8::Value>) == sizeof(i::Handle<i::Object>));
#ifdef V8_ENABLE_DIRECT_LOCAL
i::Handle<i::Object>* args = new i::Handle<i::Object>[argc];
for (int i = 0; i < argc; ++i) {
args[i] = Utils::OpenHandle(*argv[i]);
}
#else // !V8_ENABLE_DIRECT_LOCAL
i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv);
#endif // V8_ENABLE_DIRECT_LOCAL
Local<Value> result;
has_pending_exception = !ToLocal<Value>(
i::Execution::Call(i_isolate, self, recv_obj, argc, args), &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
void Function::SetName(v8::Local<v8::String> name) {
auto self = Utils::OpenHandle(this);
if (!IsJSFunction(*self)) return;
auto func = i::Handle<i::JSFunction>::cast(self);
DCHECK_NO_SCRIPT_NO_EXCEPTION(func->GetIsolate());
func->shared()->SetName(*Utils::OpenHandle(*name));
}
Local<Value> Function::GetName() const {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
if (i::IsJSBoundFunction(*self)) {
auto func = i::Handle<i::JSBoundFunction>::cast(self);
i::Handle<i::Object> name;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
i_isolate, name, i::JSBoundFunction::GetName(i_isolate, func),
Local<Value>());
return Utils::ToLocal(name);
}
if (i::IsJSFunction(*self)) {
auto func = i::Handle<i::JSFunction>::cast(self);
return Utils::ToLocal(handle(func->shared()->Name(), i_isolate));
}
return ToApiHandle<Primitive>(i_isolate->factory()->undefined_value());
}
Local<Value> Function::GetInferredName() const {
auto self = Utils::OpenHandle(this);
if (!IsJSFunction(*self)) {
return ToApiHandle<Primitive>(
self->GetIsolate()->factory()->undefined_value());
}
auto func = i::Handle<i::JSFunction>::cast(self);
return Utils::ToLocal(i::Handle<i::Object>(func->shared()->inferred_name(),
func->GetIsolate()));
}
Local<Value> Function::GetDebugName() const {
auto self = Utils::OpenHandle(this);
if (!IsJSFunction(*self)) {
return ToApiHandle<Primitive>(
self->GetIsolate()->factory()->undefined_value());
}
auto func = i::Handle<i::JSFunction>::cast(self);
i::Handle<i::String> name = i::JSFunction::GetDebugName(func);
return Utils::ToLocal(i::Handle<i::Object>(*name, self->GetIsolate()));
}
ScriptOrigin Function::GetScriptOrigin() const {
auto self = Utils::OpenHandle(this);
auto i_isolate = reinterpret_cast<v8::Isolate*>(self->GetIsolate());
if (!IsJSFunction(*self)) return v8::ScriptOrigin(i_isolate, Local<Value>());
auto func = i::Handle<i::JSFunction>::cast(self);
if (i::IsScript(func->shared()->script())) {
i::Handle<i::Script> script(i::Script::cast(func->shared()->script()),
func->GetIsolate());
return GetScriptOriginForScript(func->GetIsolate(), script);
}
return v8::ScriptOrigin(i_isolate, Local<Value>());
}
const int Function::kLineOffsetNotFound = -1;
int Function::GetScriptLineNumber() const {
auto self = Utils::OpenHandle(this);
if (!IsJSFunction(*self)) {
return kLineOffsetNotFound;
}
auto func = i::Handle<i::JSFunction>::cast(self);
if (i::IsScript(func->shared()->script())) {
i::Handle<i::Script> script(i::Script::cast(func->shared()->script()),
func->GetIsolate());
return i::Script::GetLineNumber(script, func->shared()->StartPosition());
}
return kLineOffsetNotFound;
}
int Function::GetScriptColumnNumber() const {
auto self = Utils::OpenHandle(this);
if (!IsJSFunction(*self)) {
return kLineOffsetNotFound;
}
auto func = i::Handle<i::JSFunction>::cast(self);
if (i::IsScript(func->shared()->script())) {
i::Handle<i::Script> script(i::Script::cast(func->shared()->script()),
func->GetIsolate());
return i::Script::GetColumnNumber(script, func->shared()->StartPosition());
}
return kLineOffsetNotFound;
}
int Function::GetScriptStartPosition() const {
auto self = Utils::OpenHandle(this);
if (!IsJSFunction(*self)) {
return kLineOffsetNotFound;
}
auto func = i::Handle<i::JSFunction>::cast(self);
if (i::IsScript(func->shared()->script())) {
return func->shared()->StartPosition();
}
return kLineOffsetNotFound;
}
MaybeLocal<UnboundScript> Function::GetUnboundScript() const {
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
if (!IsJSFunction(*self)) return MaybeLocal<UnboundScript>();
i::Tagged<i::SharedFunctionInfo> sfi = i::JSFunction::cast(*self)->shared();
i::Isolate* i_isolate = self->GetIsolate();
return ToApiHandle<UnboundScript>(i::handle(sfi, i_isolate));
}
int Function::ScriptId() const {
i::Tagged<i::JSReceiver> self = *Utils::OpenHandle(this);
if (!IsJSFunction(self)) return v8::UnboundScript::kNoScriptId;
auto func = i::JSFunction::cast(self);
if (!IsScript(func->shared()->script()))
return v8::UnboundScript::kNoScriptId;
return i::Script::cast(func->shared()->script())->id();
}
Local<v8::Value> Function::GetBoundFunction() const {
auto self = Utils::OpenHandle(this);
if (i::IsJSBoundFunction(*self)) {
auto bound_function = i::Handle<i::JSBoundFunction>::cast(self);
auto bound_target_function = i::handle(
bound_function->bound_target_function(), bound_function->GetIsolate());
return Utils::CallableToLocal(bound_target_function);
}
return v8::Undefined(reinterpret_cast<v8::Isolate*>(self->GetIsolate()));
}
bool Function::Experimental_IsNopFunction() const {
auto self = Utils::OpenHandle(this);
if (!IsJSFunction(*self)) return false;
i::Tagged<i::SharedFunctionInfo> sfi = i::JSFunction::cast(*self)->shared();
i::Isolate* i_isolate = self->GetIsolate();
i::IsCompiledScope is_compiled_scope(sfi->is_compiled_scope(i_isolate));
if (!is_compiled_scope.is_compiled() &&
!i::Compiler::Compile(i_isolate, i::handle(sfi, i_isolate),
i::Compiler::CLEAR_EXCEPTION, &is_compiled_scope)) {
return false;
}
DCHECK(is_compiled_scope.is_compiled());
// Since |sfi| can be GC'ed, we get it again.
sfi = i::JSFunction::cast(*self)->shared();
if (!sfi->HasBytecodeArray()) return false;
i::Handle<i::BytecodeArray> bytecode_array(sfi->GetBytecodeArray(i_isolate),
i_isolate);
i::interpreter::BytecodeArrayIterator it(bytecode_array, 0);
if (it.current_bytecode() != i::interpreter::Bytecode::kLdaUndefined) {
return false;
}
it.Advance();
DCHECK(!it.done());
if (it.current_bytecode() != i::interpreter::Bytecode::kReturn) return false;
it.Advance();
DCHECK(it.done());
return true;
}
MaybeLocal<String> v8::Function::FunctionProtoToString(Local<Context> context) {
PREPARE_FOR_EXECUTION(context, Function, FunctionProtoToString, String);
auto self = Utils::OpenHandle(this);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(
i::Execution::CallBuiltin(i_isolate, i_isolate->function_to_string(),
self, 0, nullptr),
&result);
RETURN_ON_FAILED_EXECUTION(String);
RETURN_ESCAPED(Local<String>::Cast(result));
}
int Name::GetIdentityHash() {
auto self = Utils::OpenHandle(this);
return static_cast<int>(self->EnsureHash());
}
int String::Length() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
return str->length();
}
bool String::IsOneByte() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
return str->IsOneByteRepresentation();
}
// Helpers for ContainsOnlyOneByteHelper
template <size_t size>
struct OneByteMask;
template <>
struct OneByteMask<4> {
static const uint32_t value = 0xFF00FF00;
};
template <>
struct OneByteMask<8> {
static const uint64_t value = 0xFF00'FF00'FF00'FF00;
};
static const uintptr_t kOneByteMask = OneByteMask<sizeof(uintptr_t)>::value;
static const uintptr_t kAlignmentMask = sizeof(uintptr_t) - 1;
static inline bool Unaligned(const uint16_t* chars) {
return reinterpret_cast<const uintptr_t>(chars) & kAlignmentMask;
}
static inline const uint16_t* Align(const uint16_t* chars) {
return reinterpret_cast<uint16_t*>(reinterpret_cast<uintptr_t>(chars) &
~kAlignmentMask);
}
class ContainsOnlyOneByteHelper {
public:
ContainsOnlyOneByteHelper() : is_one_byte_(true) {}
ContainsOnlyOneByteHelper(const ContainsOnlyOneByteHelper&) = delete;
ContainsOnlyOneByteHelper& operator=(const ContainsOnlyOneByteHelper&) =
delete;
bool Check(i::Tagged<i::String> string) {
i::Tagged<i::ConsString> cons_string =
i::String::VisitFlat(this, string, 0);
if (cons_string.is_null()) return is_one_byte_;
return CheckCons(cons_string);
}
void VisitOneByteString(const uint8_t* chars, int length) {
// Nothing to do.
}
void VisitTwoByteString(const uint16_t* chars, int length) {
// Accumulated bits.
uintptr_t acc = 0;
// Align to uintptr_t.
const uint16_t* end = chars + length;
while (Unaligned(chars) && chars != end) {
acc |= *chars++;
}
// Read word aligned in blocks,
// checking the return value at the end of each block.
const uint16_t* aligned_end = Align(end);
const int increment = sizeof(uintptr_t) / sizeof(uint16_t);
const int inner_loops = 16;
while (chars + inner_loops * increment < aligned_end) {
for (int i = 0; i < inner_loops; i++) {
acc |= *reinterpret_cast<const uintptr_t*>(chars);
chars += increment;
}
// Check for early return.
if ((acc & kOneByteMask) != 0) {
is_one_byte_ = false;
return;
}
}
// Read the rest.
while (chars != end) {
acc |= *chars++;
}
// Check result.
if ((acc & kOneByteMask) != 0) is_one_byte_ = false;
}
private:
bool CheckCons(i::Tagged<i::ConsString> cons_string) {
while (true) {
// Check left side if flat.
i::Tagged<i::String> left = cons_string->first();
i::Tagged<i::ConsString> left_as_cons =
i::String::VisitFlat(this, left, 0);
if (!is_one_byte_) return false;
// Check right side if flat.
i::Tagged<i::String> right = cons_string->second();
i::Tagged<i::ConsString> right_as_cons =
i::String::VisitFlat(this, right, 0);
if (!is_one_byte_) return false;
// Standard recurse/iterate trick.
if (!left_as_cons.is_null() && !right_as_cons.is_null()) {
if (left->length() < right->length()) {
CheckCons(left_as_cons);
cons_string = right_as_cons;
} else {
CheckCons(right_as_cons);
cons_string = left_as_cons;
}
// Check fast return.
if (!is_one_byte_) return false;
continue;
}
// Descend left in place.
if (!left_as_cons.is_null()) {
cons_string = left_as_cons;
continue;
}
// Descend right in place.
if (!right_as_cons.is_null()) {
cons_string = right_as_cons;
continue;
}
// Terminate.
break;
}
return is_one_byte_;
}
bool is_one_byte_;
};
bool String::ContainsOnlyOneByte() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
if (str->IsOneByteRepresentation()) return true;
ContainsOnlyOneByteHelper helper;
return helper.Check(*str);
}
int String::Utf8Length(Isolate* v8_isolate) const {
i::Handle<i::String> str = Utils::OpenHandle(this);
str = i::String::Flatten(reinterpret_cast<i::Isolate*>(v8_isolate), str);
int length = str->length();
if (length == 0) return 0;
i::DisallowGarbageCollection no_gc;
i::String::FlatContent flat = str->GetFlatContent(no_gc);
DCHECK(flat.IsFlat());
int utf8_length = 0;
if (flat.IsOneByte()) {
for (uint8_t c : flat.ToOneByteVector()) {
utf8_length += c >> 7;
}
utf8_length += length;
} else {
int last_character = unibrow::Utf16::kNoPreviousCharacter;
for (uint16_t c : flat.ToUC16Vector()) {
utf8_length += unibrow::Utf8::Length(c, last_character);
last_character = c;
}
}
return utf8_length;
}
namespace {
// Writes the flat content of a string to a buffer. This is done in two phases.
// The first phase calculates a pessimistic estimate (writable_length) on how
// many code units can be safely written without exceeding the buffer capacity
// and without leaving at a lone surrogate. The estimated number of code units
// is then written out in one go, and the reported byte usage is used to
// correct the estimate. This is repeated until the estimate becomes <= 0 or
// all code units have been written out. The second phase writes out code
// units until the buffer capacity is reached, would be exceeded by the next
// unit, or all code units have been written out.
template <typename Char>
static int WriteUtf8Impl(base::Vector<const Char> string, char* write_start,
int write_capacity, int options,
int* utf16_chars_read_out) {
bool write_null = !(options & v8::String::NO_NULL_TERMINATION);
bool replace_invalid_utf8 = (options & v8::String::REPLACE_INVALID_UTF8);
char* current_write = write_start;
const Char* read_start = string.begin();
int read_index = 0;
int read_length = string.length();
int prev_char = unibrow::Utf16::kNoPreviousCharacter;
// Do a fast loop where there is no exit capacity check.
// Need enough space to write everything but one character.
static_assert(unibrow::Utf16::kMaxExtraUtf8BytesForOneUtf16CodeUnit == 3);
static const int kMaxSizePerChar = sizeof(Char) == 1 ? 2 : 3;
while (read_index < read_length) {
int up_to = read_length;
if (write_capacity != -1) {
int remaining_capacity =
write_capacity - static_cast<int>(current_write - write_start);
int writable_length =
(remaining_capacity - kMaxSizePerChar) / kMaxSizePerChar;
// Need to drop into slow loop.
if (writable_length <= 0) break;
up_to = std::min(up_to, read_index + writable_length);
}
// Write the characters to the stream.
if (sizeof(Char) == 1) {
// Simply memcpy if we only have ASCII characters.
uint8_t char_mask = 0;
for (int i = read_index; i < up_to; i++) char_mask |= read_start[i];
if ((char_mask & 0x80) == 0) {
int copy_length = up_to - read_index;
memcpy(current_write, read_start + read_index, copy_length);
current_write += copy_length;
read_index = up_to;
} else {
for (; read_index < up_to; read_index++) {
current_write += unibrow::Utf8::EncodeOneByte(
current_write, static_cast<uint8_t>(read_start[read_index]));
DCHECK(write_capacity == -1 ||
(current_write - write_start) <= write_capacity);
}
}
} else {
for (; read_index < up_to; read_index++) {
uint16_t character = read_start[read_index];
current_write += unibrow::Utf8::Encode(current_write, character,
prev_char, replace_invalid_utf8);
prev_char = character;
DCHECK(write_capacity == -1 ||
(current_write - write_start) <= write_capacity);
}
}
}
if (read_index < read_length) {
DCHECK_NE(-1, write_capacity);
// Aborted due to limited capacity. Check capacity on each iteration.
int remaining_capacity =
write_capacity - static_cast<int>(current_write - write_start);
DCHECK_GE(remaining_capacity, 0);
for (; read_index < read_length && remaining_capacity > 0; read_index++) {
uint32_t character = read_start[read_index];
int written = 0;
// We can't use a local buffer here because Encode needs to modify
// previous characters in the stream. We know, however, that
// exactly one character will be advanced.
if (unibrow::Utf16::IsSurrogatePair(prev_char, character)) {
written = unibrow::Utf8::Encode(current_write, character, prev_char,
replace_invalid_utf8);
DCHECK_EQ(written, 1);
} else {
// Use a scratch buffer to check the required characters.
char temp_buffer[unibrow::Utf8::kMaxEncodedSize];
// Encoding a surrogate pair to Utf8 always takes 4 bytes.
static const int kSurrogatePairEncodedSize =
static_cast<int>(unibrow::Utf8::kMaxEncodedSize);
// For REPLACE_INVALID_UTF8, catch the case where we cut off in the
// middle of a surrogate pair. Abort before encoding the pair instead.
if (replace_invalid_utf8 &&
remaining_capacity < kSurrogatePairEncodedSize &&
unibrow::Utf16::IsLeadSurrogate(character) &&
read_index + 1 < read_length &&
unibrow::Utf16::IsTrailSurrogate(read_start[read_index + 1])) {
write_null = false;
break;
}
// Can't encode using prev_char as gcc has array bounds issues.
written = unibrow::Utf8::Encode(temp_buffer, character,
unibrow::Utf16::kNoPreviousCharacter,
replace_invalid_utf8);
if (written > remaining_capacity) {
// Won't fit. Abort and do not null-terminate the result.
write_null = false;
break;
}
// Copy over the character from temp_buffer.
for (int i = 0; i < written; i++) current_write[i] = temp_buffer[i];
}
current_write += written;
remaining_capacity -= written;
prev_char = character;
}
}
// Write out number of utf16 characters written to the stream.
if (utf16_chars_read_out != nullptr) *utf16_chars_read_out = read_index;
// Only null-terminate if there's space.
if (write_null && (write_capacity == -1 ||
(current_write - write_start) < write_capacity)) {
*current_write++ = '\0';
}
return static_cast<int>(current_write - write_start);
}
} // anonymous namespace
int String::WriteUtf8(Isolate* v8_isolate, char* buffer, int capacity,
int* nchars_ref, int options) const {
i::Handle<i::String> str = Utils::OpenHandle(this);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, String, WriteUtf8);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
str = i::String::Flatten(i_isolate, str);
i::DisallowGarbageCollection no_gc;
i::String::FlatContent content = str->GetFlatContent(no_gc);
if (content.IsOneByte()) {
return WriteUtf8Impl<uint8_t>(content.ToOneByteVector(), buffer, capacity,
options, nchars_ref);
} else {
return WriteUtf8Impl<uint16_t>(content.ToUC16Vector(), buffer, capacity,
options, nchars_ref);
}
}
template <typename CharType>
static inline int WriteHelper(i::Isolate* i_isolate, const String* string,
CharType* buffer, int start, int length,
int options) {
API_RCS_SCOPE(i_isolate, String, Write);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
DCHECK(start >= 0 && length >= -1);
i::Handle<i::String> str = Utils::OpenHandle(string);
str = i::String::Flatten(i_isolate, str);
int end = start + length;
if ((length == -1) || (length > str->length() - start)) end = str->length();
if (end < 0) return 0;
int write_length = end - start;
if (start < end) i::String::WriteToFlat(*str, buffer, start, write_length);
if (!(options & String::NO_NULL_TERMINATION) &&
(length == -1 || write_length < length)) {
buffer[write_length] = '\0';
}
return write_length;
}
int String::WriteOneByte(Isolate* v8_isolate, uint8_t* buffer, int start,
int length, int options) const {
return WriteHelper(reinterpret_cast<i::Isolate*>(v8_isolate), this, buffer,
start, length, options);
}
int String::Write(Isolate* v8_isolate, uint16_t* buffer, int start, int length,
int options) const {
return WriteHelper(reinterpret_cast<i::Isolate*>(v8_isolate), this, buffer,
start, length, options);
}
namespace {
bool HasExternalStringResource(i::Tagged<i::String> string) {
return i::StringShape(string).IsExternal() ||
string->HasExternalForwardingIndex(kAcquireLoad);
}
v8::String::ExternalStringResourceBase* GetExternalResourceFromForwardingTable(
i::Tagged<i::String> string, uint32_t raw_hash, bool* is_one_byte) {
DCHECK(i::String::IsExternalForwardingIndex(raw_hash));
const int index = i::String::ForwardingIndexValueBits::decode(raw_hash);
i::Isolate* isolate = i::GetIsolateFromWritableObject(string);
auto resource = isolate->string_forwarding_table()->GetExternalResource(
index, is_one_byte);
DCHECK_NOT_NULL(resource);
return resource;
}
} // namespace
bool v8::String::IsExternal() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
return HasExternalStringResource(*str);
}
bool v8::String::IsExternalTwoByte() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
if (i::StringShape(*str).IsExternalTwoByte()) return true;
uint32_t raw_hash_field = str->raw_hash_field(kAcquireLoad);
if (i::String::IsExternalForwardingIndex(raw_hash_field)) {
bool is_one_byte;
GetExternalResourceFromForwardingTable(*str, raw_hash_field, &is_one_byte);
return !is_one_byte;
}
return false;
}
bool v8::String::IsExternalOneByte() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
if (i::StringShape(*str).IsExternalOneByte()) return true;
uint32_t raw_hash_field = str->raw_hash_field(kAcquireLoad);
if (i::String::IsExternalForwardingIndex(raw_hash_field)) {
bool is_one_byte;
GetExternalResourceFromForwardingTable(*str, raw_hash_field, &is_one_byte);
return is_one_byte;
}
return false;
}
void v8::String::VerifyExternalStringResource(
v8::String::ExternalStringResource* value) const {
i::DisallowGarbageCollection no_gc;
i::Tagged<i::String> str = *Utils::OpenHandle(this);
const v8::String::ExternalStringResource* expected;
if (i::IsThinString(str)) {
str = i::ThinString::cast(str)->actual();
}
if (i::StringShape(str).IsExternalTwoByte()) {
const void* resource = i::ExternalTwoByteString::cast(str)->resource();
expected = reinterpret_cast<const ExternalStringResource*>(resource);
} else {
uint32_t raw_hash_field = str->raw_hash_field(kAcquireLoad);
if (i::String::IsExternalForwardingIndex(raw_hash_field)) {
bool is_one_byte;
auto resource = GetExternalResourceFromForwardingTable(
str, raw_hash_field, &is_one_byte);
if (!is_one_byte) {
expected = reinterpret_cast<const ExternalStringResource*>(resource);
}
} else {
expected = nullptr;
}
}
CHECK_EQ(expected, value);
}
void v8::String::VerifyExternalStringResourceBase(
v8::String::ExternalStringResourceBase* value, Encoding encoding) const {
i::DisallowGarbageCollection no_gc;
i::Tagged<i::String> str = *Utils::OpenHandle(this);
const v8::String::ExternalStringResourceBase* expected;
Encoding expectedEncoding;
if (i::IsThinString(str)) {
str = i::ThinString::cast(str)->actual();
}
if (i::StringShape(str).IsExternalOneByte()) {
const void* resource = i::ExternalOneByteString::cast(str)->resource();
expected = reinterpret_cast<const ExternalStringResourceBase*>(resource);
expectedEncoding = ONE_BYTE_ENCODING;
} else if (i::StringShape(str).IsExternalTwoByte()) {
const void* resource = i::ExternalTwoByteString::cast(str)->resource();
expected = reinterpret_cast<const ExternalStringResourceBase*>(resource);
expectedEncoding = TWO_BYTE_ENCODING;
} else {
uint32_t raw_hash_field = str->raw_hash_field(kAcquireLoad);
if (i::String::IsExternalForwardingIndex(raw_hash_field)) {
bool is_one_byte;
expected = GetExternalResourceFromForwardingTable(str, raw_hash_field,
&is_one_byte);
expectedEncoding = is_one_byte ? ONE_BYTE_ENCODING : TWO_BYTE_ENCODING;
} else {
expected = nullptr;
expectedEncoding = str->IsOneByteRepresentation() ? ONE_BYTE_ENCODING
: TWO_BYTE_ENCODING;
}
}
CHECK_EQ(expected, value);
CHECK_EQ(expectedEncoding, encoding);
}
String::ExternalStringResource* String::GetExternalStringResourceSlow() const {
i::DisallowGarbageCollection no_gc;
i::Tagged<i::String> str = *Utils::OpenHandle(this);
if (i::IsThinString(str)) {
str = i::ThinString::cast(str)->actual();
}
if (i::StringShape(str).IsExternalTwoByte()) {
Isolate* isolate = i::Internals::GetIsolateForSandbox(str.ptr());
i::Address value =
i::Internals::ReadExternalPointerField<i::kExternalStringResourceTag>(
isolate, str.ptr(), i::Internals::kStringResourceOffset);
return reinterpret_cast<String::ExternalStringResource*>(value);
} else {
uint32_t raw_hash_field = str->raw_hash_field(kAcquireLoad);
if (i::String::IsExternalForwardingIndex(raw_hash_field)) {
bool is_one_byte;
auto resource = GetExternalResourceFromForwardingTable(
str, raw_hash_field, &is_one_byte);
if (!is_one_byte) {
return reinterpret_cast<ExternalStringResource*>(resource);
}
}
}
return nullptr;
}
void String::ExternalStringResource::UpdateDataCache() {
DCHECK(IsCacheable());
cached_data_ = data();
}
void String::ExternalStringResource::CheckCachedDataInvariants() const {
DCHECK(IsCacheable() && cached_data_ != nullptr);
}
void String::ExternalOneByteStringResource::UpdateDataCache() {
DCHECK(IsCacheable());
cached_data_ = data();
}
void String::ExternalOneByteStringResource::CheckCachedDataInvariants() const {
DCHECK(IsCacheable() && cached_data_ != nullptr);
}
String::ExternalStringResourceBase* String::GetExternalStringResourceBaseSlow(
String::Encoding* encoding_out) const {
i::DisallowGarbageCollection no_gc;
ExternalStringResourceBase* resource = nullptr;
i::Tagged<i::String> str = *Utils::OpenHandle(this);
if (i::IsThinString(str)) {
str = i::ThinString::cast(str)->actual();
}
internal::Address string = str.ptr();
int type = i::Internals::GetInstanceType(string) &
i::Internals::kStringRepresentationAndEncodingMask;
*encoding_out =
static_cast<Encoding>(type & i::Internals::kStringEncodingMask);
if (i::StringShape(str).IsExternalOneByte() ||
i::StringShape(str).IsExternalTwoByte()) {
Isolate* isolate = i::Internals::GetIsolateForSandbox(string);
i::Address value =
i::Internals::ReadExternalPointerField<i::kExternalStringResourceTag>(
isolate, string, i::Internals::kStringResourceOffset);
resource = reinterpret_cast<ExternalStringResourceBase*>(value);
} else {
uint32_t raw_hash_field = str->raw_hash_field();
if (i::String::IsExternalForwardingIndex(raw_hash_field)) {
bool is_one_byte;
resource = GetExternalResourceFromForwardingTable(str, raw_hash_field,
&is_one_byte);
*encoding_out = is_one_byte ? Encoding::ONE_BYTE_ENCODING
: Encoding::TWO_BYTE_ENCODING;
}
}
return resource;
}
const v8::String::ExternalOneByteStringResource*
v8::String::GetExternalOneByteStringResource() const {
i::DisallowGarbageCollection no_gc;
i::Tagged<i::String> str = *Utils::OpenHandle(this);
if (i::StringShape(str).IsExternalOneByte()) {
return i::ExternalOneByteString::cast(str)->resource();
} else if (i::IsThinString(str)) {
str = i::ThinString::cast(str)->actual();
if (i::StringShape(str).IsExternalOneByte()) {
return i::ExternalOneByteString::cast(str)->resource();
}
}
uint32_t raw_hash_field = str->raw_hash_field(kAcquireLoad);
if (i::String::IsExternalForwardingIndex(raw_hash_field)) {
bool is_one_byte;
auto resource = GetExternalResourceFromForwardingTable(str, raw_hash_field,
&is_one_byte);
if (is_one_byte) {
return reinterpret_cast<ExternalOneByteStringResource*>(resource);
}
}
return nullptr;
}
Local<Value> Symbol::Description(Isolate* v8_isolate) const {
i::Handle<i::Symbol> sym = Utils::OpenHandle(this);
i::Handle<i::Object> description(sym->description(),
reinterpret_cast<i::Isolate*>(v8_isolate));
return Utils::ToLocal(description);
}
Local<Value> Private::Name() const {
const Symbol* sym = reinterpret_cast<const Symbol*>(this);
i::Handle<i::Symbol> i_sym = Utils::OpenHandle(sym);
// v8::Private symbols are created by API and are therefore writable, so we
// can always recover an Isolate.
i::Isolate* i_isolate = i::GetIsolateFromWritableObject(*i_sym);
return sym->Description(reinterpret_cast<Isolate*>(i_isolate));
}
double Number::Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return i::Object::Number(*obj);
}
bool Boolean::Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return i::IsTrue(*obj);
}
int64_t Integer::Value() const {
i::Tagged<i::Object> obj = *Utils::OpenHandle(this);
if (i::IsSmi(obj)) {
return i::Smi::ToInt(obj);
} else {
return static_cast<int64_t>(i::Object::Number(obj));
}
}
int32_t Int32::Value() const {
i::Tagged<i::Object> obj = *Utils::OpenHandle(this);
if (i::IsSmi(obj)) {
return i::Smi::ToInt(obj);
} else {
return static_cast<int32_t>(i::Object::Number(obj));
}
}
uint32_t Uint32::Value() const {
i::Tagged<i::Object> obj = *Utils::OpenHandle(this);
if (i::IsSmi(obj)) {
return i::Smi::ToInt(obj);
} else {
return static_cast<uint32_t>(i::Object::Number(obj));
}
}
int v8::Object::InternalFieldCount() const {
i::Tagged<i::JSReceiver> self = *Utils::OpenHandle(this);
if (!IsJSObject(self)) return 0;
return i::JSObject::cast(self)->GetEmbedderFieldCount();
}
static bool InternalFieldOK(i::Handle<i::JSReceiver> obj, int index,
const char* location) {
return Utils::ApiCheck(
IsJSObject(*obj) &&
(index < i::Handle<i::JSObject>::cast(obj)->GetEmbedderFieldCount()),
location, "Internal field out of bounds");
}
Local<Data> v8::Object::SlowGetInternalField(int index) {
i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this);
const char* location = "v8::Object::GetInternalField()";
if (!InternalFieldOK(obj, index, location)) return Local<Value>();
i::Handle<i::Object> value(i::JSObject::cast(*obj)->GetEmbedderField(index),
obj->GetIsolate());
return ToApiHandle<Data>(value);
}
void v8::Object::SetInternalField(int index, v8::Local<Data> value) {
i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this);
const char* location = "v8::Object::SetInternalField()";
if (!InternalFieldOK(obj, index, location)) return;
i::Handle<i::Object> val = Utils::OpenHandle(*value);
i::Handle<i::JSObject>::cast(obj)->SetEmbedderField(index, *val);
}
void* v8::Object::SlowGetAlignedPointerFromInternalField(int index) {
i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this);
const char* location = "v8::Object::GetAlignedPointerFromInternalField()";
if (!InternalFieldOK(obj, index, location)) return nullptr;
void* result;
Utils::ApiCheck(i::EmbedderDataSlot(i::JSObject::cast(*obj), index)
.ToAlignedPointer(obj->GetIsolate(), &result),
location, "Unaligned pointer");
return result;
}
void v8::Object::SetAlignedPointerInInternalField(int index, void* value) {
i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this);
const char* location = "v8::Object::SetAlignedPointerInInternalField()";
if (!InternalFieldOK(obj, index, location)) return;
i::DisallowGarbageCollection no_gc;
Utils::ApiCheck(i::EmbedderDataSlot(i::JSObject::cast(*obj), index)
.store_aligned_pointer(obj->GetIsolate(), value),
location, "Unaligned pointer");
DCHECK_EQ(value, GetAlignedPointerFromInternalField(index));
internal::WriteBarrier::CombinedBarrierFromInternalFields(
i::JSObject::cast(*obj), value);
}
void v8::Object::SetAlignedPointerInInternalFields(int argc, int indices[],
void* values[]) {
i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this);
i::DisallowGarbageCollection no_gc;
const char* location = "v8::Object::SetAlignedPointerInInternalFields()";
i::Tagged<i::JSObject> js_obj = i::JSObject::cast(*obj);
int nof_embedder_fields = js_obj->GetEmbedderFieldCount();
for (int i = 0; i < argc; i++) {
int index = indices[i];
if (!Utils::ApiCheck(index < nof_embedder_fields, location,
"Internal field out of bounds")) {
return;
}
void* value = values[i];
Utils::ApiCheck(i::EmbedderDataSlot(js_obj, index)
.store_aligned_pointer(obj->GetIsolate(), value),
location, "Unaligned pointer");
DCHECK_EQ(value, GetAlignedPointerFromInternalField(index));
}
internal::WriteBarrier::CombinedBarrierFromInternalFields(js_obj, argc,
values);
}
// --- E n v i r o n m e n t ---
void v8::V8::InitializePlatform(Platform* platform) {
i::V8::InitializePlatform(platform);
}
void v8::V8::DisposePlatform() { i::V8::DisposePlatform(); }
bool v8::V8::Initialize(const int build_config) {
const bool kEmbedderPointerCompression =
(build_config & kPointerCompression) != 0;
if (kEmbedderPointerCompression != COMPRESS_POINTERS_BOOL) {
FATAL(
"Embedder-vs-V8 build configuration mismatch. On embedder side "
"pointer compression is %s while on V8 side it's %s.",
kEmbedderPointerCompression ? "ENABLED" : "DISABLED",
COMPRESS_POINTERS_BOOL ? "ENABLED" : "DISABLED");
}
const int kEmbedderSmiValueSize = (build_config & k31BitSmis) ? 31 : 32;
if (kEmbedderSmiValueSize != internal::kSmiValueSize) {
FATAL(
"Embedder-vs-V8 build configuration mismatch. On embedder side "
"Smi value size is %d while on V8 side it's %d.",
kEmbedderSmiValueSize, internal::kSmiValueSize);
}
const bool kEmbedderSandbox = (build_config & kSandbox) != 0;
if (kEmbedderSandbox != V8_ENABLE_SANDBOX_BOOL) {
FATAL(
"Embedder-vs-V8 build configuration mismatch. On embedder side "
"sandbox is %s while on V8 side it's %s.",
kEmbedderSandbox ? "ENABLED" : "DISABLED",
V8_ENABLE_SANDBOX_BOOL ? "ENABLED" : "DISABLED");
}
i::V8::Initialize();
return true;
}
#if V8_OS_LINUX || V8_OS_DARWIN
bool TryHandleWebAssemblyTrapPosix(int sig_code, siginfo_t* info,
void* context) {
#if V8_ENABLE_WEBASSEMBLY && V8_TRAP_HANDLER_SUPPORTED
return i::trap_handler::TryHandleSignal(sig_code, info, context);
#else
return false;
#endif
}
#endif
#if V8_OS_WIN
bool TryHandleWebAssemblyTrapWindows(EXCEPTION_POINTERS* exception) {
#if V8_ENABLE_WEBASSEMBLY && V8_TRAP_HANDLER_SUPPORTED
return i::trap_handler::TryHandleWasmTrap(exception);
#else
return false;
#endif
}
#endif
bool V8::EnableWebAssemblyTrapHandler(bool use_v8_signal_handler) {
#if V8_ENABLE_WEBASSEMBLY
return v8::internal::trap_handler::EnableTrapHandler(use_v8_signal_handler);
#else
return false;
#endif
}
#if defined(V8_OS_WIN)
void V8::SetUnhandledExceptionCallback(
UnhandledExceptionCallback unhandled_exception_callback) {
#if defined(V8_OS_WIN64)
v8::internal::win64_unwindinfo::SetUnhandledExceptionCallback(
unhandled_exception_callback);
#else
// Not implemented, port needed.
#endif // V8_OS_WIN64
}
#endif // V8_OS_WIN
void v8::V8::SetFatalMemoryErrorCallback(
v8::OOMErrorCallback oom_error_callback) {
g_oom_error_callback = oom_error_callback;
}
void v8::V8::SetEntropySource(EntropySource entropy_source) {
base::RandomNumberGenerator::SetEntropySource(entropy_source);
}
void v8::V8::SetReturnAddressLocationResolver(
ReturnAddressLocationResolver return_address_resolver) {
i::StackFrame::SetReturnAddressLocationResolver(return_address_resolver);
}
bool v8::V8::Dispose() {
i::V8::Dispose();
return true;
}
SharedMemoryStatistics::SharedMemoryStatistics()
: read_only_space_size_(0),
read_only_space_used_size_(0),
read_only_space_physical_size_(0) {}
HeapStatistics::HeapStatistics()
: total_heap_size_(0),
total_heap_size_executable_(0),
total_physical_size_(0),
total_available_size_(0),
used_heap_size_(0),
heap_size_limit_(0),
malloced_memory_(0),
external_memory_(0),
peak_malloced_memory_(0),
does_zap_garbage_(false),
number_of_native_contexts_(0),
number_of_detached_contexts_(0) {}
HeapSpaceStatistics::HeapSpaceStatistics()
: space_name_(nullptr),
space_size_(0),
space_used_size_(0),
space_available_size_(0),
physical_space_size_(0) {}
HeapObjectStatistics::HeapObjectStatistics()
: object_type_(nullptr),
object_sub_type_(nullptr),
object_count_(0),
object_size_(0) {}
HeapCodeStatistics::HeapCodeStatistics()
: code_and_metadata_size_(0),
bytecode_and_metadata_size_(0),
external_script_source_size_(0),
cpu_profiler_metadata_size_(0) {}
bool v8::V8::InitializeICU(const char* icu_data_file) {
return i::InitializeICU(icu_data_file);
}
bool v8::V8::InitializeICUDefaultLocation(const char* exec_path,
const char* icu_data_file) {
return i::InitializeICUDefaultLocation(exec_path, icu_data_file);
}
void v8::V8::InitializeExternalStartupData(const char* directory_path) {
i::InitializeExternalStartupData(directory_path);
}
// static
void v8::V8::InitializeExternalStartupDataFromFile(const char* snapshot_blob) {
i::InitializeExternalStartupDataFromFile(snapshot_blob);
}
const char* v8::V8::GetVersion() { return i::Version::GetVersion(); }
#ifdef V8_ENABLE_SANDBOX
VirtualAddressSpace* v8::V8::GetSandboxAddressSpace() {
Utils::ApiCheck(i::GetProcessWideSandbox()->is_initialized(),
"v8::V8::GetSandboxAddressSpace",
"The sandbox must be initialized first");
return i::GetProcessWideSandbox()->address_space();
}
size_t v8::V8::GetSandboxSizeInBytes() {
Utils::ApiCheck(i::GetProcessWideSandbox()->is_initialized(),
"v8::V8::GetSandboxSizeInBytes",
"The sandbox must be initialized first.");
return i::GetProcessWideSandbox()->size();
}
size_t v8::V8::GetSandboxReservationSizeInBytes() {
Utils::ApiCheck(i::GetProcessWideSandbox()->is_initialized(),
"v8::V8::GetSandboxReservationSizeInBytes",
"The sandbox must be initialized first");
return i::GetProcessWideSandbox()->reservation_size();
}
bool v8::V8::IsSandboxConfiguredSecurely() {
Utils::ApiCheck(i::GetProcessWideSandbox()->is_initialized(),
"v8::V8::IsSandoxConfiguredSecurely",
"The sandbox must be initialized first");
// The sandbox is (only) configured insecurely if it is a partially reserved
// sandbox, since in that case unrelated memory mappings may end up inside
// the sandbox address space where they could be corrupted by an attacker.
return !i::GetProcessWideSandbox()->is_partially_reserved();
}
#endif // V8_ENABLE_SANDBOX
void V8::GetSharedMemoryStatistics(SharedMemoryStatistics* statistics) {
i::ReadOnlyHeap::PopulateReadOnlySpaceStatistics(statistics);
}
template <typename ObjectType>
struct InvokeBootstrapper;
template <>
struct InvokeBootstrapper<i::NativeContext> {
i::Handle<i::NativeContext> Invoke(
i::Isolate* i_isolate,
i::MaybeHandle<i::JSGlobalProxy> maybe_global_proxy,
v8::Local<v8::ObjectTemplate> global_proxy_template,
v8::ExtensionConfiguration* extensions, size_t context_snapshot_index,
v8::DeserializeInternalFieldsCallback embedder_fields_deserializer,
v8::MicrotaskQueue* microtask_queue) {
return i_isolate->bootstrapper()->CreateEnvironment(
maybe_global_proxy, global_proxy_template, extensions,
context_snapshot_index, embedder_fields_deserializer, microtask_queue);
}
};
template <>
struct InvokeBootstrapper<i::JSGlobalProxy> {
i::Handle<i::JSGlobalProxy> Invoke(
i::Isolate* i_isolate,
i::MaybeHandle<i::JSGlobalProxy> maybe_global_proxy,
v8::Local<v8::ObjectTemplate> global_proxy_template,
v8::ExtensionConfiguration* extensions, size_t context_snapshot_index,
v8::DeserializeInternalFieldsCallback embedder_fields_deserializer,
v8::MicrotaskQueue* microtask_queue) {
USE(extensions);
USE(context_snapshot_index);
return i_isolate->bootstrapper()->NewRemoteContext(maybe_global_proxy,
global_proxy_template);
}
};
template <typename ObjectType>
static i::Handle<ObjectType> CreateEnvironment(
i::Isolate* i_isolate, v8::ExtensionConfiguration* extensions,
v8::MaybeLocal<ObjectTemplate> maybe_global_template,
v8::MaybeLocal<Value> maybe_global_proxy, size_t context_snapshot_index,
v8::DeserializeInternalFieldsCallback embedder_fields_deserializer,
v8::MicrotaskQueue* microtask_queue) {
i::Handle<ObjectType> result;
{
ENTER_V8_FOR_NEW_CONTEXT(i_isolate);
v8::Local<ObjectTemplate> proxy_template;
i::Handle<i::FunctionTemplateInfo> proxy_constructor;
i::Handle<i::FunctionTemplateInfo> global_constructor;
i::Handle<i::HeapObject> named_interceptor(
i_isolate->factory()->undefined_value());
i::Handle<i::HeapObject> indexed_interceptor(
i_isolate->factory()->undefined_value());
if (!maybe_global_template.IsEmpty()) {
v8::Local<v8::ObjectTemplate> global_template =
maybe_global_template.ToLocalChecked();
// Make sure that the global_template has a constructor.
global_constructor = EnsureConstructor(i_isolate, *global_template);
// Create a fresh template for the global proxy object.
proxy_template =
ObjectTemplate::New(reinterpret_cast<v8::Isolate*>(i_isolate));
proxy_constructor = EnsureConstructor(i_isolate, *proxy_template);
// Set the global template to be the prototype template of
// global proxy template.
i::FunctionTemplateInfo::SetPrototypeTemplate(
i_isolate, proxy_constructor, Utils::OpenHandle(*global_template));
proxy_template->SetInternalFieldCount(
global_template->InternalFieldCount());
// Migrate security handlers from global_template to
// proxy_template. Temporarily removing access check
// information from the global template.
if (!IsUndefined(global_constructor->GetAccessCheckInfo(), i_isolate)) {
i::FunctionTemplateInfo::SetAccessCheckInfo(
i_isolate, proxy_constructor,
i::handle(global_constructor->GetAccessCheckInfo(), i_isolate));
proxy_constructor->set_needs_access_check(
global_constructor->needs_access_check());
global_constructor->set_needs_access_check(false);
i::FunctionTemplateInfo::SetAccessCheckInfo(
i_isolate, global_constructor,
i::ReadOnlyRoots(i_isolate).undefined_value_handle());
}
// Same for other interceptors. If the global constructor has
// interceptors, we need to replace them temporarily with noop
// interceptors, so the map is correctly marked as having interceptors,
// but we don't invoke any.
if (!IsUndefined(global_constructor->GetNamedPropertyHandler(),
i_isolate)) {
named_interceptor =
handle(global_constructor->GetNamedPropertyHandler(), i_isolate);
i::FunctionTemplateInfo::SetNamedPropertyHandler(
i_isolate, global_constructor,
i::ReadOnlyRoots(i_isolate).noop_interceptor_info_handle());
}
if (!IsUndefined(global_constructor->GetIndexedPropertyHandler(),
i_isolate)) {
indexed_interceptor =
handle(global_constructor->GetIndexedPropertyHandler(), i_isolate);
i::FunctionTemplateInfo::SetIndexedPropertyHandler(
i_isolate, global_constructor,
i::ReadOnlyRoots(i_isolate).noop_interceptor_info_handle());
}
}
i::MaybeHandle<i::JSGlobalProxy> maybe_proxy;
if (!maybe_global_proxy.IsEmpty()) {
maybe_proxy = i::Handle<i::JSGlobalProxy>::cast(
Utils::OpenHandle(*maybe_global_proxy.ToLocalChecked()));
}
// Create the environment.
InvokeBootstrapper<ObjectType> invoke;
result = invoke.Invoke(i_isolate, maybe_proxy, proxy_template, extensions,
context_snapshot_index, embedder_fields_deserializer,
microtask_queue);
// Restore the access check info and interceptors on the global template.
if (!maybe_global_template.IsEmpty()) {
DCHECK(!global_constructor.is_null());
DCHECK(!proxy_constructor.is_null());
i::FunctionTemplateInfo::SetAccessCheckInfo(
i_isolate, global_constructor,
i::handle(proxy_constructor->GetAccessCheckInfo(), i_isolate));
global_constructor->set_needs_access_check(
proxy_constructor->needs_access_check());
i::FunctionTemplateInfo::SetNamedPropertyHandler(
i_isolate, global_constructor, named_interceptor);
i::FunctionTemplateInfo::SetIndexedPropertyHandler(
i_isolate, global_constructor, indexed_interceptor);
}
}
// Leave V8.
return result;
}
Local<Context> NewContext(
v8::Isolate* external_isolate, v8::ExtensionConfiguration* extensions,
v8::MaybeLocal<ObjectTemplate> global_template,
v8::MaybeLocal<Value> global_object, size_t context_snapshot_index,
v8::DeserializeInternalFieldsCallback embedder_fields_deserializer,
v8::MicrotaskQueue* microtask_queue) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(external_isolate);
// TODO(jkummerow): This is for crbug.com/713699. Remove it if it doesn't
// fail.
// Sanity-check that the isolate is initialized and usable.
CHECK(IsCode(i_isolate->builtins()->code(i::Builtin::kIllegal)));
TRACE_EVENT_CALL_STATS_SCOPED(i_isolate, "v8", "V8.NewContext");
API_RCS_SCOPE(i_isolate, Context, New);
i::HandleScope scope(i_isolate);
ExtensionConfiguration no_extensions;
if (extensions == nullptr) extensions = &no_extensions;
i::Handle<i::NativeContext> env = CreateEnvironment<i::NativeContext>(
i_isolate, extensions, global_template, global_object,
context_snapshot_index, embedder_fields_deserializer, microtask_queue);
if (env.is_null()) {
if (i_isolate->has_pending_exception())
i_isolate->clear_pending_exception();
return Local<Context>();
}
return Utils::ToLocal(scope.CloseAndEscape(env));
}
Local<Context> v8::Context::New(
v8::Isolate* external_isolate, v8::ExtensionConfiguration* extensions,
v8::MaybeLocal<ObjectTemplate> global_template,
v8::MaybeLocal<Value> global_object,
DeserializeInternalFieldsCallback internal_fields_deserializer,
v8::MicrotaskQueue* microtask_queue) {
return NewContext(external_isolate, extensions, global_template,
global_object, 0, internal_fields_deserializer,
microtask_queue);
}
MaybeLocal<Context> v8::Context::FromSnapshot(
v8::Isolate* external_isolate, size_t context_snapshot_index,
v8::DeserializeInternalFieldsCallback embedder_fields_deserializer,
v8::ExtensionConfiguration* extensions, MaybeLocal<Value> global_object,
v8::MicrotaskQueue* microtask_queue) {
size_t index_including_default_context = context_snapshot_index + 1;
if (!i::Snapshot::HasContextSnapshot(
reinterpret_cast<i::Isolate*>(external_isolate),
index_including_default_context)) {
return MaybeLocal<Context>();
}
return NewContext(external_isolate, extensions, MaybeLocal<ObjectTemplate>(),
global_object, index_including_default_context,
embedder_fields_deserializer, microtask_queue);
}
MaybeLocal<Object> v8::Context::NewRemoteContext(
v8::Isolate* external_isolate, v8::Local<ObjectTemplate> global_template,
v8::MaybeLocal<v8::Value> global_object) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(external_isolate);
API_RCS_SCOPE(i_isolate, Context, NewRemoteContext);
i::HandleScope scope(i_isolate);
i::Handle<i::FunctionTemplateInfo> global_constructor =
EnsureConstructor(i_isolate, *global_template);
Utils::ApiCheck(global_constructor->needs_access_check(),
"v8::Context::NewRemoteContext",
"Global template needs to have access checks enabled");
i::Handle<i::AccessCheckInfo> access_check_info = i::handle(
i::AccessCheckInfo::cast(global_constructor->GetAccessCheckInfo()),
i_isolate);
Utils::ApiCheck(
access_check_info->named_interceptor() != i::Tagged<i::Object>(),
"v8::Context::NewRemoteContext",
"Global template needs to have access check handlers");
i::Handle<i::JSObject> global_proxy = CreateEnvironment<i::JSGlobalProxy>(
i_isolate, nullptr, global_template, global_object, 0,
DeserializeInternalFieldsCallback(), nullptr);
if (global_proxy.is_null()) {
if (i_isolate->has_pending_exception())
i_isolate->clear_pending_exception();
return MaybeLocal<Object>();
}
return Utils::ToLocal(scope.CloseAndEscape(global_proxy));
}
void v8::Context::SetSecurityToken(Local<Value> token) {
i::Handle<i::NativeContext> env = Utils::OpenHandle(this);
i::Handle<i::Object> token_handle = Utils::OpenHandle(*token);
env->set_security_token(*token_handle);
}
void v8::Context::UseDefaultSecurityToken() {
i::Handle<i::NativeContext> env = Utils::OpenHandle(this);
env->set_security_token(env->global_object());
}
Local<Value> v8::Context::GetSecurityToken() {
i::Handle<i::NativeContext> env = Utils::OpenHandle(this);
i::Isolate* i_isolate = env->GetIsolate();
i::Tagged<i::Object> security_token = env->security_token();
i::Handle<i::Object> token_handle(security_token, i_isolate);
return Utils::ToLocal(token_handle);
}
namespace {
bool MayContainObjectsToFreeze(i::InstanceType obj_type) {
if (i::InstanceTypeChecker::IsString(obj_type)) return false;
// SharedFunctionInfo is cross-context so it shouldn't be frozen.
if (i::InstanceTypeChecker::IsSharedFunctionInfo(obj_type)) return false;
return true;
}
bool RequiresEmbedderSupportToFreeze(i::InstanceType obj_type) {
DCHECK(i::InstanceTypeChecker::IsJSReceiver(obj_type));
return (i::InstanceTypeChecker::IsJSApiObject(obj_type) ||
i::InstanceTypeChecker::IsJSExternalObject(obj_type) ||
i::InstanceTypeChecker::IsJSObjectWithEmbedderSlots(obj_type));
}
bool IsJSReceiverSafeToFreeze(i::InstanceType obj_type) {
DCHECK(i::InstanceTypeChecker::IsJSReceiver(obj_type));
switch (obj_type) {
case i::JS_OBJECT_TYPE:
case i::JS_GLOBAL_OBJECT_TYPE:
case i::JS_GLOBAL_PROXY_TYPE:
case i::JS_PRIMITIVE_WRAPPER_TYPE:
case i::JS_FUNCTION_TYPE:
/* Function types */
case i::BIGINT64_TYPED_ARRAY_CONSTRUCTOR_TYPE:
case i::BIGUINT64_TYPED_ARRAY_CONSTRUCTOR_TYPE:
case i::FLOAT32_TYPED_ARRAY_CONSTRUCTOR_TYPE:
case i::FLOAT64_TYPED_ARRAY_CONSTRUCTOR_TYPE:
case i::INT16_TYPED_ARRAY_CONSTRUCTOR_TYPE:
case i::INT32_TYPED_ARRAY_CONSTRUCTOR_TYPE:
case i::INT8_TYPED_ARRAY_CONSTRUCTOR_TYPE:
case i::UINT16_TYPED_ARRAY_CONSTRUCTOR_TYPE:
case i::UINT32_TYPED_ARRAY_CONSTRUCTOR_TYPE:
case i::UINT8_CLAMPED_TYPED_ARRAY_CONSTRUCTOR_TYPE:
case i::UINT8_TYPED_ARRAY_CONSTRUCTOR_TYPE:
case i::JS_ARRAY_CONSTRUCTOR_TYPE:
case i::JS_PROMISE_CONSTRUCTOR_TYPE:
case i::JS_REG_EXP_CONSTRUCTOR_TYPE:
case i::JS_CLASS_CONSTRUCTOR_TYPE:
/* Prototype Types */
case i::JS_ARRAY_ITERATOR_PROTOTYPE_TYPE:
case i::JS_ITERATOR_PROTOTYPE_TYPE:
case i::JS_MAP_ITERATOR_PROTOTYPE_TYPE:
case i::JS_OBJECT_PROTOTYPE_TYPE:
case i::JS_PROMISE_PROTOTYPE_TYPE:
case i::JS_REG_EXP_PROTOTYPE_TYPE:
case i::JS_SET_ITERATOR_PROTOTYPE_TYPE:
case i::JS_SET_PROTOTYPE_TYPE:
case i::JS_STRING_ITERATOR_PROTOTYPE_TYPE:
case i::JS_TYPED_ARRAY_PROTOTYPE_TYPE:
/* */
case i::JS_ARRAY_TYPE:
return true;
#if V8_ENABLE_WEBASSEMBLY
case i::WASM_ARRAY_TYPE:
case i::WASM_STRUCT_TYPE:
case i::WASM_TAG_OBJECT_TYPE:
#endif // V8_ENABLE_WEBASSEMBLY
case i::JS_PROXY_TYPE:
return true;
// These types are known not to freeze.
case i::JS_MAP_KEY_ITERATOR_TYPE:
case i::JS_MAP_KEY_VALUE_ITERATOR_TYPE:
case i::JS_MAP_VALUE_ITERATOR_TYPE:
case i::JS_SET_KEY_VALUE_ITERATOR_TYPE:
case i::JS_SET_VALUE_ITERATOR_TYPE:
case i::JS_GENERATOR_OBJECT_TYPE:
case i::JS_ASYNC_FUNCTION_OBJECT_TYPE:
case i::JS_ASYNC_GENERATOR_OBJECT_TYPE:
case i::JS_ARRAY_ITERATOR_TYPE: {
return false;
}
default:
// TODO(behamilton): Handle any types that fall through here.
return false;
}
}
class ObjectVisitorDeepFreezer : i::ObjectVisitor {
public:
explicit ObjectVisitorDeepFreezer(i::Isolate* isolate,
Context::DeepFreezeDelegate* delegate)
: isolate_(isolate), delegate_(delegate) {}
bool DeepFreeze(i::Handle<i::Context> context) {
bool success = VisitObject(i::HeapObject::cast(*context));
if (success) {
success = InstantiateAndVisitLazyAccessorPairs();
}
DCHECK_EQ(success, !error_.has_value());
if (!success) {
THROW_NEW_ERROR_RETURN_VALUE(
isolate_, NewTypeError(error_->msg_id, error_->name), false);
}
for (const auto& obj : objects_to_freeze_) {
MAYBE_RETURN_ON_EXCEPTION_VALUE(
isolate_,
i::JSReceiver::SetIntegrityLevel(isolate_, obj, i::FROZEN,
i::kThrowOnError),
false);
}
return true;
}
void VisitPointers(i::Tagged<i::HeapObject> host, i::ObjectSlot start,
i::ObjectSlot end) final {
VisitPointersImpl(start, end);
}
void VisitPointers(i::Tagged<i::HeapObject> host, i::MaybeObjectSlot start,
i::MaybeObjectSlot end) final {
VisitPointersImpl(start, end);
}
void VisitMapPointer(i::Tagged<i::HeapObject> host) final {
VisitPointer(host, host->map_slot());
}
void VisitInstructionStreamPointer(i::Tagged<i::Code> host,
i::InstructionStreamSlot slot) final {}
void VisitCustomWeakPointers(i::Tagged<i::HeapObject> host,
i::ObjectSlot start, i::ObjectSlot end) final {}
private:
struct ErrorInfo {
i::MessageTemplate msg_id;
i::Handle<i::String> name;
};
template <typename TSlot>
void VisitPointersImpl(TSlot start, TSlot end) {
for (TSlot current = start; current < end; ++current) {
typename TSlot::TObject object = current.load(isolate_);
i::Tagged<i::HeapObject> heap_object;
if (object.GetHeapObjectIfStrong(&heap_object)) {
if (!VisitObject(heap_object)) {
return;
}
}
}
}
bool FreezeEmbedderObjectAndVisitChildren(i::Handle<i::JSObject> obj) {
DCHECK(delegate_);
std::vector<Local<Object>> children;
if (!delegate_->FreezeEmbedderObjectAndGetChildren(Utils::ToLocal(obj),
children)) {
return false;
}
for (auto child : children) {
if (!VisitObject(*Utils::OpenHandle<Object, i::JSReceiver>(child))) {
return false;
}
}
return true;
}
bool VisitObject(i::Tagged<i::HeapObject> obj) {
DCHECK(!obj.is_null());
if (error_.has_value()) {
return false;
}
i::DisallowGarbageCollection no_gc;
i::InstanceType obj_type = obj->map()->instance_type();
// Skip common types that can't contain items to freeze.
if (!MayContainObjectsToFreeze(obj_type)) {
return true;
}
if (!done_list_.insert(obj).second) {
// If we couldn't insert (because it is already in the set) then we're
// done.
return true;
}
if (i::InstanceTypeChecker::IsAccessorPair(obj_type)) {
// For AccessorPairs we need to ensure that the functions they point to
// have been instantiated into actual JavaScript objects that can be
// frozen. If they haven't then we need to save them to instantiate
// (and recurse) before freezing.
i::Tagged<i::AccessorPair> accessor_pair = i::AccessorPair::cast(obj);
if (i::IsFunctionTemplateInfo(accessor_pair->getter()) ||
IsFunctionTemplateInfo(accessor_pair->setter())) {
i::Handle<i::AccessorPair> lazy_accessor_pair(accessor_pair, isolate_);
lazy_accessor_pairs_to_freeze_.push_back(lazy_accessor_pair);
}
} else if (i::InstanceTypeChecker::IsContext(obj_type)) {
// For contexts we need to ensure that all accessible locals are const.
// If not they could be replaced to bypass freezing.
i::Tagged<i::ScopeInfo> scope_info = i::Context::cast(obj)->scope_info();
for (auto it : i::ScopeInfo::IterateLocalNames(scope_info, no_gc)) {
if (scope_info->ContextLocalMode(it->index()) !=
i::VariableMode::kConst) {
DCHECK(!error_.has_value());
error_ = ErrorInfo{i::MessageTemplate::kCannotDeepFreezeValue,
i::handle(it->name(), isolate_)};
return false;
}
}
} else if (i::InstanceTypeChecker::IsJSReceiver(obj_type)) {
i::Handle<i::JSReceiver> receiver =
i::handle(i::JSReceiver::cast(obj), isolate_);
if (RequiresEmbedderSupportToFreeze(obj_type)) {
auto js_obj = i::Handle<i::JSObject>::cast(receiver);
// External objects don't have slots but still need to be processed by
// the embedder.
if (i::InstanceTypeChecker::IsJSExternalObject(obj_type) ||
js_obj->GetEmbedderFieldCount() > 0) {
if (!delegate_) {
DCHECK(!error_.has_value());
error_ = ErrorInfo{i::MessageTemplate::kCannotDeepFreezeObject,
i::handle(receiver->class_name(), isolate_)};
return false;
}
// Handle embedder specific types and any v8 children it wants to
// freeze.
if (!FreezeEmbedderObjectAndVisitChildren(js_obj)) {
return false;
}
} else {
DCHECK_EQ(js_obj->GetEmbedderFieldCount(), 0);
}
} else {
DCHECK_IMPLIES(
i::InstanceTypeChecker::IsJSObject(obj_type),
i::JSObject::cast(*receiver)->GetEmbedderFieldCount() == 0);
if (!IsJSReceiverSafeToFreeze(obj_type)) {
DCHECK(!error_.has_value());
error_ = ErrorInfo{i::MessageTemplate::kCannotDeepFreezeObject,
i::handle(receiver->class_name(), isolate_)};
return false;
}
}
// Save this to freeze after we are done. Freezing triggers garbage
// collection which doesn't work well with this visitor pattern, so we
// delay it until after.
objects_to_freeze_.push_back(receiver);
} else {
DCHECK(!i::InstanceTypeChecker::IsAccessorPair(obj_type));
DCHECK(!i::InstanceTypeChecker::IsContext(obj_type));
DCHECK(!i::InstanceTypeChecker::IsJSReceiver(obj_type));
}
DCHECK(!error_.has_value());
obj->Iterate(isolate_, this);
// Iterate sets error_ on failure. We should propagate errors.
return !error_.has_value();
}
bool InstantiateAndVisitLazyAccessorPairs() {
i::Handle<i::NativeContext> native_context = isolate_->native_context();
std::vector<i::Handle<i::AccessorPair>> lazy_accessor_pairs_to_freeze;
std::swap(lazy_accessor_pairs_to_freeze, lazy_accessor_pairs_to_freeze_);
for (const auto& accessor_pair : lazy_accessor_pairs_to_freeze) {
i::AccessorPair::GetComponent(isolate_, native_context, accessor_pair,
i::ACCESSOR_GETTER);
i::AccessorPair::GetComponent(isolate_, native_context, accessor_pair,
i::ACCESSOR_SETTER);
VisitObject(*accessor_pair);
}
// Ensure no new lazy accessor pairs were discovered.
CHECK_EQ(lazy_accessor_pairs_to_freeze_.size(), 0);
return true;
}
i::Isolate* isolate_;
Context::DeepFreezeDelegate* delegate_;
std::unordered_set<i::Tagged<i::Object>, i::Object::Hasher> done_list_;
std::vector<i::Handle<i::JSReceiver>> objects_to_freeze_;
std::vector<i::Handle<i::AccessorPair>> lazy_accessor_pairs_to_freeze_;
base::Optional<ErrorInfo> error_;
};
} // namespace
Maybe<void> Context::DeepFreeze(DeepFreezeDelegate* delegate) {
i::Handle<i::NativeContext> env = Utils::OpenHandle(this);
i::Isolate* i_isolate = env->GetIsolate();
// TODO(behamilton): Incorporate compatibility improvements similar to NodeJS:
// https://github.com/nodejs/node/blob/main/lib/internal/freeze_intrinsics.js
// These need to be done before freezing.
Local<Context> context = Utils::ToLocal(env);
ENTER_V8_NO_SCRIPT(i_isolate, context, Context, DeepFreeze, Nothing<void>(),
i::HandleScope);
ObjectVisitorDeepFreezer vfreezer(i_isolate, delegate);
has_pending_exception = !vfreezer.DeepFreeze(env);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(void);
return JustVoid();
}
v8::Isolate* Context::GetIsolate() {
i::Handle<i::NativeContext> env = Utils::OpenHandle(this);
return reinterpret_cast<Isolate*>(env->GetIsolate());
}
v8::MicrotaskQueue* Context::GetMicrotaskQueue() {
i::Handle<i::NativeContext> env = Utils::OpenHandle(this);
Utils::ApiCheck(i::IsNativeContext(*env), "v8::Context::GetMicrotaskQueue",
"Must be called on a native context");
return i::Handle<i::NativeContext>::cast(env)->microtask_queue();
}
void Context::SetMicrotaskQueue(v8::MicrotaskQueue* queue) {
i::Handle<i::NativeContext> context = Utils::OpenHandle(this);
i::Isolate* i_isolate = context->GetIsolate();
Utils::ApiCheck(i::IsNativeContext(*context),
"v8::Context::SetMicrotaskQueue",
"Must be called on a native context");
i::Handle<i::NativeContext> native_context =
i::Handle<i::NativeContext>::cast(context);
i::HandleScopeImplementer* impl = i_isolate->handle_scope_implementer();
Utils::ApiCheck(!native_context->microtask_queue()->IsRunningMicrotasks(),
"v8::Context::SetMicrotaskQueue",
"Must not be running microtasks");
Utils::ApiCheck(
native_context->microtask_queue()->GetMicrotasksScopeDepth() == 0,
"v8::Context::SetMicrotaskQueue", "Must not have microtask scope pushed");
Utils::ApiCheck(impl->EnteredContextCount() == 0,
"v8::Context::SetMicrotaskQueue()",
"Cannot set Microtask Queue with an entered context");
native_context->set_microtask_queue(
i_isolate, static_cast<const i::MicrotaskQueue*>(queue));
}
v8::Local<v8::Object> Context::Global() {
i::Handle<i::NativeContext> context = Utils::OpenHandle(this);
i::Isolate* i_isolate = context->GetIsolate();
i::Handle<i::Object> global(context->global_proxy(), i_isolate);
// TODO(chromium:324812): This should always return the global proxy
// but can't presently as calls to GetProtoype will return the wrong result.
if (i::Handle<i::JSGlobalProxy>::cast(global)->IsDetachedFrom(
context->global_object())) {
global = i::Handle<i::Object>(context->global_object(), i_isolate);
}
return Utils::ToLocal(i::Handle<i::JSObject>::cast(global));
}
void Context::DetachGlobal() {
i::Handle<i::NativeContext> context = Utils::OpenHandle(this);
i::Isolate* i_isolate = context->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i_isolate->DetachGlobal(context);
}
Local<v8::Object> Context::GetExtrasBindingObject() {
i::Handle<i::NativeContext> context = Utils::OpenHandle(this);
i::Isolate* i_isolate = context->GetIsolate();
i::Handle<i::JSObject> binding(context->extras_binding_object(), i_isolate);
return Utils::ToLocal(binding);
}
void Context::AllowCodeGenerationFromStrings(bool allow) {
i::Handle<i::NativeContext> context = Utils::OpenHandle(this);
i::Isolate* i_isolate = context->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
context->set_allow_code_gen_from_strings(
i::ReadOnlyRoots(i_isolate).boolean_value(allow));
}
bool Context::IsCodeGenerationFromStringsAllowed() const {
i::Tagged<i::NativeContext> context = *Utils::OpenHandle(this);
return !IsFalse(context->allow_code_gen_from_strings(),
context->GetIsolate());
}
void Context::SetErrorMessageForCodeGenerationFromStrings(Local<String> error) {
i::Handle<i::NativeContext> context = Utils::OpenHandle(this);
i::Handle<i::String> error_handle = Utils::OpenHandle(*error);
context->set_error_message_for_code_gen_from_strings(*error_handle);
}
void Context::SetErrorMessageForWasmCodeGeneration(Local<String> error) {
i::Handle<i::NativeContext> context = Utils::OpenHandle(this);
i::Handle<i::String> error_handle = Utils::OpenHandle(*error);
context->set_error_message_for_wasm_code_gen(*error_handle);
}
void Context::SetAbortScriptExecution(
Context::AbortScriptExecutionCallback callback) {
i::Handle<i::NativeContext> context = Utils::OpenHandle(this);
i::Isolate* i_isolate = context->GetIsolate();
if (callback == nullptr) {
context->set_script_execution_callback(
i::ReadOnlyRoots(i_isolate).undefined_value());
} else {
SET_FIELD_WRAPPED(i_isolate, context, set_script_execution_callback,
callback);
}
}
Local<Value> Context::GetContinuationPreservedEmbedderData() const {
i::Handle<i::NativeContext> context = Utils::OpenHandle(this);
i::Isolate* i_isolate = context->GetIsolate();
i::Handle<i::Object> data(
context->native_context()->continuation_preserved_embedder_data(),
i_isolate);
return ToApiHandle<Object>(data);
}
void Context::SetContinuationPreservedEmbedderData(Local<Value> data) {
i::Handle<i::NativeContext> context = Utils::OpenHandle(this);
i::Isolate* i_isolate = context->GetIsolate();
if (data.IsEmpty())
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(i_isolate));
context->native_context()->set_continuation_preserved_embedder_data(
*i::Handle<i::HeapObject>::cast(Utils::OpenHandle(*data)));
}
void v8::Context::SetPromiseHooks(Local<Function> init_hook,
Local<Function> before_hook,
Local<Function> after_hook,
Local<Function> resolve_hook) {
#ifdef V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS
i::Handle<i::NativeContext> context = Utils::OpenHandle(this);
i::Isolate* i_isolate = context->GetIsolate();
i::Handle<i::Object> init = i_isolate->factory()->undefined_value();
i::Handle<i::Object> before = i_isolate->factory()->undefined_value();
i::Handle<i::Object> after = i_isolate->factory()->undefined_value();
i::Handle<i::Object> resolve = i_isolate->factory()->undefined_value();
bool has_hook = false;
if (!init_hook.IsEmpty()) {
init = Utils::OpenHandle(*init_hook);
has_hook = true;
}
if (!before_hook.IsEmpty()) {
before = Utils::OpenHandle(*before_hook);
has_hook = true;
}
if (!after_hook.IsEmpty()) {
after = Utils::OpenHandle(*after_hook);
has_hook = true;
}
if (!resolve_hook.IsEmpty()) {
resolve = Utils::OpenHandle(*resolve_hook);
has_hook = true;
}
i_isolate->SetHasContextPromiseHooks(has_hook);
context->native_context()->set_promise_hook_init_function(*init);
context->native_context()->set_promise_hook_before_function(*before);
context->native_context()->set_promise_hook_after_function(*after);
context->native_context()->set_promise_hook_resolve_function(*resolve);
#else // V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS
Utils::ApiCheck(false, "v8::Context::SetPromiseHook",
"V8 was compiled without JavaScript Promise hooks");
#endif // V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS
}
bool Context::HasTemplateLiteralObject(Local<Value> object) {
i::DisallowGarbageCollection no_gc;
i::Tagged<i::Object> i_object = *Utils::OpenHandle(*object);
if (!IsJSArray(i_object)) return false;
return Utils::OpenHandle(this)->native_context()->HasTemplateLiteralObject(
i::JSArray::cast(i_object));
}
MaybeLocal<Context> metrics::Recorder::GetContext(
Isolate* v8_isolate, metrics::Recorder::ContextId id) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
return i_isolate->GetContextFromRecorderContextId(id);
}
metrics::Recorder::ContextId metrics::Recorder::GetContextId(
Local<Context> context) {
i::Handle<i::NativeContext> i_context = Utils::OpenHandle(*context);
i::Isolate* i_isolate = i_context->GetIsolate();
return i_isolate->GetOrRegisterRecorderContextId(
handle(i_context->native_context(), i_isolate));
}
metrics::LongTaskStats metrics::LongTaskStats::Get(v8::Isolate* v8_isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
return *i_isolate->GetCurrentLongTaskStats();
}
namespace {
i::Address* GetSerializedDataFromFixedArray(i::Isolate* i_isolate,
i::Tagged<i::FixedArray> list,
size_t index) {
if (index < static_cast<size_t>(list->length())) {
int int_index = static_cast<int>(index);
i::Tagged<i::Object> object = list->get(int_index);
if (!IsTheHole(object, i_isolate)) {
list->set_the_hole(i_isolate, int_index);
// Shrink the list so that the last element is not the hole (unless it's
// the first element, because we don't want to end up with a non-canonical
// empty FixedArray).
int last = list->length() - 1;
while (last >= 0 && list->is_the_hole(i_isolate, last)) last--;
if (last != -1) list->Shrink(i_isolate, last + 1);
return i::Handle<i::Object>(object, i_isolate).location();
}
}
return nullptr;
}
} // anonymous namespace
i::Address* Context::GetDataFromSnapshotOnce(size_t index) {
auto context = Utils::OpenHandle(this);
i::Isolate* i_isolate = context->GetIsolate();
i::Tagged<i::FixedArray> list = context->serialized_objects();
return GetSerializedDataFromFixedArray(i_isolate, list, index);
}
MaybeLocal<v8::Object> ObjectTemplate::NewInstance(Local<Context> context) {
PREPARE_FOR_EXECUTION(context, ObjectTemplate, NewInstance, Object);
auto self = Utils::OpenHandle(this);
Local<Object> result;
has_pending_exception = !ToLocal<Object>(
i::ApiNatives::InstantiateObject(i_isolate, self), &result);
RETURN_ON_FAILED_EXECUTION(Object);
RETURN_ESCAPED(result);
}
void v8::ObjectTemplate::CheckCast(Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsObjectTemplateInfo(*obj), "v8::ObjectTemplate::Cast",
"Value is not an ObjectTemplate");
}
void v8::FunctionTemplate::CheckCast(Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsFunctionTemplateInfo(*obj), "v8::FunctionTemplate::Cast",
"Value is not a FunctionTemplate");
}
void v8::Signature::CheckCast(Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(i::IsFunctionTemplateInfo(*obj), "v8::Signature::Cast",
"Value is not a Signature");
}
MaybeLocal<v8::Function> FunctionTemplate::GetFunction(Local<Context> context) {
PREPARE_FOR_EXECUTION(context, FunctionTemplate, GetFunction, Function);
auto self = Utils::OpenHandle(this);
Local<Function> result;
has_pending_exception =
!ToLocal<Function>(i::ApiNatives::InstantiateFunction(
i_isolate, i_isolate->native_context(), self),
&result);
RETURN_ON_FAILED_EXECUTION(Function);
RETURN_ESCAPED(result);
}
MaybeLocal<v8::Object> FunctionTemplate::NewRemoteInstance() {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolateChecked();
API_RCS_SCOPE(i_isolate, FunctionTemplate, NewRemoteInstance);
i::HandleScope scope(i_isolate);
i::Handle<i::FunctionTemplateInfo> constructor =
EnsureConstructor(i_isolate, *InstanceTemplate());
Utils::ApiCheck(constructor->needs_access_check(),
"v8::FunctionTemplate::NewRemoteInstance",
"InstanceTemplate needs to have access checks enabled");
i::Handle<i::AccessCheckInfo> access_check_info = i::handle(
i::AccessCheckInfo::cast(constructor->GetAccessCheckInfo()), i_isolate);
Utils::ApiCheck(
access_check_info->named_interceptor() != i::Tagged<i::Object>(),
"v8::FunctionTemplate::NewRemoteInstance",
"InstanceTemplate needs to have access check handlers");
i::Handle<i::JSObject> object;
if (!i::ApiNatives::InstantiateRemoteObject(
Utils::OpenHandle(*InstanceTemplate()))
.ToHandle(&object)) {
if (i_isolate->has_pending_exception()) {
i_isolate->OptionalRescheduleException(true);
}
return MaybeLocal<Object>();
}
return Utils::ToLocal(scope.CloseAndEscape(object));
}
bool FunctionTemplate::HasInstance(v8::Local<v8::Value> value) {
auto self = Utils::OpenHandle(this);
auto obj = Utils::OpenHandle(*value);
if (i::IsJSObject(*obj) && self->IsTemplateFor(i::JSObject::cast(*obj))) {
return true;
}
if (i::IsJSGlobalProxy(*obj)) {
// If it's a global proxy, then test with the global object. Note that the
// inner global object may not necessarily be a JSGlobalObject.
auto jsobj = i::JSObject::cast(*obj);
i::PrototypeIterator iter(jsobj->GetIsolate(), jsobj->map());
// The global proxy should always have a prototype, as it is a bug to call
// this on a detached JSGlobalProxy.
DCHECK(!iter.IsAtEnd());
return self->IsTemplateFor(iter.GetCurrent<i::JSObject>());
}
return false;
}
bool FunctionTemplate::IsLeafTemplateForApiObject(
v8::Local<v8::Value> value) const {
i::DisallowGarbageCollection no_gc;
i::Tagged<i::Object> object = *Utils::OpenHandle(*value);
auto self = Utils::OpenHandle(this);
return self->IsLeafTemplateForApiObject(object);
}
Local<External> v8::External::New(Isolate* v8_isolate, void* value) {
static_assert(sizeof(value) == sizeof(i::Address));
// Nullptr is not allowed here because serialization/deserialization of
// nullptr external api references is not possible as nullptr is used as an
// external_references table terminator, see v8::SnapshotCreator()
// constructors.
DCHECK_NOT_NULL(value);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, External, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::JSObject> external = i_isolate->factory()->NewExternal(value);
return Utils::ExternalToLocal(external);
}
void* External::Value() const {
auto self = Utils::OpenHandle(this);
return i::JSExternalObject::cast(*self)->value();
}
// anonymous namespace for string creation helper functions
namespace {
inline int StringLength(const char* string) {
size_t len = strlen(string);
CHECK_GE(i::kMaxInt, len);
return static_cast<int>(len);
}
inline int StringLength(const uint8_t* string) {
return StringLength(reinterpret_cast<const char*>(string));
}
inline int StringLength(const uint16_t* string) {
size_t length = 0;
while (string[length] != '\0') length++;
CHECK_GE(i::kMaxInt, length);
return static_cast<int>(length);
}
V8_WARN_UNUSED_RESULT
inline i::MaybeHandle<i::String> NewString(i::Factory* factory,
NewStringType type,
base::Vector<const char> string) {
if (type == NewStringType::kInternalized) {
return factory->InternalizeUtf8String(string);
}
return factory->NewStringFromUtf8(string);
}
V8_WARN_UNUSED_RESULT
inline i::MaybeHandle<i::String> NewString(i::Factory* factory,
NewStringType type,
base::Vector<const uint8_t> string) {
if (type == NewStringType::kInternalized) {
return factory->InternalizeString(string);
}
return factory->NewStringFromOneByte(string);
}
V8_WARN_UNUSED_RESULT
inline i::MaybeHandle<i::String> NewString(
i::Factory* factory, NewStringType type,
base::Vector<const uint16_t> string) {
if (type == NewStringType::kInternalized) {
return factory->InternalizeString(string);
}
return factory->NewStringFromTwoByte(string);
}
static_assert(v8::String::kMaxLength == i::String::kMaxLength);
} // anonymous namespace
// TODO(dcarney): throw a context free exception.
#define NEW_STRING(v8_isolate, class_name, function_name, Char, data, type, \
length) \
MaybeLocal<String> result; \
if (length == 0) { \
result = String::Empty(v8_isolate); \
} else if (length > i::String::kMaxLength) { \
result = MaybeLocal<String>(); \
} else { \
i::Isolate* i_isolate = reinterpret_cast<internal::Isolate*>(v8_isolate); \
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); \
API_RCS_SCOPE(i_isolate, class_name, function_name); \
if (length < 0) length = StringLength(data); \
i::Handle<i::String> handle_result = \
NewString(i_isolate->factory(), type, \
base::Vector<const Char>(data, length)) \
.ToHandleChecked(); \
result = Utils::ToLocal(handle_result); \
}
Local<String> String::NewFromUtf8Literal(Isolate* v8_isolate,
const char* literal,
NewStringType type, int length) {
DCHECK_LE(length, i::String::kMaxLength);
i::Isolate* i_isolate = reinterpret_cast<internal::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
API_RCS_SCOPE(i_isolate, String, NewFromUtf8Literal);
i::Handle<i::String> handle_result =
NewString(i_isolate->factory(), type,
base::Vector<const char>(literal, length))
.ToHandleChecked();
return Utils::ToLocal(handle_result);
}
MaybeLocal<String> String::NewFromUtf8(Isolate* v8_isolate, const char* data,
NewStringType type, int length) {
NEW_STRING(v8_isolate, String, NewFromUtf8, char, data, type, length);
return result;
}
MaybeLocal<String> String::NewFromOneByte(Isolate* v8_isolate,
const uint8_t* data,
NewStringType type, int length) {
NEW_STRING(v8_isolate, String, NewFromOneByte, uint8_t, data, type, length);
return result;
}
MaybeLocal<String> String::NewFromTwoByte(Isolate* v8_isolate,
const uint16_t* data,
NewStringType type, int length) {
NEW_STRING(v8_isolate, String, NewFromTwoByte, uint16_t, data, type, length);
return result;
}
Local<String> v8::String::Concat(Isolate* v8_isolate, Local<String> left,
Local<String> right) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::Handle<i::String> left_string = Utils::OpenHandle(*left);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
API_RCS_SCOPE(i_isolate, String, Concat);
i::Handle<i::String> right_string = Utils::OpenHandle(*right);
// If we are steering towards a range error, do not wait for the error to be
// thrown, and return the null handle instead.
if (left_string->length() + right_string->length() > i::String::kMaxLength) {
return Local<String>();
}
i::Handle<i::String> result = i_isolate->factory()
->NewConsString(left_string, right_string)
.ToHandleChecked();
return Utils::ToLocal(result);
}
MaybeLocal<String> v8::String::NewExternalTwoByte(
Isolate* v8_isolate, v8::String::ExternalStringResource* resource) {
CHECK(resource && resource->data());
// TODO(dcarney): throw a context free exception.
if (resource->length() > static_cast<size_t>(i::String::kMaxLength)) {
return MaybeLocal<String>();
}
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
API_RCS_SCOPE(i_isolate, String, NewExternalTwoByte);
if (resource->length() > 0) {
i::Handle<i::String> string = i_isolate->factory()
->NewExternalStringFromTwoByte(resource)
.ToHandleChecked();
return Utils::ToLocal(string);
} else {
// The resource isn't going to be used, free it immediately.
resource->Dispose();
return Utils::ToLocal(i_isolate->factory()->empty_string());
}
}
MaybeLocal<String> v8::String::NewExternalOneByte(
Isolate* v8_isolate, v8::String::ExternalOneByteStringResource* resource) {
CHECK_NOT_NULL(resource);
// TODO(dcarney): throw a context free exception.
if (resource->length() > static_cast<size_t>(i::String::kMaxLength)) {
return MaybeLocal<String>();
}
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
API_RCS_SCOPE(i_isolate, String, NewExternalOneByte);
if (resource->length() == 0) {
// The resource isn't going to be used, free it immediately.
resource->Dispose();
return Utils::ToLocal(i_isolate->factory()->empty_string());
}
CHECK_NOT_NULL(resource->data());
i::Handle<i::String> string = i_isolate->factory()
->NewExternalStringFromOneByte(resource)
.ToHandleChecked();
return Utils::ToLocal(string);
}
bool v8::String::MakeExternal(v8::String::ExternalStringResource* resource) {
i::DisallowGarbageCollection no_gc;
i::Tagged<i::String> obj = *Utils::OpenHandle(this);
if (i::IsThinString(obj)) {
obj = i::ThinString::cast(obj)->actual();
}
if (!obj->SupportsExternalization(Encoding::TWO_BYTE_ENCODING)) {
return false;
}
// TODO(v8:12007): Consider adding
// MakeExternal(Isolate*, ExternalStringResource*).
i::Isolate* i_isolate;
if (obj.InWritableSharedSpace()) {
i_isolate = i::Isolate::Current();
} else {
// It is safe to call GetIsolateFromWritableHeapObject because
// SupportsExternalization already checked that the object is writable.
i_isolate = i::GetIsolateFromWritableObject(obj);
}
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
CHECK(resource && resource->data());
bool result = obj->MakeExternal(resource);
DCHECK_IMPLIES(result, HasExternalStringResource(obj));
return result;
}
bool v8::String::MakeExternal(
v8::String::ExternalOneByteStringResource* resource) {
i::DisallowGarbageCollection no_gc;
i::Tagged<i::String> obj = *Utils::OpenHandle(this);
if (i::IsThinString(obj)) {
obj = i::ThinString::cast(obj)->actual();
}
if (!obj->SupportsExternalization(Encoding::ONE_BYTE_ENCODING)) {
return false;
}
// TODO(v8:12007): Consider adding
// MakeExternal(Isolate*, ExternalOneByteStringResource*).
i::Isolate* i_isolate;
if (obj.InWritableSharedSpace()) {
i_isolate = i::Isolate::Current();
} else {
// It is safe to call GetIsolateFromWritableHeapObject because
// SupportsExternalization already checked that the object is writable.
i_isolate = i::GetIsolateFromWritableObject(obj);
}
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
CHECK(resource && resource->data());
bool result = obj->MakeExternal(resource);
DCHECK_IMPLIES(result, HasExternalStringResource(obj));
return result;
}
bool v8::String::CanMakeExternal(Encoding encoding) const {
i::Tagged<i::String> obj = *Utils::OpenHandle(this);
return obj->SupportsExternalization(encoding);
}
bool v8::String::StringEquals(Local<String> that) const {
auto self = Utils::OpenHandle(this);
auto other = Utils::OpenHandle(*that);
return self->Equals(*other);
}
Isolate* v8::Object::GetIsolate() {
i::Isolate* i_isolate = Utils::OpenHandle(this)->GetIsolate();
return reinterpret_cast<Isolate*>(i_isolate);
}
Local<v8::Object> v8::Object::New(Isolate* v8_isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, Object, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::JSObject> obj =
i_isolate->factory()->NewJSObject(i_isolate->object_function());
return Utils::ToLocal(obj);
}
namespace {
// TODO(v8:7569): This is a workaround for the Handle vs MaybeHandle difference
// in the return types of the different Add functions:
// OrderedNameDictionary::Add returns MaybeHandle, NameDictionary::Add returns
// Handle.
template <typename T>
i::Handle<T> ToHandle(i::Handle<T> h) {
return h;
}
template <typename T>
i::Handle<T> ToHandle(i::MaybeHandle<T> h) {
return h.ToHandleChecked();
}
template <typename Dictionary>
void AddPropertiesAndElementsToObject(i::Isolate* i_isolate,
i::Handle<Dictionary>& properties,
i::Handle<i::FixedArrayBase>& elements,
Local<Name>* names, Local<Value>* values,
size_t length) {
for (size_t i = 0; i < length; ++i) {
i::Handle<i::Name> name = Utils::OpenHandle(*names[i]);
i::Handle<i::Object> value = Utils::OpenHandle(*values[i]);
// See if the {name} is a valid array index, in which case we need to
// add the {name}/{value} pair to the {elements}, otherwise they end
// up in the {properties} backing store.
uint32_t index;
if (name->AsArrayIndex(&index)) {
// If this is the first element, allocate a proper
// dictionary elements backing store for {elements}.
if (!IsNumberDictionary(*elements)) {
elements =
i::NumberDictionary::New(i_isolate, static_cast<int>(length));
}
elements = i::NumberDictionary::Set(
i_isolate, i::Handle<i::NumberDictionary>::cast(elements), index,
value);
} else {
// Internalize the {name} first.
name = i_isolate->factory()->InternalizeName(name);
i::InternalIndex const entry = properties->FindEntry(i_isolate, name);
if (entry.is_not_found()) {
// Add the {name}/{value} pair as a new entry.
properties = ToHandle(Dictionary::Add(
i_isolate, properties, name, value, i::PropertyDetails::Empty()));
} else {
// Overwrite the {entry} with the {value}.
properties->ValueAtPut(entry, *value);
}
}
}
}
} // namespace
Local<v8::Object> v8::Object::New(Isolate* v8_isolate,
Local<Value> prototype_or_null,
Local<Name>* names, Local<Value>* values,
size_t length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::Handle<i::Object> proto = Utils::OpenHandle(*prototype_or_null);
if (!Utils::ApiCheck(i::IsNull(*proto) || IsJSReceiver(*proto),
"v8::Object::New", "prototype must be null or object")) {
return Local<v8::Object>();
}
API_RCS_SCOPE(i_isolate, Object, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::FixedArrayBase> elements =
i_isolate->factory()->empty_fixed_array();
// We assume that this API is mostly used to create objects with named
// properties, and so we default to creating a properties backing store
// large enough to hold all of them, while we start with no elements
// (see http://bit.ly/v8-fast-object-create-cpp for the motivation).
if (V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL) {
i::Handle<i::SwissNameDictionary> properties =
i_isolate->factory()->NewSwissNameDictionary(static_cast<int>(length));
AddPropertiesAndElementsToObject(i_isolate, properties, elements, names,
values, length);
i::Handle<i::JSObject> obj =
i_isolate->factory()->NewSlowJSObjectWithPropertiesAndElements(
i::Handle<i::HeapObject>::cast(proto), properties, elements);
return Utils::ToLocal(obj);
} else {
i::Handle<i::NameDictionary> properties =
i::NameDictionary::New(i_isolate, static_cast<int>(length));
AddPropertiesAndElementsToObject(i_isolate, properties, elements, names,
values, length);
i::Handle<i::JSObject> obj =
i_isolate->factory()->NewSlowJSObjectWithPropertiesAndElements(
i::Handle<i::HeapObject>::cast(proto), properties, elements);
return Utils::ToLocal(obj);
}
}
Local<v8::Value> v8::NumberObject::New(Isolate* v8_isolate, double value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, NumberObject, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::Object> number = i_isolate->factory()->NewNumber(value);
i::Handle<i::Object> obj =
i::Object::ToObject(i_isolate, number).ToHandleChecked();
return Utils::ToLocal(obj);
}
double v8::NumberObject::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSPrimitiveWrapper> js_primitive_wrapper =
i::Handle<i::JSPrimitiveWrapper>::cast(obj);
API_RCS_SCOPE(js_primitive_wrapper->GetIsolate(), NumberObject, NumberValue);
return i::Object::Number(js_primitive_wrapper->value());
}
Local<v8::Value> v8::BigIntObject::New(Isolate* v8_isolate, int64_t value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, BigIntObject, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::Object> bigint = i::BigInt::FromInt64(i_isolate, value);
i::Handle<i::Object> obj =
i::Object::ToObject(i_isolate, bigint).ToHandleChecked();
return Utils::ToLocal(obj);
}
Local<v8::BigInt> v8::BigIntObject::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSPrimitiveWrapper> js_primitive_wrapper =
i::Handle<i::JSPrimitiveWrapper>::cast(obj);
i::Isolate* i_isolate = js_primitive_wrapper->GetIsolate();
API_RCS_SCOPE(i_isolate, BigIntObject, BigIntValue);
return Utils::ToLocal(i::Handle<i::BigInt>(
i::BigInt::cast(js_primitive_wrapper->value()), i_isolate));
}
Local<v8::Value> v8::BooleanObject::New(Isolate* v8_isolate, bool value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, BooleanObject, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::Object> boolean =
i::ReadOnlyRoots(i_isolate).boolean_value_handle(value);
i::Handle<i::Object> obj =
i::Object::ToObject(i_isolate, boolean).ToHandleChecked();
return Utils::ToLocal(obj);
}
bool v8::BooleanObject::ValueOf() const {
i::Tagged<i::Object> obj = *Utils::OpenHandle(this);
i::Tagged<i::JSPrimitiveWrapper> js_primitive_wrapper =
i::JSPrimitiveWrapper::cast(obj);
i::Isolate* i_isolate = js_primitive_wrapper->GetIsolate();
API_RCS_SCOPE(i_isolate, BooleanObject, BooleanValue);
return i::IsTrue(js_primitive_wrapper->value(), i_isolate);
}
Local<v8::Value> v8::StringObject::New(Isolate* v8_isolate,
Local<String> value) {
i::Handle<i::String> string = Utils::OpenHandle(*value);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, StringObject, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::Object> obj =
i::Object::ToObject(i_isolate, string).ToHandleChecked();
return Utils::ToLocal(obj);
}
Local<v8::String> v8::StringObject::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSPrimitiveWrapper> js_primitive_wrapper =
i::Handle<i::JSPrimitiveWrapper>::cast(obj);
i::Isolate* i_isolate = js_primitive_wrapper->GetIsolate();
API_RCS_SCOPE(i_isolate, StringObject, StringValue);
return Utils::ToLocal(i::Handle<i::String>(
i::String::cast(js_primitive_wrapper->value()), i_isolate));
}
Local<v8::Value> v8::SymbolObject::New(Isolate* v8_isolate,
Local<Symbol> value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, SymbolObject, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::Object> obj =
i::Object::ToObject(i_isolate, Utils::OpenHandle(*value))
.ToHandleChecked();
return Utils::ToLocal(obj);
}
Local<v8::Symbol> v8::SymbolObject::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSPrimitiveWrapper> js_primitive_wrapper =
i::Handle<i::JSPrimitiveWrapper>::cast(obj);
i::Isolate* i_isolate = js_primitive_wrapper->GetIsolate();
API_RCS_SCOPE(i_isolate, SymbolObject, SymbolValue);
return Utils::ToLocal(i::Handle<i::Symbol>(
i::Symbol::cast(js_primitive_wrapper->value()), i_isolate));
}
MaybeLocal<v8::Value> v8::Date::New(Local<Context> context, double time) {
if (std::isnan(time)) {
// Introduce only canonical NaN value into the VM, to avoid signaling NaNs.
time = std::numeric_limits<double>::quiet_NaN();
}
PREPARE_FOR_EXECUTION(context, Date, New, Value);
Local<Value> result;
has_pending_exception =
!ToLocal<Value>(i::JSDate::New(i_isolate->date_function(),
i_isolate->date_function(), time),
&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
double v8::Date::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSDate> jsdate = i::Handle<i::JSDate>::cast(obj);
API_RCS_SCOPE(jsdate->GetIsolate(), Date, NumberValue);
return i::Object::Number(jsdate->value());
}
v8::Local<v8::String> v8::Date::ToISOString() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSDate> jsdate = i::Handle<i::JSDate>::cast(obj);
i::Isolate* i_isolate = jsdate->GetIsolate();
API_RCS_SCOPE(i_isolate, Date, NumberValue);
i::DateBuffer buffer = i::ToDateString(i::Object::Number(jsdate->value()),
i_isolate->date_cache(),
i::ToDateStringMode::kISODateAndTime);
i::Handle<i::String> str = i_isolate->factory()
->NewStringFromUtf8(base::VectorOf(buffer))
.ToHandleChecked();
return Utils::ToLocal(str);
}
// Assert that the static TimeZoneDetection cast in
// DateTimeConfigurationChangeNotification is valid.
#define TIME_ZONE_DETECTION_ASSERT_EQ(value) \
static_assert( \
static_cast<int>(v8::Isolate::TimeZoneDetection::value) == \
static_cast<int>(base::TimezoneCache::TimeZoneDetection::value));
TIME_ZONE_DETECTION_ASSERT_EQ(kSkip)
TIME_ZONE_DETECTION_ASSERT_EQ(kRedetect)
#undef TIME_ZONE_DETECTION_ASSERT_EQ
MaybeLocal<v8::RegExp> v8::RegExp::New(Local<Context> context,
Local<String> pattern, Flags flags) {
PREPARE_FOR_EXECUTION(context, RegExp, New, RegExp);
Local<v8::RegExp> result;
has_pending_exception =
!ToLocal<RegExp>(i::JSRegExp::New(i_isolate, Utils::OpenHandle(*pattern),
static_cast<i::JSRegExp::Flags>(flags)),
&result);
RETURN_ON_FAILED_EXECUTION(RegExp);
RETURN_ESCAPED(result);
}
MaybeLocal<v8::RegExp> v8::RegExp::NewWithBacktrackLimit(
Local<Context> context, Local<String> pattern, Flags flags,
uint32_t backtrack_limit) {
Utils::ApiCheck(i::Smi::IsValid(backtrack_limit),
"v8::RegExp::NewWithBacktrackLimit",
"backtrack_limit is too large or too small");
Utils::ApiCheck(backtrack_limit != i::JSRegExp::kNoBacktrackLimit,
"v8::RegExp::NewWithBacktrackLimit",
"Must set backtrack_limit");
PREPARE_FOR_EXECUTION(context, RegExp, New, RegExp);
Local<v8::RegExp> result;
has_pending_exception = !ToLocal<RegExp>(
i::JSRegExp::New(i_isolate, Utils::OpenHandle(*pattern),
static_cast<i::JSRegExp::Flags>(flags), backtrack_limit),
&result);
RETURN_ON_FAILED_EXECUTION(RegExp);
RETURN_ESCAPED(result);
}
Local<v8::String> v8::RegExp::GetSource() const {
i::Handle<i::JSRegExp> obj = Utils::OpenHandle(this);
return Utils::ToLocal(
i::Handle<i::String>(obj->EscapedPattern(), obj->GetIsolate()));
}
// Assert that the static flags cast in GetFlags is valid.
#define REGEXP_FLAG_ASSERT_EQ(flag) \
static_assert(static_cast<int>(v8::RegExp::flag) == \
static_cast<int>(i::JSRegExp::flag))
REGEXP_FLAG_ASSERT_EQ(kNone);
REGEXP_FLAG_ASSERT_EQ(kGlobal);
REGEXP_FLAG_ASSERT_EQ(kIgnoreCase);
REGEXP_FLAG_ASSERT_EQ(kMultiline);
REGEXP_FLAG_ASSERT_EQ(kSticky);
REGEXP_FLAG_ASSERT_EQ(kUnicode);
REGEXP_FLAG_ASSERT_EQ(kHasIndices);
REGEXP_FLAG_ASSERT_EQ(kLinear);
REGEXP_FLAG_ASSERT_EQ(kUnicodeSets);
#undef REGEXP_FLAG_ASSERT_EQ
v8::RegExp::Flags v8::RegExp::GetFlags() const {
i::Handle<i::JSRegExp> obj = Utils::OpenHandle(this);
return RegExp::Flags(static_cast<int>(obj->flags()));
}
MaybeLocal<v8::Object> v8::RegExp::Exec(Local<Context> context,
Local<v8::String> subject) {
PREPARE_FOR_EXECUTION(context, RegExp, Exec, Object);
i::Handle<i::JSRegExp> regexp = Utils::OpenHandle(this);
i::Handle<i::String> subject_string = Utils::OpenHandle(*subject);
// TODO(jgruber): RegExpUtils::RegExpExec was not written with efficiency in
// mind. It fetches the 'exec' property and then calls it through JSEntry.
// Unfortunately, this is currently the only full implementation of
// RegExp.prototype.exec available in C++.
Local<v8::Object> result;
has_pending_exception = !ToLocal<Object>(
i::RegExpUtils::RegExpExec(i_isolate, regexp, subject_string,
i_isolate->factory()->undefined_value()),
&result);
RETURN_ON_FAILED_EXECUTION(Object);
RETURN_ESCAPED(result);
}
Local<v8::Array> v8::Array::New(Isolate* v8_isolate, int length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, Array, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
int real_length = length > 0 ? length : 0;
i::Handle<i::JSArray> obj = i_isolate->factory()->NewJSArray(real_length);
i::Handle<i::Object> length_obj =
i_isolate->factory()->NewNumberFromInt(real_length);
obj->set_length(*length_obj);
return Utils::ToLocal(obj);
}
Local<v8::Array> v8::Array::New(Isolate* v8_isolate, Local<Value>* elements,
size_t length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::Factory* factory = i_isolate->factory();
API_RCS_SCOPE(i_isolate, Array, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
int len = static_cast<int>(length);
i::Handle<i::FixedArray> result = factory->NewFixedArray(len);
for (int i = 0; i < len; i++) {
i::Handle<i::Object> element = Utils::OpenHandle(*elements[i]);
result->set(i, *element);
}
return Utils::ToLocal(
factory->NewJSArrayWithElements(result, i::PACKED_ELEMENTS, len));
}
namespace internal {
uint32_t GetLength(Tagged<JSArray> array) {
Tagged<Object> length = array->length();
if (IsSmi(length)) return Smi::ToInt(length);
return static_cast<uint32_t>(Object::Number(length));
}
} // namespace internal
uint32_t v8::Array::Length() const {
i::Handle<i::JSArray> obj = Utils::OpenHandle(this);
return i::GetLength(*obj);
}
namespace internal {
bool CanUseFastIteration(Isolate* isolate, Handle<JSArray> array) {
if (IsCustomElementsReceiverMap(array->map())) return false;
if (array->GetElementsAccessor()->HasAccessors(*array)) return false;
if (!JSObject::PrototypeHasNoElements(isolate, *array)) return false;
return true;
}
enum class FastIterateResult {
kException = static_cast<int>(v8::Array::CallbackResult::kException),
kBreak = static_cast<int>(v8::Array::CallbackResult::kBreak),
kSlowPath,
kFinished,
};
FastIterateResult FastIterateArray(Handle<JSArray> array, Isolate* isolate,
v8::Array::IterationCallback callback,
void* callback_data) {
// Instead of relying on callers to check condition, this function returns
// {kSlowPath} for situations it can't handle.
// Most code paths below don't allocate, and rely on {callback} not allocating
// either, but this isn't enforced with {DisallowHeapAllocation} to allow
// embedders to allocate error objects before terminating the iteration.
// Since {callback} must not allocate anyway, we can get away with fake
// handles, reducing per-element overhead.
if (!CanUseFastIteration(isolate, array)) return FastIterateResult::kSlowPath;
using Result = v8::Array::CallbackResult;
DisallowJavascriptExecution no_js(isolate);
uint32_t length = GetLength(*array);
if (length == 0) return FastIterateResult::kFinished;
switch (array->GetElementsKind()) {
case PACKED_SMI_ELEMENTS:
case PACKED_ELEMENTS:
case PACKED_FROZEN_ELEMENTS:
case PACKED_SEALED_ELEMENTS:
case PACKED_NONEXTENSIBLE_ELEMENTS: {
Tagged<FixedArray> elements = FixedArray::cast(array->elements());
for (uint32_t i = 0; i < length; i++) {
Tagged<Object> element = elements->get(static_cast<int>(i));
// TODO(13270): When we switch to CSS, we can pass {element} to
// the callback directly, without {fake_handle}.
Handle<Object> fake_handle(reinterpret_cast<Address*>(&element));
Result result = callback(i, Utils::ToLocal(fake_handle), callback_data);
if (result != Result::kContinue) {
return static_cast<FastIterateResult>(result);
}
DCHECK(CanUseFastIteration(isolate, array));
}
return FastIterateResult::kFinished;
}
case HOLEY_SMI_ELEMENTS:
case HOLEY_FROZEN_ELEMENTS:
case HOLEY_SEALED_ELEMENTS:
case HOLEY_NONEXTENSIBLE_ELEMENTS:
case HOLEY_ELEMENTS: {
Tagged<FixedArray> elements = FixedArray::cast(array->elements());
for (uint32_t i = 0; i < length; i++) {
Tagged<Object> element = elements->get(static_cast<int>(i));
if (IsTheHole(element)) continue;
// TODO(13270): When we switch to CSS, we can pass {element} to
// the callback directly, without {fake_handle}.
Handle<Object> fake_handle(reinterpret_cast<Address*>(&element));
Result result = callback(i, Utils::ToLocal(fake_handle), callback_data);
if (result != Result::kContinue) {
return static_cast<FastIterateResult>(result);
}
DCHECK(CanUseFastIteration(isolate, array));
}
return FastIterateResult::kFinished;
}
case HOLEY_DOUBLE_ELEMENTS:
case PACKED_DOUBLE_ELEMENTS: {
DCHECK_NE(length, 0); // Cast to FixedDoubleArray would be invalid.
Handle<FixedDoubleArray> elements(
FixedDoubleArray::cast(array->elements()), isolate);
FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, i = 0, i, i < length, i++, {
if (elements->is_the_hole(i)) continue;
double element = elements->get_scalar(i);
Handle<Object> value = isolate->factory()->NewNumber(element);
Result result = callback(i, Utils::ToLocal(value), callback_data);
if (result != Result::kContinue) {
return static_cast<FastIterateResult>(result);
}
DCHECK(CanUseFastIteration(isolate, array));
});
return FastIterateResult::kFinished;
}
case DICTIONARY_ELEMENTS: {
DisallowGarbageCollection no_gc;
Tagged<NumberDictionary> dict = array->element_dictionary();
struct Entry {
uint32_t index;
InternalIndex entry;
};
std::vector<Entry> sorted;
sorted.reserve(dict->NumberOfElements());
ReadOnlyRoots roots(isolate);
for (InternalIndex i : dict->IterateEntries()) {
Tagged<Object> key = dict->KeyAt(isolate, i);
if (!dict->IsKey(roots, key)) continue;
uint32_t index = static_cast<uint32_t>(Object::Number(key));
sorted.push_back({index, i});
}
std::sort(
sorted.begin(), sorted.end(),
[](const Entry& a, const Entry& b) { return a.index < b.index; });
for (const Entry& entry : sorted) {
Tagged<Object> value = dict->ValueAt(entry.entry);
// TODO(13270): When we switch to CSS, we can pass {element} to
// the callback directly, without {fake_handle}.
Handle<Object> fake_handle(reinterpret_cast<Address*>(&value));
Result result =
callback(entry.index, Utils::ToLocal(fake_handle), callback_data);
if (result != Result::kContinue) {
return static_cast<FastIterateResult>(result);
}
SLOW_DCHECK(CanUseFastIteration(isolate, array));
}
return FastIterateResult::kFinished;
}
case NO_ELEMENTS:
return FastIterateResult::kFinished;
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
// Probably not worth implementing. Take the slow path.
return FastIterateResult::kSlowPath;
case WASM_ARRAY_ELEMENTS:
case FAST_STRING_WRAPPER_ELEMENTS:
case SLOW_STRING_WRAPPER_ELEMENTS:
case SHARED_ARRAY_ELEMENTS:
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) case TYPE##_ELEMENTS:
TYPED_ARRAYS(TYPED_ARRAY_CASE)
RAB_GSAB_TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
// These are never used by v8::Array instances.
UNREACHABLE();
}
}
} // namespace internal
Maybe<void> v8::Array::Iterate(Local<Context> context,
v8::Array::IterationCallback callback,
void* callback_data) {
i::Handle<i::JSArray> array = Utils::OpenHandle(this);
i::Isolate* isolate = array->GetIsolate();
i::FastIterateResult fast_result =
i::FastIterateArray(array, isolate, callback, callback_data);
if (fast_result == i::FastIterateResult::kException) return Nothing<void>();
// Early breaks and completed iteration both return successfully.
if (fast_result != i::FastIterateResult::kSlowPath) return JustVoid();
// Slow path: retrieving elements could have side effects.
ENTER_V8(isolate, context, Array, Iterate, Nothing<void>(), i::HandleScope);
for (uint32_t i = 0; i < i::GetLength(*array); ++i) {
i::Handle<i::Object> element;
has_pending_exception =
!i::JSReceiver::GetElement(isolate, array, i).ToHandle(&element);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(void);
using Result = v8::Array::CallbackResult;
Result result = callback(i, Utils::ToLocal(element), callback_data);
if (result == Result::kException) return Nothing<void>();
if (result == Result::kBreak) return JustVoid();
}
return JustVoid();
}
v8::TypecheckWitness::TypecheckWitness(Isolate* isolate)
// We need to reserve a handle that we can patch later.
// TODO(13270): When we switch to CSS, we can use a direct pointer
// instead of a handle.
: cached_map_(v8::Number::New(isolate, 1)) {}
void v8::TypecheckWitness::Update(Local<Value> baseline) {
i::Tagged<i::Object> obj = *Utils::OpenHandle(*baseline);
i::Tagged<i::Object> map = i::Smi::zero();
if (!IsSmi(obj)) map = i::HeapObject::cast(obj)->map();
// Design overview: in the {TypecheckWitness} constructor, we create
// a single handle for the witness value. Whenever {Update} is called, we
// make this handle point at the fresh baseline/witness; the intention is
// to allow having short-lived HandleScopes (e.g. in {FastIterateArray}
// above) while a {TypecheckWitness} is alive: it therefore cannot hold
// on to one of the short-lived handles.
// Calling {OpenHandle} on the {cached_map_} only serves to "reinterpret_cast"
// it to an {i::Handle} on which we can call {PatchValue}.
// TODO(13270): When we switch to CSS, this can become simpler: we can
// then simply overwrite the direct pointer.
i::Handle<i::Object> cache = Utils::OpenHandle(*cached_map_);
cache.PatchValue(map);
}
Local<v8::Map> v8::Map::New(Isolate* v8_isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, Map, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::JSMap> obj = i_isolate->factory()->NewJSMap();
return Utils::ToLocal(obj);
}
size_t v8::Map::Size() const {
i::Handle<i::JSMap> obj = Utils::OpenHandle(this);
return i::OrderedHashMap::cast(obj->table())->NumberOfElements();
}
void Map::Clear() {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
API_RCS_SCOPE(i_isolate, Map, Clear);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::JSMap::Clear(i_isolate, self);
}
MaybeLocal<Value> Map::Get(Local<Context> context, Local<Value> key) {
PREPARE_FOR_EXECUTION(context, Map, Get, Value);
auto self = Utils::OpenHandle(this);
Local<Value> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!ToLocal<Value>(i::Execution::CallBuiltin(i_isolate, i_isolate->map_get(),
self, arraysize(argv), argv),
&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
MaybeLocal<Map> Map::Set(Local<Context> context, Local<Value> key,
Local<Value> value) {
PREPARE_FOR_EXECUTION(context, Map, Set, Map);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key),
Utils::OpenHandle(*value)};
has_pending_exception =
!i::Execution::CallBuiltin(i_isolate, i_isolate->map_set(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Map);
RETURN_ESCAPED(Local<Map>::Cast(Utils::ToLocal(result)));
}
Maybe<bool> Map::Has(Local<Context> context, Local<Value> key) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Map, Has, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!i::Execution::CallBuiltin(i_isolate, i_isolate->map_has(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(i::IsTrue(*result, i_isolate));
}
Maybe<bool> Map::Delete(Local<Context> context, Local<Value> key) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Map, Delete, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!i::Execution::CallBuiltin(i_isolate, i_isolate->map_delete(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(i::IsTrue(*result, i_isolate));
}
namespace {
enum class MapAsArrayKind {
kEntries = i::JS_MAP_KEY_VALUE_ITERATOR_TYPE,
kKeys = i::JS_MAP_KEY_ITERATOR_TYPE,
kValues = i::JS_MAP_VALUE_ITERATOR_TYPE
};
enum class SetAsArrayKind {
kEntries = i::JS_SET_KEY_VALUE_ITERATOR_TYPE,
kValues = i::JS_SET_VALUE_ITERATOR_TYPE
};
i::Handle<i::JSArray> MapAsArray(i::Isolate* i_isolate,
i::Tagged<i::Object> table_obj, int offset,
MapAsArrayKind kind) {
i::Factory* factory = i_isolate->factory();
i::Handle<i::OrderedHashMap> table(i::OrderedHashMap::cast(table_obj),
i_isolate);
const bool collect_keys =
kind == MapAsArrayKind::kEntries || kind == MapAsArrayKind::kKeys;
const bool collect_values =
kind == MapAsArrayKind::kEntries || kind == MapAsArrayKind::kValues;
int capacity = table->UsedCapacity();
int max_length =
(capacity - offset) * ((collect_keys && collect_values) ? 2 : 1);
i::Handle<i::FixedArray> result = factory->NewFixedArray(max_length);
int result_index = 0;
{
i::DisallowGarbageCollection no_gc;
i::Tagged<i::Hole> hash_table_hole =
i::ReadOnlyRoots(i_isolate).hash_table_hole_value();
for (int i = offset; i < capacity; ++i) {
i::InternalIndex entry(i);
i::Tagged<i::Object> key = table->KeyAt(entry);
if (key == hash_table_hole) continue;
if (collect_keys) result->set(result_index++, key);
if (collect_values) result->set(result_index++, table->ValueAt(entry));
}
}
DCHECK_GE(max_length, result_index);
if (result_index == 0) return factory->NewJSArray(0);
result->Shrink(i_isolate, result_index);
return factory->NewJSArrayWithElements(result, i::PACKED_ELEMENTS,
result_index);
}
} // namespace
Local<Array> Map::AsArray() const {
i::Handle<i::JSMap> obj = Utils::OpenHandle(this);
i::Isolate* i_isolate = obj->GetIsolate();
API_RCS_SCOPE(i_isolate, Map, AsArray);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
return Utils::ToLocal(
MapAsArray(i_isolate, obj->table(), 0, MapAsArrayKind::kEntries));
}
Local<v8::Set> v8::Set::New(Isolate* v8_isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, Set, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::JSSet> obj = i_isolate->factory()->NewJSSet();
return Utils::ToLocal(obj);
}
size_t v8::Set::Size() const {
i::Handle<i::JSSet> obj = Utils::OpenHandle(this);
return i::OrderedHashSet::cast(obj->table())->NumberOfElements();
}
void Set::Clear() {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
API_RCS_SCOPE(i_isolate, Set, Clear);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::JSSet::Clear(i_isolate, self);
}
MaybeLocal<Set> Set::Add(Local<Context> context, Local<Value> key) {
PREPARE_FOR_EXECUTION(context, Set, Add, Set);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!i::Execution::CallBuiltin(i_isolate, i_isolate->set_add(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Set);
RETURN_ESCAPED(Local<Set>::Cast(Utils::ToLocal(result)));
}
Maybe<bool> Set::Has(Local<Context> context, Local<Value> key) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Set, Has, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!i::Execution::CallBuiltin(i_isolate, i_isolate->set_has(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(i::IsTrue(*result, i_isolate));
}
Maybe<bool> Set::Delete(Local<Context> context, Local<Value> key) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Set, Delete, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!i::Execution::CallBuiltin(i_isolate, i_isolate->set_delete(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(i::IsTrue(*result, i_isolate));
}
namespace {
i::Handle<i::JSArray> SetAsArray(i::Isolate* i_isolate,
i::Tagged<i::Object> table_obj, int offset,
SetAsArrayKind kind) {
i::Factory* factory = i_isolate->factory();
i::Handle<i::OrderedHashSet> table(i::OrderedHashSet::cast(table_obj),
i_isolate);
// Elements skipped by |offset| may already be deleted.
int capacity = table->UsedCapacity();
const bool collect_key_values = kind == SetAsArrayKind::kEntries;
int max_length = (capacity - offset) * (collect_key_values ? 2 : 1);
if (max_length == 0) return factory->NewJSArray(0);
i::Handle<i::FixedArray> result = factory->NewFixedArray(max_length);
int result_index = 0;
{
i::DisallowGarbageCollection no_gc;
i::Tagged<i::Hole> hash_table_hole =
i::ReadOnlyRoots(i_isolate).hash_table_hole_value();
for (int i = offset; i < capacity; ++i) {
i::InternalIndex entry(i);
i::Tagged<i::Object> key = table->KeyAt(entry);
if (key == hash_table_hole) continue;
result->set(result_index++, key);
if (collect_key_values) result->set(result_index++, key);
}
}
DCHECK_GE(max_length, result_index);
if (result_index == 0) return factory->NewJSArray(0);
result->Shrink(i_isolate, result_index);
return factory->NewJSArrayWithElements(result, i::PACKED_ELEMENTS,
result_index);
}
} // namespace
Local<Array> Set::AsArray() const {
i::Handle<i::JSSet> obj = Utils::OpenHandle(this);
i::Isolate* i_isolate = obj->GetIsolate();
API_RCS_SCOPE(i_isolate, Set, AsArray);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
return Utils::ToLocal(
SetAsArray(i_isolate, obj->table(), 0, SetAsArrayKind::kValues));
}
MaybeLocal<Promise::Resolver> Promise::Resolver::New(Local<Context> context) {
PREPARE_FOR_EXECUTION(context, Promise_Resolver, New, Resolver);
Local<Promise::Resolver> result;
has_pending_exception = !ToLocal<Promise::Resolver>(
i_isolate->factory()->NewJSPromise(), &result);
RETURN_ON_FAILED_EXECUTION(Promise::Resolver);
RETURN_ESCAPED(result);
}
Local<Promise> Promise::Resolver::GetPromise() {
i::Handle<i::JSReceiver> promise = Utils::OpenHandle(this);
return Local<Promise>::Cast(Utils::ToLocal(promise));
}
Maybe<bool> Promise::Resolver::Resolve(Local<Context> context,
Local<Value> value) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Promise_Resolver, Resolve, Nothing<bool>(),
i::HandleScope);
auto self = Utils::OpenHandle(this);
auto promise = i::Handle<i::JSPromise>::cast(self);
if (promise->status() != Promise::kPending) {
return Just(true);
}
has_pending_exception =
i::JSPromise::Resolve(promise, Utils::OpenHandle(*value)).is_null();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
Maybe<bool> Promise::Resolver::Reject(Local<Context> context,
Local<Value> value) {
auto i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(i_isolate, context, Promise_Resolver, Reject, Nothing<bool>(),
i::HandleScope);
auto self = Utils::OpenHandle(this);
auto promise = i::Handle<i::JSPromise>::cast(self);
if (promise->status() != Promise::kPending) {
return Just(true);
}
has_pending_exception =
i::JSPromise::Reject(promise, Utils::OpenHandle(*value)).is_null();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
MaybeLocal<Promise> Promise::Catch(Local<Context> context,
Local<Function> handler) {
PREPARE_FOR_EXECUTION(context, Promise, Catch, Promise);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> argv[] = {i_isolate->factory()->undefined_value(),
Utils::OpenHandle(*handler)};
i::Handle<i::Object> result;
// Do not call the built-in Promise.prototype.catch!
// v8::Promise should not call out to a monkeypatched Promise.prototype.then
// as the implementation of Promise.prototype.catch does.
has_pending_exception =
!i::Execution::CallBuiltin(i_isolate, i_isolate->promise_then(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Promise);
RETURN_ESCAPED(Local<Promise>::Cast(Utils::ToLocal(result)));
}
MaybeLocal<Promise> Promise::Then(Local<Context> context,
Local<Function> handler) {
PREPARE_FOR_EXECUTION(context, Promise, Then, Promise);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*handler)};
i::Handle<i::Object> result;
has_pending_exception =
!i::Execution::CallBuiltin(i_isolate, i_isolate->promise_then(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Promise);
RETURN_ESCAPED(Local<Promise>::Cast(Utils::ToLocal(result)));
}
MaybeLocal<Promise> Promise::Then(Local<Context> context,
Local<Function> on_fulfilled,
Local<Function> on_rejected) {
PREPARE_FOR_EXECUTION(context, Promise, Then, Promise);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*on_fulfilled),
Utils::OpenHandle(*on_rejected)};
i::Handle<i::Object> result;
has_pending_exception =
!i::Execution::CallBuiltin(i_isolate, i_isolate->promise_then(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Promise);
RETURN_ESCAPED(Local<Promise>::Cast(Utils::ToLocal(result)));
}
bool Promise::HasHandler() const {
i::Tagged<i::JSReceiver> promise = *Utils::OpenHandle(this);
i::Isolate* i_isolate = promise->GetIsolate();
API_RCS_SCOPE(i_isolate, Promise, HasRejectHandler);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
if (!IsJSPromise(promise)) return false;
return i::JSPromise::cast(promise)->has_handler();
}
Local<Value> Promise::Result() {
i::Handle<i::JSReceiver> promise = Utils::OpenHandle(this);
i::Isolate* i_isolate = promise->GetIsolate();
API_RCS_SCOPE(i_isolate, Promise, Result);
i::Handle<i::JSPromise> js_promise = i::Handle<i::JSPromise>::cast(promise);
Utils::ApiCheck(js_promise->status() != kPending, "v8_Promise_Result",
"Promise is still pending");
i::Handle<i::Object> result(js_promise->result(), i_isolate);
return Utils::ToLocal(result);
}
Promise::PromiseState Promise::State() {
i::Handle<i::JSReceiver> promise = Utils::OpenHandle(this);
API_RCS_SCOPE(promise->GetIsolate(), Promise, Status);
i::Handle<i::JSPromise> js_promise = i::Handle<i::JSPromise>::cast(promise);
return static_cast<PromiseState>(js_promise->status());
}
void Promise::MarkAsHandled() {
i::Handle<i::JSPromise> js_promise = Utils::OpenHandle(this);
js_promise->set_has_handler(true);
}
void Promise::MarkAsSilent() {
i::Handle<i::JSPromise> js_promise = Utils::OpenHandle(this);
js_promise->set_is_silent(true);
}
Local<Value> Proxy::GetTarget() {
i::Handle<i::JSProxy> self = Utils::OpenHandle(this);
i::Handle<i::Object> target(self->target(), self->GetIsolate());
return Utils::ToLocal(target);
}
Local<Value> Proxy::GetHandler() {
i::Handle<i::JSProxy> self = Utils::OpenHandle(this);
i::Handle<i::Object> handler(self->handler(), self->GetIsolate());
return Utils::ToLocal(handler);
}
bool Proxy::IsRevoked() const {
i::Handle<i::JSProxy> self = Utils::OpenHandle(this);
return self->IsRevoked();
}
void Proxy::Revoke() {
i::Handle<i::JSProxy> self = Utils::OpenHandle(this);
i::JSProxy::Revoke(self);
}
MaybeLocal<Proxy> Proxy::New(Local<Context> context, Local<Object> local_target,
Local<Object> local_handler) {
PREPARE_FOR_EXECUTION(context, Proxy, New, Proxy);
i::Handle<i::JSReceiver> target = Utils::OpenHandle(*local_target);
i::Handle<i::JSReceiver> handler = Utils::OpenHandle(*local_handler);
Local<Proxy> result;
has_pending_exception =
!ToLocal<Proxy>(i::JSProxy::New(i_isolate, target, handler), &result);
RETURN_ON_FAILED_EXECUTION(Proxy);
RETURN_ESCAPED(result);
}
CompiledWasmModule::CompiledWasmModule(
std::shared_ptr<internal::wasm::NativeModule> native_module,
const char* source_url, size_t url_length)
: native_module_(std::move(native_module)),
source_url_(source_url, url_length) {
CHECK_NOT_NULL(native_module_);
}
OwnedBuffer CompiledWasmModule::Serialize() {
#if V8_ENABLE_WEBASSEMBLY
TRACE_EVENT0("v8.wasm", "wasm.SerializeModule");
i::wasm::WasmSerializer wasm_serializer(native_module_.get());
size_t buffer_size = wasm_serializer.GetSerializedNativeModuleSize();
std::unique_ptr<uint8_t[]> buffer(new uint8_t[buffer_size]);
if (!wasm_serializer.SerializeNativeModule({buffer.get(), buffer_size}))
return {};
return {std::move(buffer), buffer_size};
#else
UNREACHABLE();
#endif // V8_ENABLE_WEBASSEMBLY
}
MemorySpan<const uint8_t> CompiledWasmModule::GetWireBytesRef() {
#if V8_ENABLE_WEBASSEMBLY
base::Vector<const uint8_t> bytes_vec = native_module_->wire_bytes();
return {bytes_vec.begin(), bytes_vec.size()};
#else
UNREACHABLE();
#endif // V8_ENABLE_WEBASSEMBLY
}
Local<ArrayBuffer> v8::WasmMemoryObject::Buffer() {
#if V8_ENABLE_WEBASSEMBLY
i::Handle<i::WasmMemoryObject> obj = Utils::OpenHandle(this);
i::Handle<i::JSArrayBuffer> buffer(obj->array_buffer(), obj->GetIsolate());
return Utils::ToLocal(buffer);
#else
UNREACHABLE();
#endif // V8_ENABLE_WEBASSEMBLY
}
CompiledWasmModule WasmModuleObject::GetCompiledModule() {
#if V8_ENABLE_WEBASSEMBLY
auto obj = i::Handle<i::WasmModuleObject>::cast(Utils::OpenHandle(this));
auto url =
i::handle(i::String::cast(obj->script()->name()), obj->GetIsolate());
int length;
std::unique_ptr<char[]> cstring =
url->ToCString(i::DISALLOW_NULLS, i::FAST_STRING_TRAVERSAL, &length);
return CompiledWasmModule(std::move(obj->shared_native_module()),
cstring.get(), length);
#else
UNREACHABLE();
#endif // V8_ENABLE_WEBASSEMBLY
}
MaybeLocal<WasmModuleObject> WasmModuleObject::FromCompiledModule(
Isolate* v8_isolate, const CompiledWasmModule& compiled_module) {
#if V8_ENABLE_WEBASSEMBLY
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::Handle<i::WasmModuleObject> module_object =
i::wasm::GetWasmEngine()->ImportNativeModule(
i_isolate, compiled_module.native_module_,
base::VectorOf(compiled_module.source_url()));
return Local<WasmModuleObject>::Cast(
Utils::ToLocal(i::Handle<i::JSObject>::cast(module_object)));
#else
UNREACHABLE();
#endif // V8_ENABLE_WEBASSEMBLY
}
MaybeLocal<WasmModuleObject> WasmModuleObject::Compile(
Isolate* v8_isolate, MemorySpan<const uint8_t> wire_bytes) {
#if V8_ENABLE_WEBASSEMBLY
const uint8_t* start = wire_bytes.data();
size_t length = wire_bytes.size();
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
if (!i::wasm::IsWasmCodegenAllowed(i_isolate, i_isolate->native_context())) {
return MaybeLocal<WasmModuleObject>();
}
i::MaybeHandle<i::JSObject> maybe_compiled;
{
i::wasm::ErrorThrower thrower(i_isolate, "WasmModuleObject::Compile()");
auto enabled_features = i::wasm::WasmFeatures::FromIsolate(i_isolate);
maybe_compiled = i::wasm::GetWasmEngine()->SyncCompile(
i_isolate, enabled_features, &thrower,
i::wasm::ModuleWireBytes(start, start + length));
}
CHECK_EQ(maybe_compiled.is_null(), i_isolate->has_pending_exception());
if (maybe_compiled.is_null()) {
i_isolate->OptionalRescheduleException(false);
return MaybeLocal<WasmModuleObject>();
}
return Local<WasmModuleObject>::Cast(
Utils::ToLocal(maybe_compiled.ToHandleChecked()));
#else
Utils::ApiCheck(false, "WasmModuleObject::Compile",
"WebAssembly support is not enabled");
UNREACHABLE();
#endif // V8_ENABLE_WEBASSEMBLY
}
void* v8::ArrayBuffer::Allocator::Reallocate(void* data, size_t old_length,
size_t new_length) {
if (old_length == new_length) return data;
uint8_t* new_data =
reinterpret_cast<uint8_t*>(AllocateUninitialized(new_length));
if (new_data == nullptr) return nullptr;
size_t bytes_to_copy = std::min(old_length, new_length);
memcpy(new_data, data, bytes_to_copy);
if (new_length > bytes_to_copy) {
memset(new_data + bytes_to_copy, 0, new_length - bytes_to_copy);
}
Free(data, old_length);
return new_data;
}
// static
v8::ArrayBuffer::Allocator* v8::ArrayBuffer::Allocator::NewDefaultAllocator() {
return new ArrayBufferAllocator();
}
bool v8::ArrayBuffer::IsDetachable() const {
return Utils::OpenHandle(this)->is_detachable();
}
bool v8::ArrayBuffer::WasDetached() const {
return Utils::OpenHandle(this)->was_detached();
}
namespace {
std::shared_ptr<i::BackingStore> ToInternal(
std::shared_ptr<i::BackingStoreBase> backing_store) {
return std::static_pointer_cast<i::BackingStore>(backing_store);
}
} // namespace
Maybe<bool> v8::ArrayBuffer::Detach(v8::Local<v8::Value> key) {
i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this);
i::Isolate* i_isolate = obj->GetIsolate();
Utils::ApiCheck(obj->is_detachable(), "v8::ArrayBuffer::Detach",
"Only detachable ArrayBuffers can be detached");
ENTER_V8_NO_SCRIPT(
i_isolate, reinterpret_cast<v8::Isolate*>(i_isolate)->GetCurrentContext(),
ArrayBuffer, Detach, Nothing<bool>(), i::HandleScope);
if (!key.IsEmpty()) {
i::Handle<i::Object> i_key = Utils::OpenHandle(*key);
constexpr bool kForceForWasmMemory = false;
has_pending_exception =
i::JSArrayBuffer::Detach(obj, kForceForWasmMemory, i_key).IsNothing();
} else {
has_pending_exception = i::JSArrayBuffer::Detach(obj).IsNothing();
}
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
void v8::ArrayBuffer::Detach() { Detach(Local<Value>()).Check(); }
void v8::ArrayBuffer::SetDetachKey(v8::Local<v8::Value> key) {
i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this);
i::Handle<i::Object> i_key = Utils::OpenHandle(*key);
obj->set_detach_key(*i_key);
}
size_t v8::ArrayBuffer::ByteLength() const {
i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this);
return obj->GetByteLength();
}
size_t v8::ArrayBuffer::MaxByteLength() const {
i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this);
return obj->max_byte_length();
}
Local<ArrayBuffer> v8::ArrayBuffer::New(Isolate* v8_isolate,
size_t byte_length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, ArrayBuffer, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::MaybeHandle<i::JSArrayBuffer> result =
i_isolate->factory()->NewJSArrayBufferAndBackingStore(
byte_length, i::InitializedFlag::kZeroInitialized);
i::Handle<i::JSArrayBuffer> array_buffer;
if (!result.ToHandle(&array_buffer)) {
// TODO(jbroman): It may be useful in the future to provide a MaybeLocal
// version that throws an exception or otherwise does not crash.
i::V8::FatalProcessOutOfMemory(i_isolate, "v8::ArrayBuffer::New");
}
return Utils::ToLocal(array_buffer);
}
Local<ArrayBuffer> v8::ArrayBuffer::New(
Isolate* v8_isolate, std::shared_ptr<BackingStore> backing_store) {
CHECK_IMPLIES(backing_store->ByteLength() != 0,
backing_store->Data() != nullptr);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, ArrayBuffer, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
std::shared_ptr<i::BackingStore> i_backing_store(
ToInternal(std::move(backing_store)));
Utils::ApiCheck(
!i_backing_store->is_shared(), "v8_ArrayBuffer_New",
"Cannot construct ArrayBuffer with a BackingStore of SharedArrayBuffer");
i::Handle<i::JSArrayBuffer> obj =
i_isolate->factory()->NewJSArrayBuffer(std::move(i_backing_store));
return Utils::ToLocal(obj);
}
std::unique_ptr<v8::BackingStore> v8::ArrayBuffer::NewBackingStore(
Isolate* v8_isolate, size_t byte_length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, ArrayBuffer, NewBackingStore);
CHECK_LE(byte_length, i::JSArrayBuffer::kMaxByteLength);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
std::unique_ptr<i::BackingStoreBase> backing_store =
i::BackingStore::Allocate(i_isolate, byte_length,
i::SharedFlag::kNotShared,
i::InitializedFlag::kZeroInitialized);
if (!backing_store) {
i::V8::FatalProcessOutOfMemory(i_isolate,
"v8::ArrayBuffer::NewBackingStore");
}
return std::unique_ptr<v8::BackingStore>(
static_cast<v8::BackingStore*>(backing_store.release()));
}
std::unique_ptr<v8::BackingStore> v8::ArrayBuffer::NewBackingStore(
void* data, size_t byte_length, v8::BackingStore::DeleterCallback deleter,
void* deleter_data) {
CHECK_LE(byte_length, i::JSArrayBuffer::kMaxByteLength);
#ifdef V8_ENABLE_SANDBOX
Utils::ApiCheck(!data || i::GetProcessWideSandbox()->Contains(data),
"v8_ArrayBuffer_NewBackingStore",
"When the V8 Sandbox is enabled, ArrayBuffer backing stores "
"must be allocated inside the sandbox address space. Please "
"use an appropriate ArrayBuffer::Allocator to allocate these "
"buffers, or disable the sandbox.");
#endif // V8_ENABLE_SANDBOX
std::unique_ptr<i::BackingStoreBase> backing_store =
i::BackingStore::WrapAllocation(data, byte_length, deleter, deleter_data,
i::SharedFlag::kNotShared);
return std::unique_ptr<v8::BackingStore>(
static_cast<v8::BackingStore*>(backing_store.release()));
}
// static
std::unique_ptr<BackingStore> v8::ArrayBuffer::NewResizableBackingStore(
size_t byte_length, size_t max_byte_length) {
Utils::ApiCheck(i::v8_flags.harmony_rab_gsab,
"v8::ArrayBuffer::NewResizableBackingStore",
"Constructing resizable ArrayBuffers is not supported");
Utils::ApiCheck(byte_length <= max_byte_length,
"v8::ArrayBuffer::NewResizableBackingStore",
"Cannot construct resizable ArrayBuffer, byte_length must be "
"<= max_byte_length");
Utils::ApiCheck(
byte_length <= i::JSArrayBuffer::kMaxByteLength,
"v8::ArrayBuffer::NewResizableBackingStore",
"Cannot construct resizable ArrayBuffer, requested length is too big");
size_t page_size, initial_pages, max_pages;
if (i::JSArrayBuffer::GetResizableBackingStorePageConfiguration(
nullptr, byte_length, max_byte_length, i::kDontThrow, &page_size,
&initial_pages, &max_pages)
.IsNothing()) {
i::V8::FatalProcessOutOfMemory(nullptr,
"v8::ArrayBuffer::NewResizableBackingStore");
}
std::unique_ptr<i::BackingStoreBase> backing_store =
i::BackingStore::TryAllocateAndPartiallyCommitMemory(
nullptr, byte_length, max_byte_length, page_size, initial_pages,
max_pages, i::WasmMemoryFlag::kNotWasm, i::SharedFlag::kNotShared);
if (!backing_store) {
i::V8::FatalProcessOutOfMemory(nullptr,
"v8::ArrayBuffer::NewResizableBackingStore");
}
return std::unique_ptr<v8::BackingStore>(
static_cast<v8::BackingStore*>(backing_store.release()));
}
Local<ArrayBuffer> v8::ArrayBufferView::Buffer() {
i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this);
i::Handle<i::JSArrayBuffer> buffer;
if (i::IsJSDataView(*obj)) {
i::Handle<i::JSDataView> data_view(i::JSDataView::cast(*obj),
obj->GetIsolate());
DCHECK(IsJSArrayBuffer(data_view->buffer()));
buffer = i::handle(i::JSArrayBuffer::cast(data_view->buffer()),
data_view->GetIsolate());
} else if (i::IsJSRabGsabDataView(*obj)) {
i::Handle<i::JSRabGsabDataView> data_view(i::JSRabGsabDataView::cast(*obj),
obj->GetIsolate());
DCHECK(IsJSArrayBuffer(data_view->buffer()));
buffer = i::handle(i::JSArrayBuffer::cast(data_view->buffer()),
data_view->GetIsolate());
} else {
DCHECK(IsJSTypedArray(*obj));
buffer = i::JSTypedArray::cast(*obj)->GetBuffer();
}
return Utils::ToLocal(buffer);
}
size_t v8::ArrayBufferView::CopyContents(void* dest, size_t byte_length) {
i::Handle<i::JSArrayBufferView> self = Utils::OpenHandle(this);
size_t bytes_to_copy = std::min(byte_length, self->byte_length());
if (bytes_to_copy) {
i::DisallowGarbageCollection no_gc;
i::Isolate* i_isolate = self->GetIsolate();
const char* source;
if (i::IsJSTypedArray(*self)) {
i::Handle<i::JSTypedArray> array(i::JSTypedArray::cast(*self), i_isolate);
source = reinterpret_cast<char*>(array->DataPtr());
} else if (i::IsJSDataView(*self)) {
i::Handle<i::JSDataView> data_view(i::JSDataView::cast(*self), i_isolate);
source = reinterpret_cast<char*>(data_view->data_pointer());
} else {
DCHECK(IsJSRabGsabDataView(*self));
i::Handle<i::JSRabGsabDataView> data_view(
i::JSRabGsabDataView::cast(*self), i_isolate);
source = reinterpret_cast<char*>(data_view->data_pointer());
}
memcpy(dest, source, bytes_to_copy);
}
return bytes_to_copy;
}
bool v8::ArrayBufferView::HasBuffer() const {
i::Handle<i::JSArrayBufferView> self = Utils::OpenHandle(this);
if (!IsJSTypedArray(*self)) return true;
auto typed_array = i::Handle<i::JSTypedArray>::cast(self);
return !typed_array->is_on_heap();
}
size_t v8::ArrayBufferView::ByteOffset() {
i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this);
return obj->WasDetached() ? 0 : obj->byte_offset();
}
size_t v8::ArrayBufferView::ByteLength() {
i::DisallowGarbageCollection no_gc;
i::Tagged<i::JSArrayBufferView> obj = *Utils::OpenHandle(this);
if (obj->WasDetached()) {
return 0;
}
if (i::IsJSTypedArray(obj)) {
return i::JSTypedArray::cast(obj)->GetByteLength();
}
if (i::IsJSDataView(obj)) {
return i::JSDataView::cast(obj)->byte_length();
}
return i::JSRabGsabDataView::cast(obj)->GetByteLength();
}
size_t v8::TypedArray::Length() {
i::DisallowGarbageCollection no_gc;
i::Tagged<i::JSTypedArray> obj = *Utils::OpenHandle(this);
return obj->WasDetached() ? 0 : obj->GetLength();
}
static_assert(v8::TypedArray::kMaxByteLength == i::JSTypedArray::kMaxByteLength,
"v8::TypedArray::kMaxByteLength must match "
"i::JSTypedArray::kMaxByteLength");
#define TYPED_ARRAY_NEW(Type, type, TYPE, ctype) \
Local<Type##Array> Type##Array::New(Local<ArrayBuffer> array_buffer, \
size_t byte_offset, size_t length) { \
i::Isolate* i_isolate = Utils::OpenHandle(*array_buffer)->GetIsolate(); \
API_RCS_SCOPE(i_isolate, Type##Array, New); \
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); \
if (!Utils::ApiCheck(length <= kMaxLength, \
"v8::" #Type \
"Array::New(Local<ArrayBuffer>, size_t, size_t)", \
"length exceeds max allowed value")) { \
return Local<Type##Array>(); \
} \
i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*array_buffer); \
i::Handle<i::JSTypedArray> obj = i_isolate->factory()->NewJSTypedArray( \
i::kExternal##Type##Array, buffer, byte_offset, length); \
return Utils::ToLocal##Type##Array(obj); \
} \
Local<Type##Array> Type##Array::New( \
Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, \
size_t length) { \
i::Isolate* i_isolate = \
Utils::OpenHandle(*shared_array_buffer)->GetIsolate(); \
API_RCS_SCOPE(i_isolate, Type##Array, New); \
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); \
if (!Utils::ApiCheck( \
length <= kMaxLength, \
"v8::" #Type \
"Array::New(Local<SharedArrayBuffer>, size_t, size_t)", \
"length exceeds max allowed value")) { \
return Local<Type##Array>(); \
} \
i::Handle<i::JSArrayBuffer> buffer = \
Utils::OpenHandle(*shared_array_buffer); \
i::Handle<i::JSTypedArray> obj = i_isolate->factory()->NewJSTypedArray( \
i::kExternal##Type##Array, buffer, byte_offset, length); \
return Utils::ToLocal##Type##Array(obj); \
}
TYPED_ARRAYS(TYPED_ARRAY_NEW)
#undef TYPED_ARRAY_NEW
// TODO(v8:11111): Support creating length tracking DataViews via the API.
Local<DataView> DataView::New(Local<ArrayBuffer> array_buffer,
size_t byte_offset, size_t byte_length) {
i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*array_buffer);
i::Isolate* i_isolate = buffer->GetIsolate();
API_RCS_SCOPE(i_isolate, DataView, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::JSDataView> obj = i::Handle<i::JSDataView>::cast(
i_isolate->factory()->NewJSDataViewOrRabGsabDataView(buffer, byte_offset,
byte_length));
return Utils::ToLocal(obj);
}
Local<DataView> DataView::New(Local<SharedArrayBuffer> shared_array_buffer,
size_t byte_offset, size_t byte_length) {
i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*shared_array_buffer);
i::Isolate* i_isolate = buffer->GetIsolate();
API_RCS_SCOPE(i_isolate, DataView, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::JSDataView> obj = i::Handle<i::JSDataView>::cast(
i_isolate->factory()->NewJSDataViewOrRabGsabDataView(buffer, byte_offset,
byte_length));
return Utils::ToLocal(obj);
}
size_t v8::SharedArrayBuffer::ByteLength() const {
i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this);
return obj->GetByteLength();
}
size_t v8::SharedArrayBuffer::MaxByteLength() const {
i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this);
return obj->max_byte_length();
}
Local<SharedArrayBuffer> v8::SharedArrayBuffer::New(Isolate* v8_isolate,
size_t byte_length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, SharedArrayBuffer, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
std::unique_ptr<i::BackingStore> backing_store =
i::BackingStore::Allocate(i_isolate, byte_length, i::SharedFlag::kShared,
i::InitializedFlag::kZeroInitialized);
if (!backing_store) {
// TODO(jbroman): It may be useful in the future to provide a MaybeLocal
// version that throws an exception or otherwise does not crash.
i::V8::FatalProcessOutOfMemory(i_isolate, "v8::SharedArrayBuffer::New");
}
i::Handle<i::JSArrayBuffer> obj =
i_isolate->factory()->NewJSSharedArrayBuffer(std::move(backing_store));
return Utils::ToLocalShared(obj);
}
Local<SharedArrayBuffer> v8::SharedArrayBuffer::New(
Isolate* v8_isolate, std::shared_ptr<BackingStore> backing_store) {
CHECK_IMPLIES(backing_store->ByteLength() != 0,
backing_store->Data() != nullptr);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, SharedArrayBuffer, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
std::shared_ptr<i::BackingStore> i_backing_store(ToInternal(backing_store));
Utils::ApiCheck(
i_backing_store->is_shared(), "v8::SharedArrayBuffer::New",
"Cannot construct SharedArrayBuffer with BackingStore of ArrayBuffer");
i::Handle<i::JSArrayBuffer> obj =
i_isolate->factory()->NewJSSharedArrayBuffer(std::move(i_backing_store));
return Utils::ToLocalShared(obj);
}
std::unique_ptr<v8::BackingStore> v8::SharedArrayBuffer::NewBackingStore(
Isolate* v8_isolate, size_t byte_length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, SharedArrayBuffer, NewBackingStore);
Utils::ApiCheck(
byte_length <= i::JSArrayBuffer::kMaxByteLength,
"v8::SharedArrayBuffer::NewBackingStore",
"Cannot construct SharedArrayBuffer, requested length is too big");
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
std::unique_ptr<i::BackingStoreBase> backing_store =
i::BackingStore::Allocate(i_isolate, byte_length, i::SharedFlag::kShared,
i::InitializedFlag::kZeroInitialized);
if (!backing_store) {
i::V8::FatalProcessOutOfMemory(i_isolate,
"v8::SharedArrayBuffer::NewBackingStore");
}
return std::unique_ptr<v8::BackingStore>(
static_cast<v8::BackingStore*>(backing_store.release()));
}
std::unique_ptr<v8::BackingStore> v8::SharedArrayBuffer::NewBackingStore(
void* data, size_t byte_length, v8::BackingStore::DeleterCallback deleter,
void* deleter_data) {
CHECK_LE(byte_length, i::JSArrayBuffer::kMaxByteLength);
std::unique_ptr<i::BackingStoreBase> backing_store =
i::BackingStore::WrapAllocation(data, byte_length, deleter, deleter_data,
i::SharedFlag::kShared);
return std::unique_ptr<v8::BackingStore>(
static_cast<v8::BackingStore*>(backing_store.release()));
}
Local<Symbol> v8::Symbol::New(Isolate* v8_isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, Symbol, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::Symbol> result = i_isolate->factory()->NewSymbol();
if (!name.IsEmpty()) result->set_description(*Utils::OpenHandle(*name));
return Utils::ToLocal(result);
}
Local<Symbol> v8::Symbol::For(Isolate* v8_isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::String> i_name = Utils::OpenHandle(*name);
return Utils::ToLocal(
i_isolate->SymbolFor(i::RootIndex::kPublicSymbolTable, i_name, false));
}
Local<Symbol> v8::Symbol::ForApi(Isolate* v8_isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::String> i_name = Utils::OpenHandle(*name);
return Utils::ToLocal(
i_isolate->SymbolFor(i::RootIndex::kApiSymbolTable, i_name, false));
}
#define WELL_KNOWN_SYMBOLS(V) \
V(AsyncIterator, async_iterator) \
V(HasInstance, has_instance) \
V(IsConcatSpreadable, is_concat_spreadable) \
V(Iterator, iterator) \
V(Match, match) \
V(Replace, replace) \
V(Search, search) \
V(Split, split) \
V(ToPrimitive, to_primitive) \
V(ToStringTag, to_string_tag) \
V(Unscopables, unscopables)
#define SYMBOL_GETTER(Name, name) \
Local<Symbol> v8::Symbol::Get##Name(Isolate* v8_isolate) { \
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate); \
return Utils::ToLocal(i_isolate->factory()->name##_symbol()); \
}
WELL_KNOWN_SYMBOLS(SYMBOL_GETTER)
#undef SYMBOL_GETTER
#undef WELL_KNOWN_SYMBOLS
Local<Private> v8::Private::New(Isolate* v8_isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, Private, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::Symbol> symbol = i_isolate->factory()->NewPrivateSymbol();
if (!name.IsEmpty()) symbol->set_description(*Utils::OpenHandle(*name));
Local<Symbol> result = Utils::ToLocal(symbol);
return result.UnsafeAs<Private>();
}
Local<Private> v8::Private::ForApi(Isolate* v8_isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
DCHECK_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::String> i_name = Utils::OpenHandle(*name);
Local<Symbol> result = Utils::ToLocal(
i_isolate->SymbolFor(i::RootIndex::kApiPrivateSymbolTable, i_name, true));
return result.UnsafeAs<Private>();
}
Local<Number> v8::Number::New(Isolate* v8_isolate, double value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
DCHECK_NO_SCRIPT_NO_EXCEPTION(i_isolate);
if (std::isnan(value)) {
// Introduce only canonical NaN value into the VM, to avoid signaling NaNs.
value = std::numeric_limits<double>::quiet_NaN();
}
i::Handle<i::Object> result = i_isolate->factory()->NewNumber(value);
return Utils::NumberToLocal(result);
}
Local<Integer> v8::Integer::New(Isolate* v8_isolate, int32_t value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
if (i::Smi::IsValid(value)) {
return Utils::IntegerToLocal(
i::Handle<i::Object>(i::Smi::FromInt(value), i_isolate));
}
i::Handle<i::Object> result = i_isolate->factory()->NewNumber(value);
return Utils::IntegerToLocal(result);
}
Local<Integer> v8::Integer::NewFromUnsigned(Isolate* v8_isolate,
uint32_t value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
bool fits_into_int32_t = (value & (1 << 31)) == 0;
if (fits_into_int32_t) {
return Integer::New(v8_isolate, static_cast<int32_t>(value));
}
i::Handle<i::Object> result = i_isolate->factory()->NewNumber(value);
return Utils::IntegerToLocal(result);
}
Local<BigInt> v8::BigInt::New(Isolate* v8_isolate, int64_t value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::BigInt> result = i::BigInt::FromInt64(i_isolate, value);
return Utils::ToLocal(result);
}
Local<BigInt> v8::BigInt::NewFromUnsigned(Isolate* v8_isolate, uint64_t value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::BigInt> result = i::BigInt::FromUint64(i_isolate, value);
return Utils::ToLocal(result);
}
MaybeLocal<BigInt> v8::BigInt::NewFromWords(Local<Context> context,
int sign_bit, int word_count,
const uint64_t* words) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8_NO_SCRIPT(i_isolate, context, BigInt, NewFromWords,
MaybeLocal<BigInt>(), InternalEscapableScope);
i::MaybeHandle<i::BigInt> result =
i::BigInt::FromWords64(i_isolate, sign_bit, word_count, words);
has_pending_exception = result.is_null();
RETURN_ON_FAILED_EXECUTION(BigInt);
RETURN_ESCAPED(Utils::ToLocal(result.ToHandleChecked()));
}
uint64_t v8::BigInt::Uint64Value(bool* lossless) const {
i::Handle<i::BigInt> handle = Utils::OpenHandle(this);
return handle->AsUint64(lossless);
}
int64_t v8::BigInt::Int64Value(bool* lossless) const {
i::Handle<i::BigInt> handle = Utils::OpenHandle(this);
return handle->AsInt64(lossless);
}
int BigInt::WordCount() const {
i::Handle<i::BigInt> handle = Utils::OpenHandle(this);
return handle->Words64Count();
}
void BigInt::ToWordsArray(int* sign_bit, int* word_count,
uint64_t* words) const {
i::Handle<i::BigInt> handle = Utils::OpenHandle(this);
return handle->ToWordsArray64(sign_bit, word_count, words);
}
void Isolate::ReportExternalAllocationLimitReached() {
i::Heap* heap = reinterpret_cast<i::Isolate*>(this)->heap();
if (heap->gc_state() != i::Heap::NOT_IN_GC) return;
heap->ReportExternalMemoryPressure();
}
HeapProfiler* Isolate::GetHeapProfiler() {
i::HeapProfiler* heap_profiler =
reinterpret_cast<i::Isolate*>(this)->heap_profiler();
return reinterpret_cast<HeapProfiler*>(heap_profiler);
}
void Isolate::SetIdle(bool is_idle) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->SetIdle(is_idle);
}
ArrayBuffer::Allocator* Isolate::GetArrayBufferAllocator() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
return i_isolate->array_buffer_allocator();
}
bool Isolate::InContext() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
return !i_isolate->context().is_null();
}
void Isolate::ClearKeptObjects() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->ClearKeptObjects();
}
v8::Local<v8::Context> Isolate::GetCurrentContext() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i::Tagged<i::Context> context = i_isolate->context();
if (context.is_null()) return Local<Context>();
i::Tagged<i::NativeContext> native_context = context->native_context();
return Utils::ToLocal(handle(native_context, i_isolate));
}
v8::Local<v8::Context> Isolate::GetEnteredOrMicrotaskContext() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i::Handle<i::NativeContext> last =
i_isolate->handle_scope_implementer()->LastEnteredOrMicrotaskContext();
if (last.is_null()) return Local<Context>();
return Utils::ToLocal(last);
}
v8::Local<v8::Context> Isolate::GetIncumbentContext() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i::Handle<i::NativeContext> context = i_isolate->GetIncumbentContext();
return Utils::ToLocal(context);
}
v8::Local<Value> Isolate::ThrowError(v8::Local<v8::String> message) {
return ThrowException(v8::Exception::Error(message));
}
v8::Local<Value> Isolate::ThrowException(v8::Local<v8::Value> value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
ENTER_V8_BASIC(i_isolate);
// If we're passed an empty handle, we throw an undefined exception
// to deal more gracefully with out of memory situations.
if (value.IsEmpty()) {
i_isolate->ScheduleThrow(i::ReadOnlyRoots(i_isolate).undefined_value());
} else {
i_isolate->ScheduleThrow(*Utils::OpenHandle(*value));
}
return v8::Undefined(reinterpret_cast<v8::Isolate*>(i_isolate));
}
void Isolate::AddGCPrologueCallback(GCCallbackWithData callback, void* data,
GCType gc_type) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->heap()->AddGCPrologueCallback(callback, gc_type, data);
}
void Isolate::RemoveGCPrologueCallback(GCCallbackWithData callback,
void* data) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->heap()->RemoveGCPrologueCallback(callback, data);
}
void Isolate::AddGCEpilogueCallback(GCCallbackWithData callback, void* data,
GCType gc_type) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->heap()->AddGCEpilogueCallback(callback, gc_type, data);
}
void Isolate::RemoveGCEpilogueCallback(GCCallbackWithData callback,
void* data) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->heap()->RemoveGCEpilogueCallback(callback, data);
}
static void CallGCCallbackWithoutData(Isolate* v8_isolate, GCType type,
GCCallbackFlags flags, void* data) {
reinterpret_cast<Isolate::GCCallback>(data)(v8_isolate, type, flags);
}
void Isolate::AddGCPrologueCallback(GCCallback callback, GCType gc_type) {
void* data = reinterpret_cast<void*>(callback);
AddGCPrologueCallback(CallGCCallbackWithoutData, data, gc_type);
}
void Isolate::RemoveGCPrologueCallback(GCCallback callback) {
void* data = reinterpret_cast<void*>(callback);
RemoveGCPrologueCallback(CallGCCallbackWithoutData, data);
}
void Isolate::AddGCEpilogueCallback(GCCallback callback, GCType gc_type) {
void* data = reinterpret_cast<void*>(callback);
AddGCEpilogueCallback(CallGCCallbackWithoutData, data, gc_type);
}
void Isolate::RemoveGCEpilogueCallback(GCCallback callback) {
void* data = reinterpret_cast<void*>(callback);
RemoveGCEpilogueCallback(CallGCCallbackWithoutData, data);
}
void Isolate::SetEmbedderRootsHandler(EmbedderRootsHandler* handler) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->heap()->SetEmbedderRootsHandler(handler);
}
void Isolate::AttachCppHeap(CppHeap* cpp_heap) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->heap()->AttachCppHeap(cpp_heap);
}
void Isolate::DetachCppHeap() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->heap()->DetachCppHeap();
}
CppHeap* Isolate::GetCppHeap() const {
const i::Isolate* i_isolate = reinterpret_cast<const i::Isolate*>(this);
return i_isolate->heap()->cpp_heap();
}
void Isolate::SetGetExternallyAllocatedMemoryInBytesCallback(
GetExternallyAllocatedMemoryInBytesCallback callback) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->heap()->SetGetExternallyAllocatedMemoryInBytesCallback(callback);
}
void Isolate::TerminateExecution() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->stack_guard()->RequestTerminateExecution();
}
bool Isolate::IsExecutionTerminating() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
#ifdef DEBUG
// This method might be called on a thread that's not bound to any Isolate
// and thus pointer compression schemes might have cage base value unset.
// Read-only roots accessors contain type DCHECKs which require access to
// V8 heap in order to check the object type. So, allow heap access here
// to let the checks work.
i::PtrComprCageAccessScope ptr_compr_cage_access_scope(i_isolate);
#endif // DEBUG
return i_isolate->is_execution_terminating();
}
void Isolate::CancelTerminateExecution() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->stack_guard()->ClearTerminateExecution();
i_isolate->CancelTerminateExecution();
}
void Isolate::RequestInterrupt(InterruptCallback callback, void* data) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->RequestInterrupt(callback, data);
}
bool Isolate::HasPendingBackgroundTasks() {
#if V8_ENABLE_WEBASSEMBLY
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
return i::wasm::GetWasmEngine()->HasRunningCompileJob(i_isolate);
#else
return false;
#endif // V8_ENABLE_WEBASSEMBLY
}
void Isolate::RequestGarbageCollectionForTesting(GarbageCollectionType type) {
Utils::ApiCheck(i::v8_flags.expose_gc,
"v8::Isolate::RequestGarbageCollectionForTesting",
"Must use --expose-gc");
if (type == kMinorGarbageCollection) {
reinterpret_cast<i::Isolate*>(this)->heap()->CollectGarbage(
i::NEW_SPACE, i::GarbageCollectionReason::kTesting,
kGCCallbackFlagForced);
} else {
DCHECK_EQ(kFullGarbageCollection, type);
reinterpret_cast<i::Isolate*>(this)->heap()->PreciseCollectAllGarbage(
i::GCFlag::kNoFlags, i::GarbageCollectionReason::kTesting,
kGCCallbackFlagForced);
}
}
void Isolate::RequestGarbageCollectionForTesting(GarbageCollectionType type,
StackState stack_state) {
base::Optional<i::EmbedderStackStateScope> stack_scope;
if (type == kFullGarbageCollection) {
stack_scope.emplace(reinterpret_cast<i::Isolate*>(this)->heap(),
i::EmbedderStackStateScope::kExplicitInvocation,
stack_state);
}
RequestGarbageCollectionForTesting(type);
}
Isolate* Isolate::GetCurrent() {
i::Isolate* i_isolate = i::Isolate::Current();
return reinterpret_cast<Isolate*>(i_isolate);
}
Isolate* Isolate::TryGetCurrent() {
i::Isolate* i_isolate = i::Isolate::TryGetCurrent();
return reinterpret_cast<Isolate*>(i_isolate);
}
bool Isolate::IsCurrent() const {
return reinterpret_cast<const i::Isolate*>(this)->IsCurrent();
}
// static
Isolate* Isolate::Allocate() {
return reinterpret_cast<Isolate*>(i::Isolate::New());
}
Isolate::CreateParams::CreateParams() = default;
Isolate::CreateParams::~CreateParams() = default;
// static
// This is separate so that tests can provide a different |isolate|.
void Isolate::Initialize(Isolate* v8_isolate,
const v8::Isolate::CreateParams& params) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
TRACE_EVENT_CALL_STATS_SCOPED(i_isolate, "v8", "V8.IsolateInitialize");
if (auto allocator = params.array_buffer_allocator_shared) {
CHECK(params.array_buffer_allocator == nullptr ||
params.array_buffer_allocator == allocator.get());
i_isolate->set_array_buffer_allocator(allocator.get());
i_isolate->set_array_buffer_allocator_shared(std::move(allocator));
} else {
CHECK_NOT_NULL(params.array_buffer_allocator);
i_isolate->set_array_buffer_allocator(params.array_buffer_allocator);
}
if (params.snapshot_blob != nullptr) {
i_isolate->set_snapshot_blob(params.snapshot_blob);
} else {
i_isolate->set_snapshot_blob(i::Snapshot::DefaultSnapshotBlob());
}
if (params.fatal_error_callback) {
v8_isolate->SetFatalErrorHandler(params.fatal_error_callback);
}
#if __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
#endif
if (params.oom_error_callback) {
v8_isolate->SetOOMErrorHandler(params.oom_error_callback);
}
#if __clang__
#pragma clang diagnostic pop
#endif
if (params.counter_lookup_callback) {
v8_isolate->SetCounterFunction(params.counter_lookup_callback);
}
if (params.create_histogram_callback) {
v8_isolate->SetCreateHistogramFunction(params.create_histogram_callback);
}
if (params.add_histogram_sample_callback) {
v8_isolate->SetAddHistogramSampleFunction(
params.add_histogram_sample_callback);
}
i_isolate->set_api_external_references(params.external_references);
i_isolate->set_allow_atomics_wait(params.allow_atomics_wait);
i_isolate->heap()->ConfigureHeap(params.constraints);
if (params.constraints.stack_limit() != nullptr) {
uintptr_t limit =
reinterpret_cast<uintptr_t>(params.constraints.stack_limit());
i_isolate->stack_guard()->SetStackLimit(limit);
}
// TODO(v8:2487): Once we got rid of Isolate::Current(), we can remove this.
Isolate::Scope isolate_scope(v8_isolate);
if (i_isolate->snapshot_blob() == nullptr) {
FATAL(
"V8 snapshot blob was not set during initialization. This can mean "
"that the snapshot blob file is corrupted or missing.");
}
if (!i::Snapshot::Initialize(i_isolate)) {
// If snapshot data was provided and we failed to deserialize it must
// have been corrupted.
FATAL(
"Failed to deserialize the V8 snapshot blob. This can mean that the "
"snapshot blob file is corrupted or missing.");
}
{
// Set up code event handlers. Needs to be after i::Snapshot::Initialize
// because that is where we add the isolate to WasmEngine.
auto code_event_handler = params.code_event_handler;
if (code_event_handler) {
v8_isolate->SetJitCodeEventHandler(kJitCodeEventEnumExisting,
code_event_handler);
}
}
i_isolate->set_only_terminate_in_safe_scope(
params.only_terminate_in_safe_scope);
i_isolate->set_embedder_wrapper_type_index(
params.embedder_wrapper_type_index);
i_isolate->set_embedder_wrapper_object_index(
params.embedder_wrapper_object_index);
if (!i::V8::GetCurrentPlatform()
->GetForegroundTaskRunner(v8_isolate)
->NonNestableTasksEnabled()) {
FATAL(
"The current platform's foreground task runner does not have "
"non-nestable tasks enabled. The embedder must provide one.");
}
}
Isolate* Isolate::New(const Isolate::CreateParams& params) {
Isolate* v8_isolate = Allocate();
Initialize(v8_isolate, params);
return v8_isolate;
}
void Isolate::Dispose() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
if (!Utils::ApiCheck(!i_isolate->IsInUse(), "v8::Isolate::Dispose()",
"Disposing the isolate that is entered by a thread")) {
return;
}
i::Isolate::Delete(i_isolate);
}
void Isolate::DumpAndResetStats() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->DumpAndResetStats();
}
void Isolate::DiscardThreadSpecificMetadata() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->DiscardPerThreadDataForThisThread();
}
void Isolate::Enter() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->Enter();
}
void Isolate::Exit() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->Exit();
}
void Isolate::SetAbortOnUncaughtExceptionCallback(
AbortOnUncaughtExceptionCallback callback) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->SetAbortOnUncaughtExceptionCallback(callback);
}
void Isolate::SetHostImportModuleDynamicallyCallback(
HostImportModuleDynamicallyCallback callback) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->SetHostImportModuleDynamicallyCallback(callback);
}
void Isolate::SetHostInitializeImportMetaObjectCallback(
HostInitializeImportMetaObjectCallback callback) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->SetHostInitializeImportMetaObjectCallback(callback);
}
void Isolate::SetHostCreateShadowRealmContextCallback(
HostCreateShadowRealmContextCallback callback) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->SetHostCreateShadowRealmContextCallback(callback);
}
void Isolate::SetPrepareStackTraceCallback(PrepareStackTraceCallback callback) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->SetPrepareStackTraceCallback(callback);
}
Isolate::DisallowJavascriptExecutionScope::DisallowJavascriptExecutionScope(
Isolate* v8_isolate,
Isolate::DisallowJavascriptExecutionScope::OnFailure on_failure)
: v8_isolate_(v8_isolate), on_failure_(on_failure) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
switch (on_failure_) {
case CRASH_ON_FAILURE:
i::DisallowJavascriptExecution::Open(i_isolate, &was_execution_allowed_);
break;
case THROW_ON_FAILURE:
i::ThrowOnJavascriptExecution::Open(i_isolate, &was_execution_allowed_);
break;
case DUMP_ON_FAILURE:
i::DumpOnJavascriptExecution::Open(i_isolate, &was_execution_allowed_);
break;
}
}
Isolate::DisallowJavascriptExecutionScope::~DisallowJavascriptExecutionScope() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate_);
switch (on_failure_) {
case CRASH_ON_FAILURE:
i::DisallowJavascriptExecution::Close(i_isolate, was_execution_allowed_);
break;
case THROW_ON_FAILURE:
i::ThrowOnJavascriptExecution::Close(i_isolate, was_execution_allowed_);
break;
case DUMP_ON_FAILURE:
i::DumpOnJavascriptExecution::Close(i_isolate, was_execution_allowed_);
break;
}
}
Isolate::AllowJavascriptExecutionScope::AllowJavascriptExecutionScope(
Isolate* v8_isolate)
: v8_isolate_(v8_isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::AllowJavascriptExecution::Open(i_isolate, &was_execution_allowed_assert_);
i::NoThrowOnJavascriptExecution::Open(i_isolate,
&was_execution_allowed_throws_);
i::NoDumpOnJavascriptExecution::Open(i_isolate, &was_execution_allowed_dump_);
}
Isolate::AllowJavascriptExecutionScope::~AllowJavascriptExecutionScope() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate_);
i::AllowJavascriptExecution::Close(i_isolate, was_execution_allowed_assert_);
i::NoThrowOnJavascriptExecution::Close(i_isolate,
was_execution_allowed_throws_);
i::NoDumpOnJavascriptExecution::Close(i_isolate, was_execution_allowed_dump_);
}
Isolate::SuppressMicrotaskExecutionScope::SuppressMicrotaskExecutionScope(
Isolate* v8_isolate, MicrotaskQueue* microtask_queue)
: i_isolate_(reinterpret_cast<i::Isolate*>(v8_isolate)),
microtask_queue_(microtask_queue
? static_cast<i::MicrotaskQueue*>(microtask_queue)
: i_isolate_->default_microtask_queue()) {
i_isolate_->thread_local_top()->IncrementCallDepth(this);
microtask_queue_->IncrementMicrotasksSuppressions();
}
Isolate::SuppressMicrotaskExecutionScope::~SuppressMicrotaskExecutionScope() {
microtask_queue_->DecrementMicrotasksSuppressions();
i_isolate_->thread_local_top()->DecrementCallDepth(this);
}
Isolate::SafeForTerminationScope::SafeForTerminationScope(
v8::Isolate* v8_isolate)
: i_isolate_(reinterpret_cast<i::Isolate*>(v8_isolate)),
prev_value_(i_isolate_->next_v8_call_is_safe_for_termination()) {
i_isolate_->set_next_v8_call_is_safe_for_termination(true);
}
Isolate::SafeForTerminationScope::~SafeForTerminationScope() {
i_isolate_->set_next_v8_call_is_safe_for_termination(prev_value_);
}
i::Address* Isolate::GetDataFromSnapshotOnce(size_t index) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i::Tagged<i::FixedArray> list = i_isolate->heap()->serialized_objects();
return GetSerializedDataFromFixedArray(i_isolate, list, index);
}
void Isolate::GetHeapStatistics(HeapStatistics* heap_statistics) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i::Heap* heap = i_isolate->heap();
// The order of acquiring memory statistics is important here. We query in
// this order because of concurrent allocation: 1) used memory 2) comitted
// physical memory 3) committed memory. Therefore the condition used <=
// committed physical <= committed should hold.
heap_statistics->used_global_handles_size_ = heap->UsedGlobalHandlesSize();
heap_statistics->total_global_handles_size_ = heap->TotalGlobalHandlesSize();
DCHECK_LE(heap_statistics->used_global_handles_size_,
heap_statistics->total_global_handles_size_);
heap_statistics->used_heap_size_ = heap->SizeOfObjects();
heap_statistics->total_physical_size_ = heap->CommittedPhysicalMemory();
heap_statistics->total_heap_size_ = heap->CommittedMemory();
heap_statistics->total_available_size_ = heap->Available();
if (!i::ReadOnlyHeap::IsReadOnlySpaceShared()) {
i::ReadOnlySpace* ro_space = heap->read_only_space();
heap_statistics->used_heap_size_ += ro_space->Size();
heap_statistics->total_physical_size_ +=
ro_space->CommittedPhysicalMemory();
heap_statistics->total_heap_size_ += ro_space->CommittedMemory();
}
// TODO(dinfuehr): Right now used <= committed physical does not hold. Fix
// this and add DCHECK.
DCHECK_LE(heap_statistics->used_heap_size_,
heap_statistics->total_heap_size_);
heap_statistics->total_heap_size_executable_ =
heap->CommittedMemoryExecutable();
heap_statistics->heap_size_limit_ = heap->MaxReserved();
// TODO(7424): There is no public API for the {WasmEngine} yet. Once such an
// API becomes available we should report the malloced memory separately. For
// now we just add the values, thereby over-approximating the peak slightly.
heap_statistics->malloced_memory_ =
i_isolate->allocator()->GetCurrentMemoryUsage() +
i_isolate->string_table()->GetCurrentMemoryUsage();
// On 32-bit systems backing_store_bytes() might overflow size_t temporarily
// due to concurrent array buffer sweeping.
heap_statistics->external_memory_ =
i_isolate->heap()->backing_store_bytes() < SIZE_MAX
? static_cast<size_t>(i_isolate->heap()->backing_store_bytes())
: SIZE_MAX;
heap_statistics->peak_malloced_memory_ =
i_isolate->allocator()->GetMaxMemoryUsage();
heap_statistics->number_of_native_contexts_ = heap->NumberOfNativeContexts();
heap_statistics->number_of_detached_contexts_ =
heap->NumberOfDetachedContexts();
heap_statistics->does_zap_garbage_ = i::heap::ShouldZapGarbage();
#if V8_ENABLE_WEBASSEMBLY
heap_statistics->malloced_memory_ +=
i::wasm::GetWasmEngine()->allocator()->GetCurrentMemoryUsage();
heap_statistics->peak_malloced_memory_ +=
i::wasm::GetWasmEngine()->allocator()->GetMaxMemoryUsage();
#endif // V8_ENABLE_WEBASSEMBLY
}
size_t Isolate::NumberOfHeapSpaces() {
return i::LAST_SPACE - i::FIRST_SPACE + 1;
}
bool Isolate::GetHeapSpaceStatistics(HeapSpaceStatistics* space_statistics,
size_t index) {
if (!space_statistics) return false;
if (!i::Heap::IsValidAllocationSpace(static_cast<i::AllocationSpace>(index)))
return false;
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i::Heap* heap = i_isolate->heap();
i::AllocationSpace allocation_space = static_cast<i::AllocationSpace>(index);
space_statistics->space_name_ = i::ToString(allocation_space);
if (allocation_space == i::RO_SPACE) {
if (i::ReadOnlyHeap::IsReadOnlySpaceShared()) {
// RO_SPACE memory is accounted for elsewhere when ReadOnlyHeap is shared.
space_statistics->space_size_ = 0;
space_statistics->space_used_size_ = 0;
space_statistics->space_available_size_ = 0;
space_statistics->physical_space_size_ = 0;
} else {
i::ReadOnlySpace* space = heap->read_only_space();
space_statistics->space_size_ = space->CommittedMemory();
space_statistics->space_used_size_ = space->Size();
space_statistics->space_available_size_ = 0;
space_statistics->physical_space_size_ = space->CommittedPhysicalMemory();
}
} else {
i::Space* space = heap->space(static_cast<int>(index));
space_statistics->space_size_ = space ? space->CommittedMemory() : 0;
space_statistics->space_used_size_ = space ? space->SizeOfObjects() : 0;
space_statistics->space_available_size_ = space ? space->Available() : 0;
space_statistics->physical_space_size_ =
space ? space->CommittedPhysicalMemory() : 0;
}
return true;
}
size_t Isolate::NumberOfTrackedHeapObjectTypes() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i::Heap* heap = i_isolate->heap();
return heap->NumberOfTrackedHeapObjectTypes();
}
bool Isolate::GetHeapObjectStatisticsAtLastGC(
HeapObjectStatistics* object_statistics, size_t type_index) {
if (!object_statistics) return false;
if (V8_LIKELY(!i::TracingFlags::is_gc_stats_enabled())) return false;
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i::Heap* heap = i_isolate->heap();
if (type_index >= heap->NumberOfTrackedHeapObjectTypes()) return false;
const char* object_type;
const char* object_sub_type;
size_t object_count = heap->ObjectCountAtLastGC(type_index);
size_t object_size = heap->ObjectSizeAtLastGC(type_index);
if (!heap->GetObjectTypeName(type_index, &object_type, &object_sub_type)) {
// There should be no objects counted when the type is unknown.
DCHECK_EQ(object_count, 0U);
DCHECK_EQ(object_size, 0U);
return false;
}
object_statistics->object_type_ = object_type;
object_statistics->object_sub_type_ = object_sub_type;
object_statistics->object_count_ = object_count;
object_statistics->object_size_ = object_size;
return true;
}
bool Isolate::GetHeapCodeAndMetadataStatistics(
HeapCodeStatistics* code_statistics) {
if (!code_statistics) return false;
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->heap()->CollectCodeStatistics();
code_statistics->code_and_metadata_size_ =
i_isolate->code_and_metadata_size();
code_statistics->bytecode_and_metadata_size_ =
i_isolate->bytecode_and_metadata_size();
code_statistics->external_script_source_size_ =
i_isolate->external_script_source_size();
code_statistics->cpu_profiler_metadata_size_ =
i::CpuProfiler::GetAllProfilersMemorySize(i_isolate);
return true;
}
bool Isolate::MeasureMemory(std::unique_ptr<MeasureMemoryDelegate> delegate,
MeasureMemoryExecution execution) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
return i_isolate->heap()->MeasureMemory(std::move(delegate), execution);
}
std::unique_ptr<MeasureMemoryDelegate> MeasureMemoryDelegate::Default(
Isolate* v8_isolate, Local<Context> context,
Local<Promise::Resolver> promise_resolver, MeasureMemoryMode mode) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::Handle<i::NativeContext> native_context =
handle(Utils::OpenHandle(*context)->native_context(), i_isolate);
i::Handle<i::JSPromise> js_promise =
i::Handle<i::JSPromise>::cast(Utils::OpenHandle(*promise_resolver));
return i_isolate->heap()->MeasureMemoryDelegate(native_context, js_promise,
mode);
}
void Isolate::GetStackSample(const RegisterState& state, void** frames,
size_t frames_limit, SampleInfo* sample_info) {
RegisterState regs = state;
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
if (i::TickSample::GetStackSample(i_isolate, ®s,
i::TickSample::kSkipCEntryFrame, frames,
frames_limit, sample_info)) {
return;
}
sample_info->frames_count = 0;
sample_info->vm_state = OTHER;
sample_info->external_callback_entry = nullptr;
}
int64_t Isolate::AdjustAmountOfExternalAllocatedMemory(
int64_t change_in_bytes) {
// Try to check for unreasonably large or small values from the embedder.
const int64_t kMaxReasonableBytes = int64_t(1) << 60;
const int64_t kMinReasonableBytes = -kMaxReasonableBytes;
static_assert(kMaxReasonableBytes >= i::JSArrayBuffer::kMaxByteLength);
CHECK(kMinReasonableBytes <= change_in_bytes &&
change_in_bytes < kMaxReasonableBytes);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
int64_t amount = i_isolate->heap()->update_external_memory(change_in_bytes);
if (change_in_bytes <= 0) return amount;
if (amount > i_isolate->heap()->external_memory_limit()) {
ReportExternalAllocationLimitReached();
}
return amount;
}
void Isolate::SetEventLogger(LogEventCallback that) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->set_event_logger(that);
}
void Isolate::AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback) {
if (callback == nullptr) return;
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->AddBeforeCallEnteredCallback(callback);
}
void Isolate::RemoveBeforeCallEnteredCallback(
BeforeCallEnteredCallback callback) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->RemoveBeforeCallEnteredCallback(callback);
}
void Isolate::AddCallCompletedCallback(CallCompletedCallback callback) {
if (callback == nullptr) return;
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->AddCallCompletedCallback(callback);
}
void Isolate::RemoveCallCompletedCallback(CallCompletedCallback callback) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->RemoveCallCompletedCallback(callback);
}
void Isolate::AtomicsWaitWakeHandle::Wake() {
reinterpret_cast<i::AtomicsWaitWakeHandle*>(this)->Wake();
}
void Isolate::SetAtomicsWaitCallback(AtomicsWaitCallback callback, void* data) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->SetAtomicsWaitCallback(callback, data);
}
void Isolate::SetPromiseHook(PromiseHook hook) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->SetPromiseHook(hook);
}
void Isolate::SetPromiseRejectCallback(PromiseRejectCallback callback) {
if (callback == nullptr) return;
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->SetPromiseRejectCallback(callback);
}
void Isolate::PerformMicrotaskCheckpoint() {
DCHECK_NE(MicrotasksPolicy::kScoped, GetMicrotasksPolicy());
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->default_microtask_queue()->PerformCheckpoint(this);
}
void Isolate::EnqueueMicrotask(Local<Function> v8_function) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i::Handle<i::JSReceiver> function = Utils::OpenHandle(*v8_function);
i::Handle<i::NativeContext> handler_context;
if (!i::JSReceiver::GetContextForMicrotask(function).ToHandle(
&handler_context))
handler_context = i_isolate->native_context();
MicrotaskQueue* microtask_queue = handler_context->microtask_queue();
if (microtask_queue) microtask_queue->EnqueueMicrotask(this, v8_function);
}
void Isolate::EnqueueMicrotask(MicrotaskCallback callback, void* data) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->default_microtask_queue()->EnqueueMicrotask(this, callback, data);
}
void Isolate::SetMicrotasksPolicy(MicrotasksPolicy policy) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->default_microtask_queue()->set_microtasks_policy(policy);
}
MicrotasksPolicy Isolate::GetMicrotasksPolicy() const {
i::Isolate* i_isolate =
reinterpret_cast<i::Isolate*>(const_cast<Isolate*>(this));
return i_isolate->default_microtask_queue()->microtasks_policy();
}
void Isolate::AddMicrotasksCompletedCallback(
MicrotasksCompletedCallbackWithData callback, void* data) {
DCHECK(callback);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->default_microtask_queue()->AddMicrotasksCompletedCallback(callback,
data);
}
void Isolate::RemoveMicrotasksCompletedCallback(
MicrotasksCompletedCallbackWithData callback, void* data) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->default_microtask_queue()->RemoveMicrotasksCompletedCallback(
callback, data);
}
void Isolate::SetUseCounterCallback(UseCounterCallback callback) {
reinterpret_cast<i::Isolate*>(this)->SetUseCounterCallback(callback);
}
void Isolate::SetCounterFunction(CounterLookupCallback callback) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->counters()->ResetCounterFunction(callback);
}
void Isolate::SetCreateHistogramFunction(CreateHistogramCallback callback) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->counters()->ResetCreateHistogramFunction(callback);
}
void Isolate::SetAddHistogramSampleFunction(
AddHistogramSampleCallback callback) {
reinterpret_cast<i::Isolate*>(this)
->counters()
->SetAddHistogramSampleFunction(callback);
}
void Isolate::SetMetricsRecorder(
const std::shared_ptr<metrics::Recorder>& metrics_recorder) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->metrics_recorder()->SetEmbedderRecorder(i_isolate,
metrics_recorder);
}
void Isolate::SetAddCrashKeyCallback(AddCrashKeyCallback callback) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->SetAddCrashKeyCallback(callback);
}
bool Isolate::IdleNotificationDeadline(double deadline_in_seconds) {
// Returning true tells the caller that it need not
// continue to call IdleNotification.
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
if (!i::v8_flags.use_idle_notification) return true;
return i_isolate->heap()->IdleNotification(deadline_in_seconds);
}
void Isolate::LowMemoryNotification() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
{
i::NestedTimedHistogramScope idle_notification_scope(
i_isolate->counters()->gc_low_memory_notification());
TRACE_EVENT0("v8", "V8.GCLowMemoryNotification");
#ifdef DEBUG
// This method might be called on a thread that's not bound to any Isolate
// and thus pointer compression schemes might have cage base value unset.
// Read-only roots accessors contain type DCHECKs which require access to
// V8 heap in order to check the object type. So, allow heap access here
// to let the checks work.
i::PtrComprCageAccessScope ptr_compr_cage_access_scope(i_isolate);
#endif // DEBUG
i_isolate->heap()->CollectAllAvailableGarbage(
i::GarbageCollectionReason::kLowMemoryNotification);
}
}
int Isolate::ContextDisposedNotification(bool dependant_context) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
#if V8_ENABLE_WEBASSEMBLY
if (!dependant_context) {
if (!i_isolate->context().is_null()) {
// We left the current context, we can abort all WebAssembly compilations
// of that context.
// A handle scope for the native context.
i::HandleScope handle_scope(i_isolate);
i::wasm::GetWasmEngine()->DeleteCompileJobsOnContext(
i_isolate->native_context());
}
}
#endif // V8_ENABLE_WEBASSEMBLY
// TODO(ahaas): move other non-heap activity out of the heap call.
return i_isolate->heap()->NotifyContextDisposed(dependant_context);
}
void Isolate::IsolateInForegroundNotification() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
return i_isolate->IsolateInForegroundNotification();
}
void Isolate::IsolateInBackgroundNotification() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
return i_isolate->IsolateInBackgroundNotification();
}
void Isolate::MemoryPressureNotification(MemoryPressureLevel level) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
bool on_isolate_thread =
i_isolate->was_locker_ever_used()
? i_isolate->thread_manager()->IsLockedByCurrentThread()
: i::ThreadId::Current() == i_isolate->thread_id();
i_isolate->heap()->MemoryPressureNotification(level, on_isolate_thread);
}
void Isolate::ClearCachesForTesting() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->AbortConcurrentOptimization(i::BlockingBehavior::kBlock);
i_isolate->ClearSerializerData();
i_isolate->compilation_cache()->Clear();
}
void Isolate::SetRAILMode(RAILMode rail_mode) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
return i_isolate->SetRAILMode(rail_mode);
}
void Isolate::UpdateLoadStartTime() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->UpdateLoadStartTime();
}
void Isolate::IncreaseHeapLimitForDebugging() {
// No-op.
}
void Isolate::RestoreOriginalHeapLimit() {
// No-op.
}
bool Isolate::IsHeapLimitIncreasedForDebugging() { return false; }
void Isolate::SetJitCodeEventHandler(JitCodeEventOptions options,
JitCodeEventHandler event_handler) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
// Ensure that logging is initialized for our isolate.
i_isolate->InitializeLoggingAndCounters();
i_isolate->v8_file_logger()->SetCodeEventHandler(options, event_handler);
}
void Isolate::SetStackLimit(uintptr_t stack_limit) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
CHECK(stack_limit);
i_isolate->stack_guard()->SetStackLimit(stack_limit);
}
void Isolate::GetCodeRange(void** start, size_t* length_in_bytes) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
const base::AddressRegion& code_region = i_isolate->heap()->code_region();
*start = reinterpret_cast<void*>(code_region.begin());
*length_in_bytes = code_region.size();
}
void Isolate::GetEmbeddedCodeRange(const void** start,
size_t* length_in_bytes) {
// Note, we should return the embedded code rande from the .text section here.
i::EmbeddedData d = i::EmbeddedData::FromBlob();
*start = reinterpret_cast<const void*>(d.code());
*length_in_bytes = d.code_size();
}
JSEntryStubs Isolate::GetJSEntryStubs() {
JSEntryStubs entry_stubs;
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
std::array<std::pair<i::Builtin, JSEntryStub*>, 3> stubs = {
{{i::Builtin::kJSEntry, &entry_stubs.js_entry_stub},
{i::Builtin::kJSConstructEntry, &entry_stubs.js_construct_entry_stub},
{i::Builtin::kJSRunMicrotasksEntry,
&entry_stubs.js_run_microtasks_entry_stub}}};
for (auto& pair : stubs) {
i::Tagged<i::Code> js_entry = i_isolate->builtins()->code(pair.first);
pair.second->code.start =
reinterpret_cast<const void*>(js_entry->instruction_start());
pair.second->code.length_in_bytes = js_entry->instruction_size();
}
return entry_stubs;
}
size_t Isolate::CopyCodePages(size_t capacity, MemoryRange* code_pages_out) {
#if !defined(V8_TARGET_ARCH_64_BIT) && !defined(V8_TARGET_ARCH_ARM)
// Not implemented on other platforms.
UNREACHABLE();
#else
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
std::vector<MemoryRange>* code_pages = i_isolate->GetCodePages();
DCHECK_NOT_NULL(code_pages);
// Copy as many elements into the output vector as we can. If the
// caller-provided buffer is not big enough, we fill it, and the caller can
// provide a bigger one next time. We do it this way because allocation is not
// allowed in signal handlers.
size_t limit = std::min(capacity, code_pages->size());
for (size_t i = 0; i < limit; i++) {
code_pages_out[i] = code_pages->at(i);
}
return code_pages->size();
#endif
}
#define CALLBACK_SETTER(ExternalName, Type, InternalName) \
void Isolate::Set##ExternalName(Type callback) { \
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this); \
i_isolate->set_##InternalName(callback); \
}
CALLBACK_SETTER(FatalErrorHandler, FatalErrorCallback, exception_behavior)
CALLBACK_SETTER(OOMErrorHandler, OOMErrorCallback, oom_behavior)
CALLBACK_SETTER(ModifyCodeGenerationFromStringsCallback,
ModifyCodeGenerationFromStringsCallback2,
modify_code_gen_callback2)
CALLBACK_SETTER(AllowWasmCodeGenerationCallback,
AllowWasmCodeGenerationCallback, allow_wasm_code_gen_callback)
CALLBACK_SETTER(WasmModuleCallback, ExtensionCallback, wasm_module_callback)
CALLBACK_SETTER(WasmInstanceCallback, ExtensionCallback, wasm_instance_callback)
CALLBACK_SETTER(WasmStreamingCallback, WasmStreamingCallback,
wasm_streaming_callback)
CALLBACK_SETTER(WasmAsyncResolvePromiseCallback,
WasmAsyncResolvePromiseCallback,
wasm_async_resolve_promise_callback)
CALLBACK_SETTER(WasmLoadSourceMapCallback, WasmLoadSourceMapCallback,
wasm_load_source_map_callback)
CALLBACK_SETTER(WasmGCEnabledCallback, WasmGCEnabledCallback,
wasm_gc_enabled_callback)
CALLBACK_SETTER(WasmImportedStringsEnabledCallback,
WasmImportedStringsEnabledCallback,
wasm_imported_strings_enabled_callback)
CALLBACK_SETTER(SharedArrayBufferConstructorEnabledCallback,
SharedArrayBufferConstructorEnabledCallback,
sharedarraybuffer_constructor_enabled_callback)
CALLBACK_SETTER(JavaScriptCompileHintsMagicEnabledCallback,
JavaScriptCompileHintsMagicEnabledCallback,
compile_hints_magic_enabled_callback)
void Isolate::InstallConditionalFeatures(Local<Context> context) {
v8::HandleScope handle_scope(this);
v8::Context::Scope context_scope(context);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
if (i_isolate->is_execution_terminating()) return;
i_isolate->InstallConditionalFeatures(Utils::OpenHandle(*context));
#if V8_ENABLE_WEBASSEMBLY
if (i::v8_flags.expose_wasm && !i_isolate->has_pending_exception()) {
i::WasmJs::InstallConditionalFeatures(i_isolate,
Utils::OpenHandle(*context));
}
#endif // V8_ENABLE_WEBASSEMBLY
if (i_isolate->has_pending_exception()) {
i_isolate->OptionalRescheduleException(false);
}
}
void Isolate::AddNearHeapLimitCallback(v8::NearHeapLimitCallback callback,
void* data) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->heap()->AddNearHeapLimitCallback(callback, data);
}
void Isolate::RemoveNearHeapLimitCallback(v8::NearHeapLimitCallback callback,
size_t heap_limit) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->heap()->RemoveNearHeapLimitCallback(callback, heap_limit);
}
void Isolate::AutomaticallyRestoreInitialHeapLimit(double threshold_percent) {
DCHECK_GT(threshold_percent, 0.0);
DCHECK_LT(threshold_percent, 1.0);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->heap()->AutomaticallyRestoreInitialHeapLimit(threshold_percent);
}
bool Isolate::IsDead() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
return i_isolate->IsDead();
}
bool Isolate::AddMessageListener(MessageCallback that, Local<Value> data) {
return AddMessageListenerWithErrorLevel(that, kMessageError, data);
}
bool Isolate::AddMessageListenerWithErrorLevel(MessageCallback that,
int message_levels,
Local<Value> data) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
i::Handle<i::ArrayList> list = i_isolate->factory()->message_listeners();
i::Handle<i::FixedArray> listener = i_isolate->factory()->NewFixedArray(3);
i::Handle<i::Foreign> foreign =
i_isolate->factory()->NewForeign(FUNCTION_ADDR(that));
listener->set(0, *foreign);
listener->set(1, data.IsEmpty()
? i::ReadOnlyRoots(i_isolate).undefined_value()
: *Utils::OpenHandle(*data));
listener->set(2, i::Smi::FromInt(message_levels));
list = i::ArrayList::Add(i_isolate, list, listener);
i_isolate->heap()->SetMessageListeners(*list);
return true;
}
void Isolate::RemoveMessageListeners(MessageCallback that) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
i::DisallowGarbageCollection no_gc;
i::Tagged<i::ArrayList> listeners = i_isolate->heap()->message_listeners();
for (int i = 0; i < listeners->Length(); i++) {
if (i::IsUndefined(listeners->Get(i), i_isolate)) {
continue; // skip deleted ones
}
i::Tagged<i::FixedArray> listener = i::FixedArray::cast(listeners->Get(i));
i::Tagged<i::Foreign> callback_obj = i::Foreign::cast(listener->get(0));
if (callback_obj->foreign_address() == FUNCTION_ADDR(that)) {
listeners->Set(i, i::ReadOnlyRoots(i_isolate).undefined_value());
}
}
}
void Isolate::SetFailedAccessCheckCallbackFunction(
FailedAccessCheckCallback callback) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->SetFailedAccessCheckCallback(callback);
}
void Isolate::SetCaptureStackTraceForUncaughtExceptions(
bool capture, int frame_limit, StackTrace::StackTraceOptions options) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->SetCaptureStackTraceForUncaughtExceptions(capture, frame_limit,
options);
}
void Isolate::VisitExternalResources(ExternalResourceVisitor* visitor) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->heap()->VisitExternalResources(visitor);
}
bool Isolate::IsInUse() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
return i_isolate->IsInUse();
}
void Isolate::SetAllowAtomicsWait(bool allow) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->set_allow_atomics_wait(allow);
}
void v8::Isolate::DateTimeConfigurationChangeNotification(
TimeZoneDetection time_zone_detection) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
API_RCS_SCOPE(i_isolate, Isolate, DateTimeConfigurationChangeNotification);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i_isolate->date_cache()->ResetDateCache(
static_cast<base::TimezoneCache::TimeZoneDetection>(time_zone_detection));
#ifdef V8_INTL_SUPPORT
i_isolate->clear_cached_icu_object(
i::Isolate::ICUObjectCacheType::kDefaultSimpleDateFormat);
i_isolate->clear_cached_icu_object(
i::Isolate::ICUObjectCacheType::kDefaultSimpleDateFormatForTime);
i_isolate->clear_cached_icu_object(
i::Isolate::ICUObjectCacheType::kDefaultSimpleDateFormatForDate);
#endif // V8_INTL_SUPPORT
}
void v8::Isolate::LocaleConfigurationChangeNotification() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
API_RCS_SCOPE(i_isolate, Isolate, LocaleConfigurationChangeNotification);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
#ifdef V8_INTL_SUPPORT
i_isolate->ResetDefaultLocale();
#endif // V8_INTL_SUPPORT
}
#if defined(V8_OS_WIN) && defined(V8_ENABLE_ETW_STACK_WALKING)
void Isolate::SetFilterETWSessionByURLCallback(
FilterETWSessionByURLCallback callback) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i_isolate->SetFilterETWSessionByURLCallback(callback);
}
#endif // V8_OS_WIN && V8_ENABLE_ETW_STACK_WALKING
bool v8::Object::IsCodeLike(v8::Isolate* v8_isolate) const {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
API_RCS_SCOPE(i_isolate, Object, IsCodeLike);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
return Utils::OpenHandle(this)->IsCodeLike(i_isolate);
}
// static
std::unique_ptr<MicrotaskQueue> MicrotaskQueue::New(Isolate* v8_isolate,
MicrotasksPolicy policy) {
auto microtask_queue =
i::MicrotaskQueue::New(reinterpret_cast<i::Isolate*>(v8_isolate));
microtask_queue->set_microtasks_policy(policy);
std::unique_ptr<MicrotaskQueue> ret(std::move(microtask_queue));
return ret;
}
MicrotasksScope::MicrotasksScope(Isolate* v8_isolate,
MicrotasksScope::Type type)
: MicrotasksScope(v8_isolate, nullptr, type) {}
MicrotasksScope::MicrotasksScope(Local<Context> v8_context,
MicrotasksScope::Type type)
: MicrotasksScope(v8_context->GetIsolate(), v8_context->GetMicrotaskQueue(),
type) {}
MicrotasksScope::MicrotasksScope(Isolate* v8_isolate,
MicrotaskQueue* microtask_queue,
MicrotasksScope::Type type)
: i_isolate_(reinterpret_cast<i::Isolate*>(v8_isolate)),
microtask_queue_(microtask_queue
? static_cast<i::MicrotaskQueue*>(microtask_queue)
: i_isolate_->default_microtask_queue()),
run_(type == MicrotasksScope::kRunMicrotasks) {
if (run_) microtask_queue_->IncrementMicrotasksScopeDepth();
#ifdef DEBUG
if (!run_) microtask_queue_->IncrementDebugMicrotasksScopeDepth();
#endif
}
MicrotasksScope::~MicrotasksScope() {
if (run_) {
microtask_queue_->DecrementMicrotasksScopeDepth();
if (MicrotasksPolicy::kScoped == microtask_queue_->microtasks_policy() &&
!i_isolate_->has_scheduled_exception()) {
microtask_queue_->PerformCheckpoint(
reinterpret_cast<Isolate*>(i_isolate_));
DCHECK_IMPLIES(i_isolate_->has_scheduled_exception(),
i_isolate_->is_execution_terminating());
}
}
#ifdef DEBUG
if (!run_) microtask_queue_->DecrementDebugMicrotasksScopeDepth();
#endif
}
// static
void MicrotasksScope::PerformCheckpoint(Isolate* v8_isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
auto* microtask_queue = i_isolate->default_microtask_queue();
microtask_queue->PerformCheckpoint(v8_isolate);
}
// static
int MicrotasksScope::GetCurrentDepth(Isolate* v8_isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
auto* microtask_queue = i_isolate->default_microtask_queue();
return microtask_queue->GetMicrotasksScopeDepth();
}
// static
bool MicrotasksScope::IsRunningMicrotasks(Isolate* v8_isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
auto* microtask_queue = i_isolate->default_microtask_queue();
return microtask_queue->IsRunningMicrotasks();
}
String::Utf8Value::Utf8Value(v8::Isolate* v8_isolate, v8::Local<v8::Value> obj)
: str_(nullptr), length_(0) {
if (obj.IsEmpty()) return;
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
Local<Context> context = v8_isolate->GetCurrentContext();
ENTER_V8_BASIC(i_isolate);
i::HandleScope scope(i_isolate);
TryCatch try_catch(v8_isolate);
Local<String> str;
if (!obj->ToString(context).ToLocal(&str)) return;
length_ = str->Utf8Length(v8_isolate);
str_ = i::NewArray<char>(length_ + 1);
str->WriteUtf8(v8_isolate, str_);
}
String::Utf8Value::~Utf8Value() { i::DeleteArray(str_); }
String::Value::Value(v8::Isolate* v8_isolate, v8::Local<v8::Value> obj)
: str_(nullptr), length_(0) {
if (obj.IsEmpty()) return;
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::HandleScope scope(i_isolate);
Local<Context> context = v8_isolate->GetCurrentContext();
ENTER_V8_BASIC(i_isolate);
TryCatch try_catch(v8_isolate);
Local<String> str;
if (!obj->ToString(context).ToLocal(&str)) return;
length_ = str->Length();
str_ = i::NewArray<uint16_t>(length_ + 1);
str->Write(v8_isolate, str_);
}
String::Value::~Value() { i::DeleteArray(str_); }
#define DEFINE_ERROR(NAME, name) \
Local<Value> Exception::NAME(v8::Local<v8::String> raw_message, \
v8::Local<v8::Value> raw_options) { \
i::Isolate* i_isolate = i::Isolate::Current(); \
API_RCS_SCOPE(i_isolate, NAME, New); \
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); \
i::Tagged<i::Object> error; \
{ \
i::HandleScope scope(i_isolate); \
i::Handle<i::Object> options; \
if (!raw_options.IsEmpty()) { \
options = Utils::OpenHandle(*raw_options); \
} \
i::Handle<i::String> message = Utils::OpenHandle(*raw_message); \
i::Handle<i::JSFunction> constructor = i_isolate->name##_function(); \
error = *i_isolate->factory()->NewError(constructor, message, options); \
} \
i::Handle<i::Object> result(error, i_isolate); \
return Utils::ToLocal(result); \
}
DEFINE_ERROR(RangeError, range_error)
DEFINE_ERROR(ReferenceError, reference_error)
DEFINE_ERROR(SyntaxError, syntax_error)
DEFINE_ERROR(TypeError, type_error)
DEFINE_ERROR(WasmCompileError, wasm_compile_error)
DEFINE_ERROR(WasmLinkError, wasm_link_error)
DEFINE_ERROR(WasmRuntimeError, wasm_runtime_error)
DEFINE_ERROR(Error, error)
#undef DEFINE_ERROR
Local<Message> Exception::CreateMessage(Isolate* v8_isolate,
Local<Value> exception) {
i::Handle<i::Object> obj = Utils::OpenHandle(*exception);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
return Utils::MessageToLocal(
scope.CloseAndEscape(i_isolate->CreateMessage(obj, nullptr)));
}
Local<StackTrace> Exception::GetStackTrace(Local<Value> exception) {
i::Handle<i::Object> obj = Utils::OpenHandle(*exception);
if (!IsJSObject(*obj)) return Local<StackTrace>();
i::Handle<i::JSObject> js_obj = i::Handle<i::JSObject>::cast(obj);
i::Isolate* i_isolate = js_obj->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
return Utils::StackTraceToLocal(i_isolate->GetDetailedStackTrace(js_obj));
}
v8::MaybeLocal<v8::Array> v8::Object::PreviewEntries(bool* is_key_value) {
i::Handle<i::JSReceiver> object = Utils::OpenHandle(this);
i::Isolate* i_isolate = object->GetIsolate();
if (i_isolate->is_execution_terminating()) return {};
if (IsMap()) {
*is_key_value = true;
return Map::Cast(this)->AsArray();
}
if (IsSet()) {
*is_key_value = false;
return Set::Cast(this)->AsArray();
}
Isolate* v8_isolate = reinterpret_cast<Isolate*>(i_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
if (i::IsJSWeakCollection(*object)) {
*is_key_value = IsJSWeakMap(*object);
return Utils::ToLocal(i::JSWeakCollection::GetEntries(
i::Handle<i::JSWeakCollection>::cast(object), 0));
}
if (i::IsJSMapIterator(*object)) {
i::Handle<i::JSMapIterator> it = i::Handle<i::JSMapIterator>::cast(object);
MapAsArrayKind const kind =
static_cast<MapAsArrayKind>(it->map()->instance_type());
*is_key_value = kind == MapAsArrayKind::kEntries;
if (!it->HasMore()) return v8::Array::New(v8_isolate);
return Utils::ToLocal(
MapAsArray(i_isolate, it->table(), i::Smi::ToInt(it->index()), kind));
}
if (i::IsJSSetIterator(*object)) {
i::Handle<i::JSSetIterator> it = i::Handle<i::JSSetIterator>::cast(object);
SetAsArrayKind const kind =
static_cast<SetAsArrayKind>(it->map()->instance_type());
*is_key_value = kind == SetAsArrayKind::kEntries;
if (!it->HasMore()) return v8::Array::New(v8_isolate);
return Utils::ToLocal(
SetAsArray(i_isolate, it->table(), i::Smi::ToInt(it->index()), kind));
}
return v8::MaybeLocal<v8::Array>();
}
Local<String> CpuProfileNode::GetFunctionName() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
i::Isolate* i_isolate = node->isolate();
const i::CodeEntry* entry = node->entry();
i::Handle<i::String> name =
i_isolate->factory()->InternalizeUtf8String(entry->name());
return ToApiHandle<String>(name);
}
const char* CpuProfileNode::GetFunctionNameStr() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->entry()->name();
}
int CpuProfileNode::GetScriptId() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
const i::CodeEntry* entry = node->entry();
return entry->script_id();
}
Local<String> CpuProfileNode::GetScriptResourceName() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
i::Isolate* i_isolate = node->isolate();
return ToApiHandle<String>(i_isolate->factory()->InternalizeUtf8String(
node->entry()->resource_name()));
}
const char* CpuProfileNode::GetScriptResourceNameStr() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->entry()->resource_name();
}
bool CpuProfileNode::IsScriptSharedCrossOrigin() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->entry()->is_shared_cross_origin();
}
int CpuProfileNode::GetLineNumber() const {
return reinterpret_cast<const i::ProfileNode*>(this)->line_number();
}
int CpuProfileNode::GetColumnNumber() const {
return reinterpret_cast<const i::ProfileNode*>(this)
->entry()
->column_number();
}
unsigned int CpuProfileNode::GetHitLineCount() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->GetHitLineCount();
}
bool CpuProfileNode::GetLineTicks(LineTick* entries,
unsigned int length) const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->GetLineTicks(entries, length);
}
const char* CpuProfileNode::GetBailoutReason() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->entry()->bailout_reason();
}
unsigned CpuProfileNode::GetHitCount() const {
return reinterpret_cast<const i::ProfileNode*>(this)->self_ticks();
}
unsigned CpuProfileNode::GetNodeId() const {
return reinterpret_cast<const i::ProfileNode*>(this)->id();
}
CpuProfileNode::SourceType CpuProfileNode::GetSourceType() const {
return reinterpret_cast<const i::ProfileNode*>(this)->source_type();
}
int CpuProfileNode::GetChildrenCount() const {
return static_cast<int>(
reinterpret_cast<const i::ProfileNode*>(this)->children()->size());
}
const CpuProfileNode* CpuProfileNode::GetChild(int index) const {
const i::ProfileNode* child =
reinterpret_cast<const i::ProfileNode*>(this)->children()->at(index);
return reinterpret_cast<const CpuProfileNode*>(child);
}
const CpuProfileNode* CpuProfileNode::GetParent() const {
const i::ProfileNode* parent =
reinterpret_cast<const i::ProfileNode*>(this)->parent();
return reinterpret_cast<const CpuProfileNode*>(parent);
}
const std::vector<CpuProfileDeoptInfo>& CpuProfileNode::GetDeoptInfos() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->deopt_infos();
}
void CpuProfile::Delete() {
i::CpuProfile* profile = reinterpret_cast<i::CpuProfile*>(this);
i::CpuProfiler* profiler = profile->cpu_profiler();
DCHECK_NOT_NULL(profiler);
profiler->DeleteProfile(profile);
}
Local<String> CpuProfile::GetTitle() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
i::Isolate* i_isolate = profile->top_down()->isolate();
return ToApiHandle<String>(
i_isolate->factory()->InternalizeUtf8String(profile->title()));
}
const CpuProfileNode* CpuProfile::GetTopDownRoot() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return reinterpret_cast<const CpuProfileNode*>(profile->top_down()->root());
}
const CpuProfileNode* CpuProfile::GetSample(int index) const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return reinterpret_cast<const CpuProfileNode*>(profile->sample(index).node);
}
const int CpuProfileNode::kNoLineNumberInfo;
const int CpuProfileNode::kNoColumnNumberInfo;
int64_t CpuProfile::GetSampleTimestamp(int index) const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return profile->sample(index).timestamp.since_origin().InMicroseconds();
}
StateTag CpuProfile::GetSampleState(int index) const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return profile->sample(index).state_tag;
}
EmbedderStateTag CpuProfile::GetSampleEmbedderState(int index) const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return profile->sample(index).embedder_state_tag;
}
int64_t CpuProfile::GetStartTime() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return profile->start_time().since_origin().InMicroseconds();
}
int64_t CpuProfile::GetEndTime() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return profile->end_time().since_origin().InMicroseconds();
}
static i::CpuProfile* ToInternal(const CpuProfile* profile) {
return const_cast<i::CpuProfile*>(
reinterpret_cast<const i::CpuProfile*>(profile));
}
void CpuProfile::Serialize(OutputStream* stream,
CpuProfile::SerializationFormat format) const {
Utils::ApiCheck(format == kJSON, "v8::CpuProfile::Serialize",
"Unknown serialization format");
Utils::ApiCheck(stream->GetChunkSize() > 0, "v8::CpuProfile::Serialize",
"Invalid stream chunk size");
i::CpuProfileJSONSerializer serializer(ToInternal(this));
serializer.Serialize(stream);
}
int CpuProfile::GetSamplesCount() const {
return reinterpret_cast<const i::CpuProfile*>(this)->samples_count();
}
CpuProfiler* CpuProfiler::New(Isolate* v8_isolate,
CpuProfilingNamingMode naming_mode,
CpuProfilingLoggingMode logging_mode) {
return reinterpret_cast<CpuProfiler*>(new i::CpuProfiler(
reinterpret_cast<i::Isolate*>(v8_isolate), naming_mode, logging_mode));
}
CpuProfilingOptions::CpuProfilingOptions(CpuProfilingMode mode,
unsigned max_samples,
int sampling_interval_us,
MaybeLocal<Context> filter_context)
: mode_(mode),
max_samples_(max_samples),
sampling_interval_us_(sampling_interval_us) {
if (!filter_context.IsEmpty()) {
Local<Context> local_filter_context = filter_context.ToLocalChecked();
filter_context_.Reset(local_filter_context->GetIsolate(),
local_filter_context);
filter_context_.SetWeak();
}
}
void* CpuProfilingOptions::raw_filter_context() const {
return reinterpret_cast<void*>(
i::Context::cast(*Utils::OpenPersistent(filter_context_))
->native_context()
.address());
}
void CpuProfiler::Dispose() { delete reinterpret_cast<i::CpuProfiler*>(this); }
// static
void CpuProfiler::CollectSample(Isolate* v8_isolate) {
i::CpuProfiler::CollectSample(reinterpret_cast<i::Isolate*>(v8_isolate));
}
void CpuProfiler::SetSamplingInterval(int us) {
DCHECK_GE(us, 0);
return reinterpret_cast<i::CpuProfiler*>(this)->set_sampling_interval(
base::TimeDelta::FromMicroseconds(us));
}
void CpuProfiler::SetUsePreciseSampling(bool use_precise_sampling) {
reinterpret_cast<i::CpuProfiler*>(this)->set_use_precise_sampling(
use_precise_sampling);
}
CpuProfilingResult CpuProfiler::Start(
CpuProfilingOptions options,
std::unique_ptr<DiscardedSamplesDelegate> delegate) {
return reinterpret_cast<i::CpuProfiler*>(this)->StartProfiling(
std::move(options), std::move(delegate));
}
CpuProfilingResult CpuProfiler::Start(
Local<String> title, CpuProfilingOptions options,
std::unique_ptr<DiscardedSamplesDelegate> delegate) {
return reinterpret_cast<i::CpuProfiler*>(this)->StartProfiling(
*Utils::OpenHandle(*title), std::move(options), std::move(delegate));
}
CpuProfilingResult CpuProfiler::Start(Local<String> title,
bool record_samples) {
CpuProfilingOptions options(
kLeafNodeLineNumbers,
record_samples ? CpuProfilingOptions::kNoSampleLimit : 0);
return reinterpret_cast<i::CpuProfiler*>(this)->StartProfiling(
*Utils::OpenHandle(*title), std::move(options));
}
CpuProfilingResult CpuProfiler::Start(Local<String> title,
CpuProfilingMode mode,
bool record_samples,
unsigned max_samples) {
CpuProfilingOptions options(mode, record_samples ? max_samples : 0);
return reinterpret_cast<i::CpuProfiler*>(this)->StartProfiling(
*Utils::OpenHandle(*title), std::move(options));
}
CpuProfilingStatus CpuProfiler::StartProfiling(
Local<String> title, CpuProfilingOptions options,
std::unique_ptr<DiscardedSamplesDelegate> delegate) {
return Start(title, std::move(options), std::move(delegate)).status;
}
CpuProfilingStatus CpuProfiler::StartProfiling(Local<String> title,
bool record_samples) {
return Start(title, record_samples).status;
}
CpuProfilingStatus CpuProfiler::StartProfiling(Local<String> title,
CpuProfilingMode mode,
bool record_samples,
unsigned max_samples) {
return Start(title, mode, record_samples, max_samples).status;
}
CpuProfile* CpuProfiler::StopProfiling(Local<String> title) {
return reinterpret_cast<CpuProfile*>(
reinterpret_cast<i::CpuProfiler*>(this)->StopProfiling(
*Utils::OpenHandle(*title)));
}
CpuProfile* CpuProfiler::Stop(ProfilerId id) {
return reinterpret_cast<CpuProfile*>(
reinterpret_cast<i::CpuProfiler*>(this)->StopProfiling(id));
}
void CpuProfiler::UseDetailedSourcePositionsForProfiling(Isolate* v8_isolate) {
reinterpret_cast<i::Isolate*>(v8_isolate)
->SetDetailedSourcePositionsForProfiling(true);
}
uintptr_t CodeEvent::GetCodeStartAddress() {
return reinterpret_cast<i::CodeEvent*>(this)->code_start_address;
}
size_t CodeEvent::GetCodeSize() {
return reinterpret_cast<i::CodeEvent*>(this)->code_size;
}
Local<String> CodeEvent::GetFunctionName() {
return ToApiHandle<String>(
reinterpret_cast<i::CodeEvent*>(this)->function_name);
}
Local<String> CodeEvent::GetScriptName() {
return ToApiHandle<String>(
reinterpret_cast<i::CodeEvent*>(this)->script_name);
}
int CodeEvent::GetScriptLine() {
return reinterpret_cast<i::CodeEvent*>(this)->script_line;
}
int CodeEvent::GetScriptColumn() {
return reinterpret_cast<i::CodeEvent*>(this)->script_column;
}
CodeEventType CodeEvent::GetCodeType() {
return reinterpret_cast<i::CodeEvent*>(this)->code_type;
}
const char* CodeEvent::GetComment() {
return reinterpret_cast<i::CodeEvent*>(this)->comment;
}
uintptr_t CodeEvent::GetPreviousCodeStartAddress() {
return reinterpret_cast<i::CodeEvent*>(this)->previous_code_start_address;
}
const char* CodeEvent::GetCodeEventTypeName(CodeEventType code_event_type) {
switch (code_event_type) {
case kUnknownType:
return "Unknown";
#define V(Name) \
case k##Name##Type: \
return #Name;
CODE_EVENTS_LIST(V)
#undef V
}
// The execution should never pass here
UNREACHABLE();
}
CodeEventHandler::CodeEventHandler(Isolate* v8_isolate) {
internal_listener_ = new i::ExternalLogEventListener(
reinterpret_cast<i::Isolate*>(v8_isolate));
}
CodeEventHandler::~CodeEventHandler() {
delete reinterpret_cast<i::ExternalLogEventListener*>(internal_listener_);
}
void CodeEventHandler::Enable() {
reinterpret_cast<i::ExternalLogEventListener*>(internal_listener_)
->StartListening(this);
}
void CodeEventHandler::Disable() {
reinterpret_cast<i::ExternalLogEventListener*>(internal_listener_)
->StopListening();
}
static i::HeapGraphEdge* ToInternal(const HeapGraphEdge* edge) {
return const_cast<i::HeapGraphEdge*>(
reinterpret_cast<const i::HeapGraphEdge*>(edge));
}
HeapGraphEdge::Type HeapGraphEdge::GetType() const {
return static_cast<HeapGraphEdge::Type>(ToInternal(this)->type());
}
Local<Value> HeapGraphEdge::GetName() const {
i::HeapGraphEdge* edge = ToInternal(this);
i::Isolate* i_isolate = edge->isolate();
switch (edge->type()) {
case i::HeapGraphEdge::kContextVariable:
case i::HeapGraphEdge::kInternal:
case i::HeapGraphEdge::kProperty:
case i::HeapGraphEdge::kShortcut:
case i::HeapGraphEdge::kWeak:
return ToApiHandle<String>(
i_isolate->factory()->InternalizeUtf8String(edge->name()));
case i::HeapGraphEdge::kElement:
case i::HeapGraphEdge::kHidden:
return ToApiHandle<Number>(
i_isolate->factory()->NewNumberFromInt(edge->index()));
default:
UNREACHABLE();
}
}
const HeapGraphNode* HeapGraphEdge::GetFromNode() const {
const i::HeapEntry* from = ToInternal(this)->from();
return reinterpret_cast<const HeapGraphNode*>(from);
}
const HeapGraphNode* HeapGraphEdge::GetToNode() const {
const i::HeapEntry* to = ToInternal(this)->to();
return reinterpret_cast<const HeapGraphNode*>(to);
}
static i::HeapEntry* ToInternal(const HeapGraphNode* entry) {
return const_cast<i::HeapEntry*>(
reinterpret_cast<const i::HeapEntry*>(entry));
}
HeapGraphNode::Type HeapGraphNode::GetType() const {
return static_cast<HeapGraphNode::Type>(ToInternal(this)->type());
}
Local<String> HeapGraphNode::GetName() const {
i::Isolate* i_isolate = ToInternal(this)->isolate();
return ToApiHandle<String>(
i_isolate->factory()->InternalizeUtf8String(ToInternal(this)->name()));
}
SnapshotObjectId HeapGraphNode::GetId() const { return ToInternal(this)->id(); }
size_t HeapGraphNode::GetShallowSize() const {
return ToInternal(this)->self_size();
}
int HeapGraphNode::GetChildrenCount() const {
return ToInternal(this)->children_count();
}
const HeapGraphEdge* HeapGraphNode::GetChild(int index) const {
return reinterpret_cast<const HeapGraphEdge*>(ToInternal(this)->child(index));
}
static i::HeapSnapshot* ToInternal(const HeapSnapshot* snapshot) {
return const_cast<i::HeapSnapshot*>(
reinterpret_cast<const i::HeapSnapshot*>(snapshot));
}
void HeapSnapshot::Delete() {
i::Isolate* i_isolate = ToInternal(this)->profiler()->isolate();
if (i_isolate->heap_profiler()->GetSnapshotsCount() > 1 ||
i_isolate->heap_profiler()->IsTakingSnapshot()) {
ToInternal(this)->Delete();
} else {
// If this is the last snapshot, clean up all accessory data as well.
i_isolate->heap_profiler()->DeleteAllSnapshots();
}
}
const HeapGraphNode* HeapSnapshot::GetRoot() const {
return reinterpret_cast<const HeapGraphNode*>(ToInternal(this)->root());
}
const HeapGraphNode* HeapSnapshot::GetNodeById(SnapshotObjectId id) const {
return reinterpret_cast<const HeapGraphNode*>(
ToInternal(this)->GetEntryById(id));
}
int HeapSnapshot::GetNodesCount() const {
return static_cast<int>(ToInternal(this)->entries().size());
}
const HeapGraphNode* HeapSnapshot::GetNode(int index) const {
return reinterpret_cast<const HeapGraphNode*>(
&ToInternal(this)->entries().at(index));
}
SnapshotObjectId HeapSnapshot::GetMaxSnapshotJSObjectId() const {
return ToInternal(this)->max_snapshot_js_object_id();
}
void HeapSnapshot::Serialize(OutputStream* stream,
HeapSnapshot::SerializationFormat format) const {
Utils::ApiCheck(format == kJSON, "v8::HeapSnapshot::Serialize",
"Unknown serialization format");
Utils::ApiCheck(stream->GetChunkSize() > 0, "v8::HeapSnapshot::Serialize",
"Invalid stream chunk size");
i::HeapSnapshotJSONSerializer serializer(ToInternal(this));
serializer.Serialize(stream);
}
// static
STATIC_CONST_MEMBER_DEFINITION const SnapshotObjectId
HeapProfiler::kUnknownObjectId;
int HeapProfiler::GetSnapshotCount() {
return reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshotsCount();
}
void HeapProfiler::QueryObjects(Local<Context> v8_context,
QueryObjectPredicate* predicate,
std::vector<Global<Object>>* objects) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_context->GetIsolate());
i::HeapProfiler* profiler = reinterpret_cast<i::HeapProfiler*>(this);
DCHECK_EQ(isolate, profiler->isolate());
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
profiler->QueryObjects(Utils::OpenHandle(*v8_context), predicate, objects);
}
const HeapSnapshot* HeapProfiler::GetHeapSnapshot(int index) {
return reinterpret_cast<const HeapSnapshot*>(
reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshot(index));
}
SnapshotObjectId HeapProfiler::GetObjectId(Local<Value> value) {
i::Handle<i::Object> obj = Utils::OpenHandle(*value);
return reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshotObjectId(obj);
}
SnapshotObjectId HeapProfiler::GetObjectId(NativeObject value) {
return reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshotObjectId(value);
}
Local<Value> HeapProfiler::FindObjectById(SnapshotObjectId id) {
i::Handle<i::Object> obj =
reinterpret_cast<i::HeapProfiler*>(this)->FindHeapObjectById(id);
if (obj.is_null()) return Local<Value>();
return Utils::ToLocal(obj);
}
void HeapProfiler::ClearObjectIds() {
reinterpret_cast<i::HeapProfiler*>(this)->ClearHeapObjectMap();
}
const HeapSnapshot* HeapProfiler::TakeHeapSnapshot(
const HeapSnapshotOptions& options) {
return reinterpret_cast<const HeapSnapshot*>(
reinterpret_cast<i::HeapProfiler*>(this)->TakeSnapshot(options));
}
const HeapSnapshot* HeapProfiler::TakeHeapSnapshot(ActivityControl* control,
ObjectNameResolver* resolver,
bool hide_internals,
bool capture_numeric_value) {
HeapSnapshotOptions options;
options.control = control;
options.global_object_name_resolver = resolver;
options.snapshot_mode = hide_internals ? HeapSnapshotMode::kRegular
: HeapSnapshotMode::kExposeInternals;
options.numerics_mode = capture_numeric_value
? NumericsMode::kExposeNumericValues
: NumericsMode::kHideNumericValues;
return TakeHeapSnapshot(options);
}
void HeapProfiler::StartTrackingHeapObjects(bool track_allocations) {
reinterpret_cast<i::HeapProfiler*>(this)->StartHeapObjectsTracking(
track_allocations);
}
void HeapProfiler::StopTrackingHeapObjects() {
reinterpret_cast<i::HeapProfiler*>(this)->StopHeapObjectsTracking();
}
SnapshotObjectId HeapProfiler::GetHeapStats(OutputStream* stream,
int64_t* timestamp_us) {
i::HeapProfiler* heap_profiler = reinterpret_cast<i::HeapProfiler*>(this);
return heap_profiler->PushHeapObjectsStats(stream, timestamp_us);
}
bool HeapProfiler::StartSamplingHeapProfiler(uint64_t sample_interval,
int stack_depth,
SamplingFlags flags) {
return reinterpret_cast<i::HeapProfiler*>(this)->StartSamplingHeapProfiler(
sample_interval, stack_depth, flags);
}
void HeapProfiler::StopSamplingHeapProfiler() {
reinterpret_cast<i::HeapProfiler*>(this)->StopSamplingHeapProfiler();
}
AllocationProfile* HeapProfiler::GetAllocationProfile() {
return reinterpret_cast<i::HeapProfiler*>(this)->GetAllocationProfile();
}
void HeapProfiler::DeleteAllHeapSnapshots() {
reinterpret_cast<i::HeapProfiler*>(this)->DeleteAllSnapshots();
}
void HeapProfiler::AddBuildEmbedderGraphCallback(
BuildEmbedderGraphCallback callback, void* data) {
reinterpret_cast<i::HeapProfiler*>(this)->AddBuildEmbedderGraphCallback(
callback, data);
}
void HeapProfiler::RemoveBuildEmbedderGraphCallback(
BuildEmbedderGraphCallback callback, void* data) {
reinterpret_cast<i::HeapProfiler*>(this)->RemoveBuildEmbedderGraphCallback(
callback, data);
}
void HeapProfiler::SetGetDetachednessCallback(GetDetachednessCallback callback,
void* data) {
reinterpret_cast<i::HeapProfiler*>(this)->SetGetDetachednessCallback(callback,
data);
}
EmbedderStateScope::EmbedderStateScope(Isolate* v8_isolate,
Local<v8::Context> context,
EmbedderStateTag tag)
: embedder_state_(new internal::EmbedderState(v8_isolate, context, tag)) {}
// std::unique_ptr's destructor is not compatible with Forward declared
// EmbedderState class.
// Default destructor must be defined in implementation file.
EmbedderStateScope::~EmbedderStateScope() = default;
void TracedReferenceBase::CheckValue() const {
#ifdef V8_HOST_ARCH_64_BIT
if (IsEmpty()) return;
CHECK_NE(internal::kGlobalHandleZapValue,
*reinterpret_cast<uint64_t*>(slot()));
#endif // V8_HOST_ARCH_64_BIT
}
CFunction::CFunction(const void* address, const CFunctionInfo* type_info)
: address_(address), type_info_(type_info) {
CHECK_NOT_NULL(address_);
CHECK_NOT_NULL(type_info_);
}
CFunctionInfo::CFunctionInfo(const CTypeInfo& return_info,
unsigned int arg_count, const CTypeInfo* arg_info,
Int64Representation repr)
: return_info_(return_info),
repr_(repr),
arg_count_(arg_count),
arg_info_(arg_info) {
DCHECK(repr == Int64Representation::kNumber ||
repr == Int64Representation::kBigInt);
if (arg_count_ > 0) {
for (unsigned int i = 0; i < arg_count_ - 1; ++i) {
DCHECK(arg_info_[i].GetType() != CTypeInfo::kCallbackOptionsType);
}
}
}
const CTypeInfo& CFunctionInfo::ArgumentInfo(unsigned int index) const {
DCHECK_LT(index, ArgumentCount());
return arg_info_[index];
}
void FastApiTypedArrayBase::ValidateIndex(size_t index) const {
DCHECK_LT(index, length_);
}
RegisterState::RegisterState()
: pc(nullptr), sp(nullptr), fp(nullptr), lr(nullptr) {}
RegisterState::~RegisterState() = default;
RegisterState::RegisterState(const RegisterState& other) { *this = other; }
RegisterState& RegisterState::operator=(const RegisterState& other) {
if (&other != this) {
pc = other.pc;
sp = other.sp;
fp = other.fp;
lr = other.lr;
if (other.callee_saved) {
// Make a deep copy if {other.callee_saved} is non-null.
callee_saved =
std::make_unique<CalleeSavedRegisters>(*(other.callee_saved));
} else {
// Otherwise, set {callee_saved} to null to match {other}.
callee_saved.reset();
}
}
return *this;
}
#if !V8_ENABLE_WEBASSEMBLY
// If WebAssembly is disabled, we still need to provide an implementation of the
// WasmStreaming API. Since {WasmStreaming::Unpack} will always fail, all
// methods are unreachable.
class WasmStreaming::WasmStreamingImpl {};
WasmStreaming::WasmStreaming(std::unique_ptr<WasmStreamingImpl>) {
UNREACHABLE();
}
WasmStreaming::~WasmStreaming() = default;
void WasmStreaming::OnBytesReceived(const uint8_t* bytes, size_t size) {
UNREACHABLE();
}
void WasmStreaming::Finish(bool can_use_compiled_module) { UNREACHABLE(); }
void WasmStreaming::Abort(MaybeLocal<Value> exception) { UNREACHABLE(); }
bool WasmStreaming::SetCompiledModuleBytes(const uint8_t* bytes, size_t size) {
UNREACHABLE();
}
void WasmStreaming::SetMoreFunctionsCanBeSerializedCallback(
std::function<void(CompiledWasmModule)>) {
UNREACHABLE();
}
void WasmStreaming::SetUrl(const char* url, size_t length) { UNREACHABLE(); }
// static
std::shared_ptr<WasmStreaming> WasmStreaming::Unpack(Isolate* v8_isolate,
Local<Value> value) {
FATAL("WebAssembly is disabled");
}
#endif // !V8_ENABLE_WEBASSEMBLY
namespace internal {
const size_t HandleScopeImplementer::kEnteredContextsOffset =
offsetof(HandleScopeImplementer, entered_contexts_);
const size_t HandleScopeImplementer::kIsMicrotaskContextOffset =
offsetof(HandleScopeImplementer, is_microtask_context_);
void HandleScopeImplementer::FreeThreadResources() { Free(); }
char* HandleScopeImplementer::ArchiveThread(char* storage) {
HandleScopeData* current = isolate_->handle_scope_data();
handle_scope_data_ = *current;
MemCopy(storage, this, sizeof(*this));
ResetAfterArchive();
current->Initialize();
return storage + ArchiveSpacePerThread();
}
int HandleScopeImplementer::ArchiveSpacePerThread() {
return sizeof(HandleScopeImplementer);
}
char* HandleScopeImplementer::RestoreThread(char* storage) {
MemCopy(this, storage, sizeof(*this));
*isolate_->handle_scope_data() = handle_scope_data_;
return storage + ArchiveSpacePerThread();
}
void HandleScopeImplementer::IterateThis(RootVisitor* v) {
#ifdef DEBUG
bool found_block_before_deferred = false;
#endif
// Iterate over all handles in the blocks except for the last.
for (int i = static_cast<int>(blocks()->size()) - 2; i >= 0; --i) {
Address* block = blocks()->at(i);
// Cast possibly-unrelated pointers to plain Address before comparing them
// to avoid undefined behavior.
if (last_handle_before_deferred_block_ != nullptr &&
(reinterpret_cast<Address>(last_handle_before_deferred_block_) <=
reinterpret_cast<Address>(&block[kHandleBlockSize])) &&
(reinterpret_cast<Address>(last_handle_before_deferred_block_) >=
reinterpret_cast<Address>(block))) {
v->VisitRootPointers(Root::kHandleScope, nullptr, FullObjectSlot(block),
FullObjectSlot(last_handle_before_deferred_block_));
DCHECK(!found_block_before_deferred);
#ifdef DEBUG
found_block_before_deferred = true;
#endif
} else {
v->VisitRootPointers(Root::kHandleScope, nullptr, FullObjectSlot(block),
FullObjectSlot(&block[kHandleBlockSize]));
}
}
DCHECK(last_handle_before_deferred_block_ == nullptr ||
found_block_before_deferred);
// Iterate over live handles in the last block (if any).
if (!blocks()->empty()) {
v->VisitRootPointers(Root::kHandleScope, nullptr,
FullObjectSlot(blocks()->back()),
FullObjectSlot(handle_scope_data_.next));
}
saved_contexts_.shrink_to_fit();
if (!saved_contexts_.empty()) {
FullObjectSlot start(&saved_contexts_.front());
v->VisitRootPointers(Root::kHandleScope, nullptr, start,
start + static_cast<int>(saved_contexts_.size()));
}
entered_contexts_.shrink_to_fit();
if (!entered_contexts_.empty()) {
FullObjectSlot start(&entered_contexts_.front());
v->VisitRootPointers(Root::kHandleScope, nullptr, start,
start + static_cast<int>(entered_contexts_.size()));
}
// The shape of |entered_contexts_| and |is_microtask_context_| stacks must
// be in sync.
is_microtask_context_.shrink_to_fit();
DCHECK_EQ(entered_contexts_.capacity(), is_microtask_context_.capacity());
DCHECK_EQ(entered_contexts_.size(), is_microtask_context_.size());
}
void HandleScopeImplementer::Iterate(RootVisitor* v) {
HandleScopeData* current = isolate_->handle_scope_data();
handle_scope_data_ = *current;
IterateThis(v);
}
char* HandleScopeImplementer::Iterate(RootVisitor* v, char* storage) {
HandleScopeImplementer* scope_implementer =
reinterpret_cast<HandleScopeImplementer*>(storage);
scope_implementer->IterateThis(v);
return storage + ArchiveSpacePerThread();
}
std::unique_ptr<PersistentHandles> HandleScopeImplementer::DetachPersistent(
Address* first_block) {
std::unique_ptr<PersistentHandles> ph(new PersistentHandles(isolate()));
DCHECK_NOT_NULL(first_block);
Address* block_start;
do {
block_start = blocks_.back();
ph->blocks_.push_back(blocks_.back());
#if DEBUG
ph->ordered_blocks_.insert(blocks_.back());
#endif
blocks_.pop_back();
} while (block_start != first_block);
// ph->blocks_ now contains the blocks installed on the
// HandleScope stack since BeginDeferredScope was called, but in
// reverse order.
// Switch first and last blocks, such that the last block is the one
// that is potentially half full.
DCHECK(!blocks_.empty() && !ph->blocks_.empty());
std::swap(ph->blocks_.front(), ph->blocks_.back());
ph->block_next_ = isolate()->handle_scope_data()->next;
block_start = ph->blocks_.back();
ph->block_limit_ = block_start + kHandleBlockSize;
DCHECK_NOT_NULL(last_handle_before_deferred_block_);
last_handle_before_deferred_block_ = nullptr;
return ph;
}
void HandleScopeImplementer::BeginDeferredScope() {
DCHECK_NULL(last_handle_before_deferred_block_);
last_handle_before_deferred_block_ = isolate()->handle_scope_data()->next;
}
void InvokeAccessorGetterCallback(
v8::Local<v8::Name> property,
const v8::PropertyCallbackInfo<v8::Value>& info) {
// Leaving JavaScript.
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(info.GetIsolate());
RCS_SCOPE(i_isolate, RuntimeCallCounterId::kAccessorGetterCallback);
v8::AccessorNameGetterCallback getter;
{
Address arg = i_isolate->isolate_data()->api_callback_thunk_argument();
// Currently we don't call InterceptorInfo callbacks via CallApiGetter.
DCHECK(IsAccessorInfo(Tagged<Object>(arg)));
Tagged<AccessorInfo> accessor_info =
AccessorInfo::cast(Tagged<Object>(arg));
getter = reinterpret_cast<v8::AccessorNameGetterCallback>(
accessor_info->getter(i_isolate));
if (V8_UNLIKELY(i_isolate->should_check_side_effects())) {
i::Handle<Object> receiver_check_unsupported;
if (!i_isolate->debug()->PerformSideEffectCheckForAccessor(
handle(accessor_info, i_isolate), receiver_check_unsupported,
ACCESSOR_GETTER)) {
return;
}
}
}
ExternalCallbackScope call_scope(i_isolate, FUNCTION_ADDR(getter));
getter(property, info);
}
namespace {
inline void InvokeFunctionCallback(
const v8::FunctionCallbackInfo<v8::Value>& info, CallApiCallbackMode mode) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(info.GetIsolate());
RCS_SCOPE(i_isolate, RuntimeCallCounterId::kFunctionCallback);
switch (mode) {
case CallApiCallbackMode::kGeneric: {
if (V8_UNLIKELY(i_isolate->should_check_side_effects())) {
// Load FunctionTemplateInfo from API_CALLBACK_EXIT frame.
// If this ever becomes a performance bottleneck, one can pass function
// template info here explicitly.
StackFrameIterator it(i_isolate);
CHECK(it.frame()->is_api_callback_exit());
ApiCallbackExitFrame* frame = ApiCallbackExitFrame::cast(it.frame());
Tagged<FunctionTemplateInfo> fti =
FunctionTemplateInfo::cast(frame->target());
Tagged<CallHandlerInfo> call_handler_info =
CallHandlerInfo::cast(fti->call_code(kAcquireLoad));
if (!i_isolate->debug()->PerformSideEffectCheckForCallback(
handle(call_handler_info, i_isolate))) {
// Failed side effect check.
return;
}
}
break;
}
case CallApiCallbackMode::kOptimized:
// CallFunction builtin should deoptimize an optimized function when
// side effects checking is enabled, so we don't have to handle side
// effects checking in the optimized version of the builtin.
DCHECK(!i_isolate->should_check_side_effects());
break;
case CallApiCallbackMode::kOptimizedNoProfiling:
// This mode doesn't call InvokeFunctionCallback.
UNREACHABLE();
}
Address arg = i_isolate->isolate_data()->api_callback_thunk_argument();
if (USE_SIMULATOR_BOOL) {
arg = ExternalReference::UnwrapRedirection(arg);
}
v8::FunctionCallback callback = reinterpret_cast<v8::FunctionCallback>(arg);
ExternalCallbackScope call_scope(i_isolate, FUNCTION_ADDR(callback));
callback(info);
}
} // namespace
void InvokeFunctionCallbackGeneric(
const v8::FunctionCallbackInfo<v8::Value>& info) {
InvokeFunctionCallback(info, CallApiCallbackMode::kGeneric);
}
void InvokeFunctionCallbackOptimized(
const v8::FunctionCallbackInfo<v8::Value>& info) {
InvokeFunctionCallback(info, CallApiCallbackMode::kOptimized);
}
void InvokeFinalizationRegistryCleanupFromTask(
Handle<NativeContext> native_context,
Handle<JSFinalizationRegistry> finalization_registry,
Handle<Object> callback) {
i::Isolate* i_isolate = finalization_registry->native_context()->GetIsolate();
RCS_SCOPE(i_isolate,
RuntimeCallCounterId::kFinalizationRegistryCleanupFromTask);
// Do not use ENTER_V8 because this is always called from a running
// FinalizationRegistryCleanupTask within V8 and we should not log it as an
// API call. This method is implemented here to avoid duplication of the
// exception handling and microtask running logic in CallDepthScope.
if (i_isolate->is_execution_terminating()) return;
Local<v8::Context> api_context = Utils::ToLocal(native_context);
CallDepthScope<true> call_depth_scope(i_isolate, api_context);
VMState<OTHER> state(i_isolate);
Handle<Object> argv[] = {callback};
if (Execution::CallBuiltin(i_isolate,
i_isolate->finalization_registry_cleanup_some(),
finalization_registry, arraysize(argv), argv)
.is_null()) {
call_depth_scope.Escape();
}
}
template <>
EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
int32_t ConvertDouble(double d) {
return internal::DoubleToInt32(d);
}
template <>
EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
uint32_t ConvertDouble(double d) {
return internal::DoubleToUint32(d);
}
template <>
EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
float ConvertDouble(double d) {
return internal::DoubleToFloat32(d);
}
template <>
EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
double ConvertDouble(double d) {
return d;
}
template <>
EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
int64_t ConvertDouble(double d) {
return internal::DoubleToWebIDLInt64(d);
}
template <>
EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
uint64_t ConvertDouble(double d) {
return internal::DoubleToWebIDLUint64(d);
}
template <>
EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
bool ConvertDouble(double d) {
// Implements https://tc39.es/ecma262/#sec-toboolean.
return !std::isnan(d) && d != 0;
}
// Undefine macros for jumbo build.
#undef SET_FIELD_WRAPPED
#undef NEW_STRING
#undef CALLBACK_SETTER
template <typename T>
bool ValidateFunctionCallbackInfo(const FunctionCallbackInfo<T>& info) {
CHECK_GE(info.Length(), 0);
// Theorticall args-length is unlimited, practically we run out of stack
// space. This should guard against accidentally used raw pointers.
CHECK_LE(info.Length(), 0xFFFFF);
if (info.Length() > 0) {
CHECK(info[0]->IsValue());
CHECK(info[info.Length() - 1]->IsValue());
}
auto* i_isolate = reinterpret_cast<i::Isolate*>(info.GetIsolate());
CHECK_EQ(i_isolate, Isolate::Current());
CHECK(info.This()->IsValue());
CHECK(info.Holder()->IsObject());
CHECK(!info.Data().IsEmpty());
CHECK(info.GetReturnValue().Get()->IsValue());
return true;
}
template <typename T>
bool ValidatePropertyCallbackInfo(const PropertyCallbackInfo<T>& info) {
auto* i_isolate = reinterpret_cast<i::Isolate*>(info.GetIsolate());
CHECK_EQ(i_isolate, Isolate::Current());
CHECK(info.This()->IsValue());
CHECK(info.Holder()->IsObject());
CHECK(info.Data()->IsValue());
USE(info.ShouldThrowOnError());
if (!std::is_same<T, void>::value) {
CHECK(info.GetReturnValue().Get()->IsValue());
}
return true;
}
template <>
bool V8_EXPORT ValidateCallbackInfo(const FunctionCallbackInfo<void>& info) {
return ValidateFunctionCallbackInfo(info);
}
template <>
bool V8_EXPORT
ValidateCallbackInfo(const FunctionCallbackInfo<v8::Value>& info) {
return ValidateFunctionCallbackInfo(info);
}
template <>
bool V8_EXPORT
ValidateCallbackInfo(const PropertyCallbackInfo<v8::Value>& info) {
return ValidatePropertyCallbackInfo(info);
}
template <>
bool V8_EXPORT
ValidateCallbackInfo(const PropertyCallbackInfo<v8::Array>& info) {
return ValidatePropertyCallbackInfo(info);
}
template <>
bool V8_EXPORT
ValidateCallbackInfo(const PropertyCallbackInfo<v8::Boolean>& info) {
return ValidatePropertyCallbackInfo(info);
}
template <>
bool V8_EXPORT
ValidateCallbackInfo(const PropertyCallbackInfo<v8::Integer>& info) {
return ValidatePropertyCallbackInfo(info);
}
template <>
bool V8_EXPORT ValidateCallbackInfo(const PropertyCallbackInfo<void>& info) {
return ValidatePropertyCallbackInfo(info);
}
} // namespace internal
template <>
bool V8_EXPORT V8_WARN_UNUSED_RESULT
TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<int32_t>::Build().GetId(),
int32_t>(Local<Array> src, int32_t* dst,
uint32_t max_length) {
return CopyAndConvertArrayToCppBuffer<
CTypeInfo(CTypeInfo::Type::kInt32, CTypeInfo::SequenceType::kIsSequence)
.GetId(),
int32_t>(src, dst, max_length);
}
template <>
bool V8_EXPORT V8_WARN_UNUSED_RESULT
TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<uint32_t>::Build().GetId(),
uint32_t>(Local<Array> src, uint32_t* dst,
uint32_t max_length) {
return CopyAndConvertArrayToCppBuffer<
CTypeInfo(CTypeInfo::Type::kUint32, CTypeInfo::SequenceType::kIsSequence)
.GetId(),
uint32_t>(src, dst, max_length);
}
template <>
bool V8_EXPORT V8_WARN_UNUSED_RESULT
TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<float>::Build().GetId(),
float>(Local<Array> src, float* dst,
uint32_t max_length) {
return CopyAndConvertArrayToCppBuffer<
CTypeInfo(CTypeInfo::Type::kFloat32, CTypeInfo::SequenceType::kIsSequence)
.GetId(),
float>(src, dst, max_length);
}
template <>
bool V8_EXPORT V8_WARN_UNUSED_RESULT
TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<double>::Build().GetId(),
double>(Local<Array> src, double* dst,
uint32_t max_length) {
return CopyAndConvertArrayToCppBuffer<
CTypeInfo(CTypeInfo::Type::kFloat64, CTypeInfo::SequenceType::kIsSequence)
.GetId(),
double>(src, dst, max_length);
}
std::string SourceLocation::ToString() const {
if (!file_) {
return {};
}
return std::string(function_) + "@" + file_ + ":" + std::to_string(line_);
}
} // namespace v8
#include "src/api/api-macros-undef.h"